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,is paper proposed an optimal time-varying proportional navigation guidance law based on sequential convex programming.
,e guidance law can achieve the desired impact angle and impact time with look angle and lateral acceleration constraints. By
treating the multiconstraints’ guidance problem as an optimization problem and changing the independent variable to linearize
the problem and constraints, the original nonlinear and nonconvex problem is transformed into a series of convex optimization
problem so that it can be quickly solved by sequential convex programming. Numerical simulations compared to nonlinear
programming and traditional analytical guidance law demonstrate the effectiveness and efficiency of the proposed algorithm.
Finally, the proposed guidance law is verified to satisfy different impact time periods and impact angle constraints.

1. Introduction

In modern warfare, the aims of guidance law are not only
limited to zero miss distance interception but also required
to intercept the target with a certain impact time and impact
angle. Impact angle constraint at terminal interception
engagement is critical for the homing missile to attack
modern warships, tanks, and ballistic missiles, which can
increase the effectiveness and lethality of the missile’s
warhead and escape the limited defense zone of the target.
Impact time constraint is important to facilitate a salvo
attack against the advanced close-in weapon system (CIWS).
Salvo attacks with impact time and impact angle constraints
simultaneously have the advantage to effectively destroy the
target.

Guidance law considering impact angle and impact time
constraints has been widely studied in past decades. Optimal
control theory has been implemented to solve optimal
guidance law under impact time and angle constraints [1–3].
Kim and Zhao have converted guidance law to a polynomial
form with respect to the range-to-go, and three coefficients
in the polynomial are designed to control the impact time,

impact angle, and zero miss distance [4, 5], respectively.
Besides, the errors of impact time and angle also have been
selected as sliding surface to constraint terminal impact time
and angle by sliding-mode control, whereas not optimal
[6–8]. Switched proportional navigation (PN) guidance gain
also has been derived to achieve the desired impact time and
angle by Harrison [9]. Based on the switched proportional
navigation guidance law, Hu [8] proposed a two-stage
guidance law by setting a virtual target. In the first stage,
nonsingular terminal sliding-mode guidance law is
employed to intercept the virtual target with a specific
impact angle; then, the proportional navigation guidance
law is used to get the desired impact angle. ,e impact time
and the virtual target position are designed by an optimi-
zation routine. ,e optimization process is too complicated
to use onboard. To simplify the solving process, He [10]
designed a simple decentralized midcourse guidance law for
the first stage to get the desired impact time and impact angle
for the pure proportional navigation in the second stage.
Chen [11] proposed a two-stage impact time constraint
guidance law with field-of-view constraint; however, the
impact angle is out of control. Kim and Kim [12] proposed a
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guidance law based on the backstepping method to control
impact time with reduced seeker field-of-view constraint.

Besides the previous traditional analytical form of
guidance laws, the computational guidance law has been
studied in [13–15]. In fields of plant entry [16, 17], spacecraft
descent guidance [18, 19], rendezvous and proximity
[20],orbit transfer problem [21], powered descent and
landing [22], trajectory optimization [23–25], etc., convex
programming has been verified that it can solve nonlinear
optimization problem efficiently and accurately. Liu [26] has
used convex programming to derive a time-varying PN
guidance law for impact angle constraint. To control impact
time, Jiang [27] has imported the impact time to kinematic
equations so that it can be limited as the impact angle.
However, the impact time is linked to the range-to-go, which
will lead the impact time to be infinite at the end of opti-
mization engagement and cause the problem infeasible. To
overcome the inherent infeasible problem, the impact time
in this paper is treated as a separated variable and inde-
pendent with range-to-go. Different discretization strategies
are carried out to avoid the infeasible problem. In summary,
the main contributions of this paper can be concluded as
follows:

(1) ,e multiconstrained guidance problem is trans-
formed into a convex optimization problem. ,e
differential motion equations, impact angle con-
straint, look angle constraint, lateral acceleration
constraint, and performance index are converted to
convex constraints.

(2) ,e impact time is introduced as an independent
differential equation, therefore is decoupled with the
range-to-go. ,e flight time is discretized as equality
constraints to avoid the influence of range-to-go so
that it contributes to the feasibility of convex
programming.

(3) ,e sequential convex programming is proposed to
calculate the optimal time-varying PN guidance law
with impact time and impact angle constraints.

,is paper is organized as follows. In section 2, the
mathematical formulation and original optimization prob-
lem are derived. ,en, the original optimization problem is
converted and solved by sequential convex programming in
Section 3, followed by numerical simulations in Section 4.
Finally, Section 5 concludes this work.

2. Problem Formulation

,e planar-engagement geometry between a missile and a
stationary target is shown in Figure 1, whereM andT denote
the missile and target, respectively. r is the missile and target
relative distance,VM is the missile velocity, aM is the lateral
acceleration perpendicular to the velocity vector, c, λ, and ε
denote the flight path angle, line-of-sight(LOS) angle, and
look angle, respectively, and cf is the terminal flight path
angle. ,e kinematic equations can be derived as follows
[28]:

_r � − VM cos ε,

r _λ � − VM sin ε,

_ε � _c − _λ,

_c �
aM

VM

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Note that c, λ, and ε are positive if measured counter-
clockwise from the reference line, otherwise are negative.
,e proportional navigation calls for the LOS angular rate
for calculating the missile lateral acceleration, that is,

aM � NVM
_λ, (2)

where in standard PN guidance law, the gain N is constant.
,en, the look angle ε can be derived as follows:

r_ε � − (N − 1)VM sin ε. (3)

In sum, the kinematic equations of missile under the PN
guidance law are given as

_r � − VM cos ε,

r _λ � − VM sin ε,

r_ε � − (N − 1)VM sin ε.

⎧⎪⎪⎨

⎪⎪⎩
(4)

In contrast to the standard PN guidance law with a
constant PN gain, we design a time-varying PN gain N(t)to
not only satisfy all the missile physical constraints and
trajectory constraints, which will be discussed later, but also
minimize the energy consumption. To distinguish between
the proposed PN gain and standard PN gain, the PN gain is
expressed as

u(t) � N(t). (5)

γf

T
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VM

aM

r
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γ ε
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Figure 1: Planar-engagement geometry.

2 Mathematical Problems in Engineering



A general energy performance index is considered as
follows for the energy optimization problem:

J � 􏽚
tf

0
aM(t)

2dt � 􏽚
tf

0

V
4
M[sin ε(t)]

2

r(t)
2 u(t)

2dt. (6)

,e physical constraints and trajectory constraints must
be satisfied in the problem which includes the following:

(1) Kinematics constrains: they are given in kinematic
equation (4) with initial conditions r(0), λ(0), and
ε(0).

(2) Field of view constraint: to accurately intercept the
target, the target must be locked by the seeker during
the intercept engagement. Due to the physical lim-
itation of the seeker’s field of view, the field of view
constraint is described as follows:

|ε(t)|≤ εmax, (7)

where εmax < (π/2) is an acceptable magnitude of the
look angle [29,30].

(3) Acceleration constraint: the maneuverability of
missile is limited by the aerodynamic and physical
characteristics, an the lateral acceleration is bounded
as

|a(t)| �
V

2
M sin ε(t)u(t)

r(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ amax, (8)

where amax is the maximum lateral acceleration.
(4) Terminal constraints: to impact the target at the

specified time and angle, we require t(tf) � t∗f,
c(tf) � c∗f, and r(tf) � 0.,e look angle ε(tf) � 0 is
required to make sure the missile terminal velocity
directly points to the target, which is equivalent to
λ(tf) � c∗f. ,erefore, the terminal constraints are

t tf􏼐 􏼑 � t
∗
f,

r tf􏼐 􏼑 � 0,

λ tf􏼐 􏼑 � c
∗
f,

ε tf􏼐 􏼑 � 0.

(9)

According to the performance index and constrains, the
optimal problem can be stated as Problem O: minimize
J � 􏽒

tf

0 ((V4
M[sin ε(t)]2)/r(t)2)u(t)2dt.

Subject to equations (4), (7), (8), and (9), the solution to
Problem O will give optimal PN guidance gain
N∗(t) � u∗(t); then, the missile lateral acceleration is
aM(t) � N∗(t)VM

_λ(t). Because the precise analytical so-
lution to this nonlinear problem is not available, compu-
tational guidance is implemented here to acquire the PN
guidance gain. For practical use onboard, the numerical-
solution process must be reliable and converges fast. ,ese
requirements motivate us to solve the optimization problem
using the sequential second-order cone convex program-
ming (SOCP) algorithm [31].

3. Numerical Solution by Sequential SOCP

To transform Problem O into the sequential SOCP problem,
the kinematic equations must be discretized as linear
equations, and the integrated performance index must be
discretized for numerical integration; meanwhile, all non-
convex constraints must transform into convex constraints.

First, we convert the nonlinear kinematic equation (4)
into linear equations. To begin with, we set the missile and
target relative distance r as an independent variable instead
of time t. Note that r is monotone decreasing due to the look
angle limitation |ε|< (π/2). Equation (4) can be rewritten as
[26]

rλ′ � r
dλ
dr

􏼠 􏼡 � tan ε,

rε′ � r
dε
dr

􏼠 􏼡 � (u − 1)tan ε.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

For simplicity, we define

σ � tan ε. (11)

,en, equation (10) becomes

rx′ � f(x) + B(x)u, (12)

where x � λ σ􏼂 􏼃
Tis the state vector, and

f(x) �
σ

− σ 1 + σ2􏼐 􏼑
⎡⎣ ⎤⎦,

B(x) �
0

σ 1 + σ2􏼐 􏼑
⎡⎣ ⎤⎦.

(13)

Note that this form is still nonlinear, but it is a control-
affine system, and it can be easily transformed into a linear
system in [32]. ,e main idea of this method is partly
linearized control-affine system based on small-disturbance
linearization. Let [x(k); u(k)]be the kth successful solution;
then, we convert equation (13) to the following partially
linearized system:

rx′ � A x
(k)

􏼐 􏼑x + B x
(k)

􏼐 􏼑u + c x
(k)

􏼐 􏼑, (14)

where x(k) � λ(k) σ(k)􏽨 􏽩
T
and

A x
(k)

􏼐 􏼑 �
df

dx
x

(k)
􏼐 􏼑 �

0 1

0 − 1 − 3 σ(k)
􏼐 􏼑

2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦,

B x
(k)

􏼐 􏼑 �

0

σ(k)
+ σ(k)

􏼐 􏼑
3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

c x
(k)

􏼐 􏼑 � f x
(k)

􏼐 􏼑 − A x
(k)

􏼐 􏼑x
(k)

�

0

2 σ(k)
􏼐 􏼑

3
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

(15)
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Besides, a trust region must be added to maintain the
validity of proposed linearization:

x − x
(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δ, (16)

where δ ∈ R2 is a constant vector, and the inequality is
applied componentwise.

Next, with r as the independent variable, the nonlinear
performance index becomes

J � 􏽚
rf

r0

V
3
Mσ sin ε

r
2 u

2
(− dr), (17)

where ε � tan− 1 σ. ,e equivalent form of the performance
index can be reformulated as

J � 􏽚
rf

r0

η(− dr), (18)

where η is a slack variable, and

V
3
Mσ sin ε

r
2 u

2 ≤ η. (19)

Now, the performance index (18) can be linear dis-
cretization. ,e inequality constraint (19) can be approxi-
mated by a “lagging” technique:

u
2 ≤w

(k)η, (20)

where w(k) � (r2/([V3
Mσ(k) sin(ε(k))])).

For the nonlinear acceleration constraint in equation (8),
we can approximate it with

|u|≤ u
(k)
max, (21)

where u(k)
max � (ramax/(V2

M sin ε(k))). ,e look angle con-
straint in equation (7) becomes

|σ|≤ tan εmax( 􏼁. (22)

For the time constraint, through the first equation in
equation (4), we can get the derivative of twith respect to r as
follows:

t′ �
1

VM cos ε
. (23)

Substituting equation (11) into equation (23) yields

t′ �

���������

1 + σ(k)
􏼐 􏼑

2
􏽱

VM

. (24)

Finally, the terminal constraint becomes

λ rf􏼐 􏼑 � c
∗
f,

σ rf􏼐 􏼑 � 0,

t rf􏼐 􏼑 � t
∗
f.

(25)

Before the numerical solution through sequential convex
programming, the kinematic equation (14) and time con-
straint equation (24) must be discretized by the trapezoidal
rule as

xi � xi− 1 +
e

2
_xi− 1 + _xi( 􏼁, (26)

where e is the discretization step length and i � 2, 3, . . . , n is
the discretization number.

In this problem, the kinematic equation (14) and time
constraint equation (24) will be discretized at n + 1 uni-
formly distributed discretized points in [r0, rf]; then, the
step length is e � ((rf − r0)/n). ,erefore, the kinematic
equation (14) can be discretized and rearranged as

Hi− 1xi− 1 − Hixi + Gi− 1ui− 1 + Giui � −
e

2
ci− 1 x

(k)
􏼐 􏼑

ri− 1
+

ci x
(k)

􏼐 􏼑

ri

⎛⎝ ⎞⎠,

(27)

where the coefficients are

Hi− 1 � I +
e

2ri− 1
Ai− 1 x

(k)
􏼐 􏼑,

Hi � I −
e

2ri

Ai x
(k)

􏼐 􏼑,

Gi− 1 �
e

2ri− 1
Bi− 1 x

(k)
􏼐 􏼑,

Gi �
e

2ri

Bi x
(k)

􏼐 􏼑.

(28)

As the same with equation (14), the time constraints can
be discretized as

ti � ti− 1 +
e

2

�����������

1 + σ(k− 1)
􏼐 􏼑

2
􏽱

VM

+

���������

1 + σ(k)
􏼐 􏼑

2
􏽱

VM

⎛⎜⎜⎝ ⎞⎟⎟⎠. (29)

Besides, the performance index equation (18) is dis-
cretized as

J � 􏽚
rf

r0

η(− dr) � 􏽘
n

i�2
−

e

2
ηi− 1 + ηi( 􏼁. (30)

In summary, problem O can be approximated as follows:
Problem R: minimize equation (30), subject to equations
20)–(22, (25), (27), and (29).

,is problem can be efficiently solved by convex opti-
mization algorithm because it is a SOCP problem, which is
mathematically defined in [33].

Because Problem Ris an approximation to Problem O,
sequential convex-programming is proposed here to get the
solution to approach the exact solution problem O . ,e
procedures are described as follows:

(1) Set k � 0. Initialize the states λ(r0) � λ0, λ(rf) � c∗f,
σ(r0) � σ0, σ(tf) � 0, t(r0) � 0, and t(tf) � t∗f. Note
that the initial states in the convex optimization
algorithm need not satisfy the constraints, so we can
generate x(0) by linear interpolating between the
initial condition and the final condition.

(2) For k≥ 1. Compute the x(k− 1)-dependent parameters
in equations (15), (28), and (29) using x(k− 1). ,en,
ProblemR can be solved with the initial states x(k− 1)
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and the preceding calculated parameters. ,erefore,
we can get a solution x(k); u(k)􏼈 􏼉.

(3) Check the convergence condition:

sup
r0≤r≤rf

x
(k)

− x
(k− 1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ξ, (31)

where ξ ∈ R2 is a prescribed tolerance value for
convergency. If the preceding convergence condition
is satisfied, go to step 4; otherwise, set k � k + 1 and
go to step 2.

(4) ,e solution to Problem O is found to be x∗ � x(k)

and u∗ � u(k).

Remarks. (1) According to equation (27), when discretizing
the state equations, the parameters of the
last point may be quite small or big to
cause problem infeasible due to rf⟶ 0
so that we can use the Euler rule instead of
the trapezoidal rule at the last point.

(2) ,e initial states need not satisfy all the constraints in
Problem R, but different initial states will influence
the iteration times to converge in sequential convex
programming. ,e more accurate it is to the trust
region, the fewer iteration times it costs.

(3) A theoretical proof of the convergence of the se-
quential convex programming still needs works due
to the presence of various constraints and nonlinear
kinematics. Lu and Liu [20] andWang [34] provided
several examples of the convergence of sequential
convex programming. ,e numerical simulations in
Section 4 show the convergence and effectiveness of
the proposed algorithm.

(4) ,e proposed method requires no time-to-go in-
formation compared to the traditional analytical
optimal guidance law. ,e approximation error of
time-to-go degrades the performance index.

,e schematic diagram of the proposed method is
summarized in Figure 2.,emain idea of this approach is to
transfer the nonconvex guidance problem to a sequential
SOCP problem and use sequential convex programming to
solve the sequential SOCP problem until convergence to
obtain the optimal time-varying proportional navigation
guidance law.

4. Numerical Simulation

In this section, firstly, we will verify the convergence and
effectiveness of the proposed sequential convex program-
ming algorithm compared to a nonlinear-programming
solver. Next, we will show the super performance of the
proposed guidance law to the traditional analytical optimal
guidance law. Finally, we will show the effectiveness of the
proposed guidance law for different impact times and angles.

To begin with, we set trust region as
δ � (50π /180) tan(50π /180)􏼂 􏼃 in equation (16) and
convergence condition asξ � (0.1π /180) tan(0.1􏼂

π/180)] in equation (31). ,e simulations are implemented
in MATLAB R2017b on a laptop computer equipped with
Intel Core i5− 8250U 1.6GHz and 8GB RAM. Convex
programming problems are solved using MOSEK [35] in
CVX [36].

A vertical interception engagement of a ground-
launched missile is considered as follows. ,e missile and
target initial relative distance r0 � 12000m. ,e missile
velocity is a constant VM � 300(m/s). ,e initial look angle
is ε0 � 30∘, and the initial LOS angle is λ0 � 0. In addition,
the field of view constraint is εmax � 60∘, and lateral accel-
eration constraint is amax � (50m/s2).

4.1. -e Effectiveness of Proposed Sequential Convex
Programming. In this part, we set the impact time
ast∗f � 47 s and impact angle as c∗f � − 60∘. To validate the
optimality and convergence of the proposed algorithm, the
independent software GPOPS [37] is selected to directly
solve the original Problem O.

,e performance index values of the proposed algorithm
in each iteration are shown in Figure 3. It indicates that the
sequential algorithm converges in 9 steps with interpolation
initial states for the problem. More quantitative results of the
converging process are shown in Table 1. If looser tolerance
is used, fewer steps will be needed for convergence. In each
step, it costs about 0.3–0.5 s CPU time. In sum, the algorithm
costs 4.21 s to solve Problem R, while the GPOPS costs
92.31 s to solve the original Problem O. ,e efficiency of the
proposed algorithm illustrates that the proposed algorithm
has the potential to use onboard.

Figure 4 presents the PN guidance gains, trajectory
profiles, lateral acceleration profiles, LOS angle profiles, look
angle profiles, and performance index values obtained by the
proposed algorithm and GPOPS, respectively. It can be seen
that the guidance gain obtained by the proposed algorithm
successfully achieves the desired impact time and impact
angle, furthermore, satisfies all the constraints. ,e very
similar solution obtained by GPOPS validates the optimality
of the proposed algorithm. In the last several seconds, the
obtained PN guidance gain is different from GPOPS, and it
may be caused by several potential reasons, such as the
linearization and approximation of kinematic dynamics and
different discretization strategies. ,e GPOPS employs the
hp-adaptive Radau Pseudospectral method to approximate
the kinematics.,emain idea of GPOPS is to use orthogonal
polynomial to approximate the control variable and states at
the Legendre–Gauss–Radau points. ,e inherent drawback
of polynomial approximation is not suitable for the non-
smooth problem. ,e linearization and discretization in this
paper are based on the kinematics of the guidance problem.
Generally speaking, the proposed method is faster than
GPOPS for the guidance optimization problem and needs no
initial guesses.

To further demonstrate the performance of the proposed
algorithm with different initial states, we take two different
initial trajectories to trigger the proposed algorithm. ,e
initial condition 1 is the interpolation trajectory, and the
initial condition 2 is the proportional navigation guidance

Mathematical Problems in Engineering 5



trajectory with guidance gain 3. ,e initial condition 1 takes
9 steps to converge, while initial condition 2 takes 10. ,e
look angle and LOS angle profiles of these two initial
conditions are present in Figure 5. Figure 5(d) indicates that
the initial trajectory of the proposed algorithm need not
satisfy the constraint. ,e proposed algorithm relaxes the
requirements for the initial trajectory.

4.2. Compared to Traditional Optimal Guidance Law. To
show the difference between the proposed guidance law with
the traditional analytical guidance law, numerical simulation
results are compared with those obtained by a guidance law
based on the optimality of error dynamics (GOED) [3]. ,e
analytical form of the guidance law is expressed as follows:

aM � 4VM
_λ +

2VM λ − cf􏼐 􏼑

tgo
+

30KV
2
M

rtgo 4ε − εf􏼐 􏼑
εt,

tgo �
r

VM

1 +
1
15

ε2 + ε2f −
1
2
εεf􏼒 􏼓􏼒 􏼓,

εt � t
∗
f − tgo − t,

(32)

where tgois the time-to-go, which is estimated by the second
equation, and t denotes the current flight time. Note that the
gain K is a designed parameter that should be sufficiently
large to enable a successful impact time constraint.
According to the result in KIM [38], the guidance gain
should be set as K≥ 4. ,e performance index of GOED is
the same as equation (6). It can be seen from the simulation

results in [3] that the bigger the K value is selected, the larger
the performance index value is obtained. ,erefore, we set
K � 4 to get the smallest performance index value. ,e field
of view constraint is set as εmax � 42∘.,e other parameters
are the same as the previous case.

,e PN guidance gains, trajectory profiles, lateral ac-
celeration profiles, LOS angle profiles, look angle profiles,
and performance index values obtained by the proposed
algorithm and GOED guidance law are shown in Figure 6,
respectively. Obviously, both algorithms can satisfy the
impact time and impact angle constraints, which mean that
the two methods achieve the desired impact angle at the
desired impact time. While the look angle profiles in
Figure 6(e) show that the traditional GOED guidance law
cannot satisfy the look angle constraint. ,e proposed al-
gorithm can maintain the look angle will not exceed the
maximum look angle constraint. Figure 6(c) presents the
required lateral acceleration of GOED is larger than the
proposed algorithm at the start of the engagement, which is
caused by the error of the time-to-go estimation. ,e per-
formance index values in Figure 6(f) indicate that the
proposed algorithm needs less control energy than the
GOED guidance law. To sum up, the proposed algorithm not
only satisfies the look angle constraint but also has less
energy consumption.

Compared to the traditional guidance law, the proposed
optimal guidance law utilizes large computational resources
to optimize the total trajectory to satisfy the constraint and
increase the performance of guidance law. ,erefore, it
requires the missile to have sufficient computational ability
onboard. ,e traditional guidance law is easy to realize but

Problem O

Original guidance problem 

Problem R 

Convexified SOCP problem

Sequential convex 
programming

1.Equality constraints
2. Second-order cone 

constraints

1.Kinematic equations
2.Acceleration constraint
3.Objective function

1.Equality constraints
2. Linear inequality 

constraints

1.Field of view constraint
2.Terminal constraints

Discretization

Linearization
Discretization

Nonconvex
constraints

Convex
constraints

Change independent variable
Linearization
Discretization

Converge to obtain the optimal guidance law

Figure 2: ,e schematic diagram of the proposed method.
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has to sacrifice some performance. With the development of
computer science, the proposed computational guidance law
will be employed to enhance the performance of guidance
law.

4.3. Effectiveness of Different Impact Times and Angles. To
verify the effectiveness of the proposed algorithm for
different impact times and impact angles, we set the
different impact times as c∗f � − 60∘ and t∗f � 44 s, 47 s, 50 s
and different impact angles as
t∗f � 47s and c∗f � − 60∘, − 75∘, − 90∘. Figure 7 shows the PN
guidance gains, trajectory profiles, lateral acceleration
profiles, LOS angle profiles, look angle profiles, and
performance index values obtained by the proposed al-
gorithm for different impact times. It can be seen from
Figure 7(b) that the trajectory needs to be higher for a
longer time to intercept the target, which leads to larger
lateral acceleration to change the flight path angle and
finally requires more control effort. Furthermore, the look
angle constraint is satisfied in all cases. Figure 8 shows the

PN guidance gains, trajectory profiles, lateral acceleration
profiles, LOS angle profiles, look angle profiles, and
performance index values obtained by the proposed al-
gorithm for different impact angles. Figure 8(c) illustrates
that the larger impact angle requires smaller lateral ac-
celeration at the beginning of the engagement and re-
quires bigger lateral acceleration at the end of the
engagement to achieve the desired impact angle. ,e
curvature of trajectory in Figure 8(b) proves that larger
impact angle calls for smaller lateral acceleration at the
beginning of interception engagement because the cur-
vature of the first half trajectory changes smoothly and
larger lateral acceleration at the end because of the fast
curvature alters of second-half trajectory. ,erefore, it
results in the curvature changes of look angle, LOS angle,
and performance index value during the interception
engagement. In summary, the proposed algorithm can
generate different PN guidance gains for achieving dif-
ferent impact times and impact angles under all
constraints.
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Figure 3: Performance index values of each iteration.

Table 1: ,e difference of the states between each iteration.

Iteration step Δ|λ|, deg Δ|arctan(σ)|, deg
1 12.602 34.885
2 11.332 13.351
3 1.0875 4.4881
4 0.2051 2.1228
5 0.1811 1.0894
6 0.0730 0.6234
7 0.0368 0.0322
8 0.0202 0.1364
9 0.0066 0.0759
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Figure 4: (a) PN guidance gains, (b) trajectory, (c) lateral acceleration, (d) LOS angle, (e) look angle, and (f) performance index values
obtained by the proposed algorithm and GPOPS.
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Figure 6: (a) PN guidance gains, (b) trajectory, (c) lateral acceleration, (d) LOS angle, (e) look angle, and (f) performance index values
obtained by the proposed algorithm and GOED guidance law.
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Figure 7: Continued.

Mathematical Problems in Engineering 11



–20

0

20

40

60

80
Lo

ok
 an

gl
e (

de
g)

t∗f = 44s
t∗f = 47s
t∗f = 50s

10 20 30 40 500
Time (s)

(e)
Pe

rfo
rm

an
ce

 in
de

x 
va

lu
e (

m
2 /s

3 )

0

3000

6000

9000

12000

t∗f = 44s
t∗f = 47s
t∗f = 50s

10 20 30 40 500
Time (s)

(f )

Figure 7: (a) PN guidance gains, (b) trajectory, (c) lateral acceleration, (d) LOS angle, (e) look angle, and (f) performance index values of
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5. Conclusion

In this paper, a sequential convex programming algorithm is
developed for time-varying PN guidance law design under
impact time and impact angle constraints, as well as field-of-
view and acceleration limits. ,is guidance problem is
formulated as a nonlinear optimization problem and then as
linearized and discretized to be solved by sequential convex
programming. Numerical simulations are compared with
GPOPS and GOED guidance law to validate the convergence
and optimality of the proposed algorithm. Furthermore,
simulation results prove that the proposed algorithm can

generate optimal time-varying guidance law to achieve
different impact times and impact angles.
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