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Moving loads will have a certain impact on the safety of the structures. Since concrete is a viscoelastic material, the elastic concrete
model cannot describe its viscoelastic characteristics under moving loads. It is necessary to establish a model that can describe the
viscoelastic characteristics of concrete materials. In addition, the layered of the soil is also an important factor affecting the
propagation of subway vibration waves. Considering the effects of the properties of the concrete material of the subway tunnel
structure and the layered soil foundation as well as the load velocity on the vibration of the ground surface caused by the moving
load, the standard linear elastic solid Euler beam model is described for the subway tunnel structure in this paper. ,e equivalent
stiffness of the layered soil-viscoelastic beam coupling system subjected to a moving load is formed by using the transmission and
reflection matrix (TRM) method. ,e numerical solution of ground surface displacement caused by subway tunnel in time-space
domain is obtained by IFFT algorithm. ,e correctness of the algorithm is verified by comparing with the reference results.
Numerical results show that, with the increase of the viscous coefficient of the viscoelastic Euler beam, the vibration amplitude of
the ground surface will decrease. Up to a certain value of the increasing the viscous coefficient of the Euler beam, it will have little
effect on the vibration amplitude of the ground surface. ,erefore, the standard solid model of viscoelastic Euler beam can well
describe the creep and relaxation of materials. ,e model of viscoelastic beam is reasonable for the working condition of subway
tunnel concrete structure. At high speed ofmoving load, themaximum value of ground surface displacement spectrumwill appear
at the smaller frequency domain and the maximum value of displacement spectrumwill also increase for the soft layer soil, while it
is opposite to that of the stiffer layer soil.

1. Introduction

Vibration induced by subway traffic is a major concern for
civil engineers as it causes annoyance to residents or even
damage to adjacent structures. Generally, analytical method
and numerical method are applied in this area [1–5]. Yang
and Hung [6] used 2.5D FEM to study the ground vibrations
caused by moving loads in the circle lining tunnel. Bian et al.

[7, 8] proposed a train-track-foundation coupled model to
analyse the interaction between tunnel structure and sur-
rounding soil using 2.5D FEM. ,e results show that
transferring band width of ground wave is becoming narrow
while frequency of moving loads increasing. Also, by means
of the consistency or periodicity along with the tunnel axis in
the dynamic system of tunnel-free wave field, the dynamic
response solution subjected to a moving load is studied by
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Liu et al. [9]. Gupta and Degrande [10] employed Floquet
transform with a periodic coupled model of track and
tunnel-soil system to analyse the vibration isolation effect of
continuous and discontinuous floating slab tracks. Al-Furjan
et al. [11] presented the influences of some geometrically and
physically parameters of multiscale hybrid nanocomposite
and new smart and composite materials fiber on the fre-
quency of the sandwich structure. Al-Furjan et al. [12]
adopted a mathematical derivation to develop a nonlinear
dynamic model for the nonlinear frequency and chaotic
responses of the multiscale hybrid nanocomposite rein-
forced disk in the thermal environment and subject to a
harmonic external load. Metrikine and Vrouwenvelder [13]
developed an analytical solution for the tunnel in two-
dimensional elastic-layered foundation subjected to a
moving point load. ,e research results show that when the
train speed is close to the Rayleigh wave velocity of the
foundation soil, the vibration level of the track-ground
structure will increase significantly. Usually, the velocity of
Rayleigh wave on soft soil foundation is about 200 km/h, and
the current high-speed trains can easily exceed this speed.
,erefore, the vibration of the soil layer caused by the
moving load of the subway tunnel is very important.

As we know, natural soil with different deposition ages
are always layered form, so the layered soil foundation
model is closer to the actual engineering. ,ere are a variety
of analytical and numerical methods to solve the dynamic
response of a layered half-space [14]. Tomson [15] and
Harkrider [16] formed and developed the transfer matrix
method of layered soil based on the finite element thin layer
method. Rajapakse and Senjuntichai [17, 18] proposed an
accurate stiffness matrixmethod for the dynamic response of
layered soils using integral transformation. Al-Furjan et al.
[12] develop a nonlinear dynamic model for the nonlinear
frequency and chaotic responses of the multiscale hybrid
nanocomposite reinforced disk in the thermal environment
and subject to a harmonic external load. Luco and Apsel [19]
used the TRM method to obtain the dynamic response
Green function of the three-dimensional layered elastic half-
space. Xu et al. [20] applied the TRMmethod to the dynamic
response of an infinite Euler beam on a layered saturated
half-space soil subjected to a moving load. Judging from the
existing research results, the TRMmethod has high accuracy
in overcoming the matrix ill-conditioned problems caused
by dynamic response of high-frequency or large differences
between layered soils, etc., and it has obtained wide range of
applications in the dynamic response of layered soils.

,e subway tunnel structure is generally polymer con-
crete. It not only has elastic deformation but also has viscous
deformation, which can generate damping in the process of
energy loss so called a kind of viscoelastic material. Vis-
coelastic damping materials have a certain control effect on
structural vibration, and more and more attention been paid
on its vibration analysis problems by experts and scholars.
Chen et al. [21] used the standard rheological model (STD)
to establish kinetic equations of viscoelastic structures in the
time domain and Lagrangian domain and analyzed the
dynamic problems of viscoelastic structures. Gu et al. [22]
and Liu et al. [23] utilized static experiments to analyse the

constitutive relationship of viscoelastic materials and de-
duced the constitutive equations of viscoelastic materials in
the complex number domain, time domain, and frequency
domain. ,en, the dissipation energy of viscoelastic
damping materials was investigated by means of the elastic
constitutive equation. Surie and Cederbaum [24] derived the
constitutive equation of viscoelastic material based on
Boltzmann’s principle and analyzed the basic dynamic
model of inelastic beam. Argyris et al. [25] analyzed the
chaotic motion of viscoelastic beams by using the consti-
tutive relationship of differential viscoelastic materials. Chen
et al. [26, 27] established partial differential-integral equa-
tions for nonlinear viscoelastic moving beams, which were
used to illustrate the dynamic model of geometric nonlinear
viscoelastic beams and simplified the equations.Marynowski
and Kapitaniak [28] studied the dynamic characteristics of a
stable moving beam on the basis of the viscoelastic con-
stitutive model. Li et al. [29] extended several typical dy-
namic models such as complex modulus model, fractional
and exponential model, fractional and derivative model, and
micro-oscillator model focusing on its application. Al-
Furjan et al. [30] deal with the frequency analysis of im-
perfect honeycomb core sandwich disk with multiscale
hybrid nanocomposite (MHC) face sheets rested on an
elastic foundation. Moreover, Li et al. [31] analyzed the
amplitude-frequency response of the control model for
forced vibration of the nonlinear viscoelastic Timoshenko
beam in the steady state, and then the numerical simulation
was used to investigate the influence of the damping of
viscoelastic materials and external effects on the stable state
of the structure. ,e above research results provide a good
theoretical basis for viscoelastic damping materials to be
used in structural vibration control.

,e above literatures have adopted different methods to
study the response of layered soil under dynamic loads.
However, the research concerning a layered half-space has
been mainly restricted to the elastic case and the dynamic
response of an infinite beam on a layered poroelastic half-
space to moving loads is seldom studied in the literature. In
addition, since concrete is a viscoelastic material, the elastic
concrete model cannot describe its viscoelastic character-
istics under moving loads. It is necessary to establish a
viscoelastic model that can describe the viscoelastic char-
acteristics of concrete materials. In this paper, the layered
soil-viscoelastic Euler beam model subjected to a moving
load is used to analyse the surface vibration characteristics
caused by subway tunnels in the layered soil. ,e effects of
structural damping on vibration are described by a standard
linear elastic solid model for the subway tunnel structure.
And then, the equivalent stiffness of the layered foundation
is formed by the TRMmethod.,e numerical solution of the
vibration displacement with respect to the soil surface in the
time-space domain is obtained by the IFFT algorithm. ,e
elastic modulus, viscoelastic damping coefficient of the
viscoelastic Euler beam, and the influence of layered soil on
the vibration of the soil surface are also calculated and
analyzed by means of the calculation model in this paper. At
last, the calculation method in the article is compared with
the existing results to verify the correctness of the algorithm.
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,e analysis of the calculation example shows that the
subway tunnel structure described by the viscoelastic beam
model behaves plasticity. ,e reason is that the shear
modulus changes with the calculation frequency within a
certain frequency range, but after the calculation frequency
increases to a certain value, the shear modulus will not
change with the frequency. ,erefore, the standard solid
model of viscoelastic beam can better describe the creep and
relaxation of the material.

2. Computation Model and Governing
Equations for the SubwayTunnel Structure in
the Layered Soil Foundation

For the subway tunnel structure in the layered soil foun-
dation, a simplified two-dimensional physical model is used,
as shown in Figure 1. Concerning the viscoelasticity of the
subway tunnel structure made of concrete material and the
layered soil foundation, the subway tunnel with a buried
depth of h is simplified to an infinite length viscoelastic Euler
beam structure. ,e thickness of each layer of soil is hi, and
the total thickness of the system is (h+H). ,e subway
tunnel is subjected to the vertical moving load of the load
concentration Fz and velocity vc.

,e soil is treated with an elastic medium with visco-
elastic characteristics. ,e motion equation and constitutive
relationship in the form of displacement can be written as

μ⌢ui,jj +(λ
⌢

+ μ⌢)uj,ji � ρ€ui
,

σij � 2μ⌢εij + λ
⌢

δije,
(1)

where λ
⌢
⌢

⌢ � λ + λ∗(z/zt), μ⌢ � μ + μ∗(z/zt), λ and μ are
Lame constants, ui (i� 1, (2) is the displacement of soil
skeleton, σij is the stress of bulk material, εij denotes the
strain tensor of the solid skeleton, and ρ and e represent the
bulk density of the porous medium and the volumetric stain,
respectively.

,e vibration equation of the subway tunnel structure is
as follows:

ρB
€Wb + EbIb

z
4Wb

zx
4 � Fzδ x − vct(  + a σzz x, h

−
, t( ) − σzz x, h

+
, t( ( , (2)

where ρB, Wb, Eb, and Ib represent the density, vertical
displacement, shear modulus, and polar moment of inertia
for the subway tunnel structure, respectively; Fz denotes the
load amplitude; and a is the average diameter of tunnel
structure.

For an infinite length viscoelastic Euler beam, the
standard linear solid model theory is used to describe its
damping. ,e complex elastic modulus of the viscoelastic
beam is given by

Eb � EbR

1 + iωτbε

1 + iωτbσ
 ,

EbR �
E

(1)
b E

(2)
b

E
(1)
b + E

(2)
b

,

τbσ �
η

E
(1)
b + E

(2)
b

,

τbε �
η

E
(2)
b

,

(3)

where E
(1)
b and E

(2)
b represent elastic parameters of visco-

elastic beam, respectively, and η is the coefficient of viscosity.
Assuming that the displacement of the subway tunnel in

the horizontal direction is zero and the displacement be-
tween the subway tunnel and the soil layer in the vertical
direction is continuous, the boundary conditions are as
follows:

u x, h
−

, t( ) � u x, h
+
, t(  � 0, (4a)

w x, h
−

, t( ) � w x, h
+
, t(  � Wb(x, t). (4b)

,e surface and bottom of layered soil have the following
stress and displacement boundary conditions:

σzz(x, 0, t) � σzx(x, 0, t) � 0, (5a)

u(x, h + H, t) � w(x, h + H, t) � 0. (5b)

3. Fundamental Solution and the TRM Method

3.1. Fundamental Solutions in Frequency Wave-Number
Domain. For the governing equation of elastic soil, the
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Figure 1: A schematic illustration of the layer soil-viscoelastic
beam coupling system subjected to a moving load.
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displacement and stress vector of soil can be decomposed by
Helmholtz’s potential functions (Φ and ψ) as follows:

u �
zΦ
zx

+
zψ
zz

,

w �
zΦ
zz

−
zψ
zx

,

σzz � λ
⌢ z

2Φ
zx

2 +
z
2Φ

zz
2  + 2μ⌢

z
2Φ

zz
2 −

z
2Φ

zxzz
 ,

σzx � μ⌢ 2
z
2Φ

zx zz
−

z
2ψ

zx
2 +

z
2ψ

zz
2 .

(6)

,us, the equations of motion for soil can be decoupled
into two wave equations as follows:

z
2Φ

zt
2 − c

2
L +

λ∗ + 2μ∗

ρ
z

zt
 

z
2Φ

zx
2 +

z
2Φ

zz
2  � 0,

z
2ψ

zt
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2
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ρ
z

zt
 

z
2ψ

zx
2 +

z
2ψ

zz
2  � 0,

(7)

where cL �
���������
(λ + 2μ)/ρ


and cT �

���
μ/ρ


represent com-

pression wave velocity and shear wave velocity of soil,
respectively.

,e Fourier transform with respect to time and space is
defined as follows:


f kx,ω(  � 

∞

−∞

∞

−∞
f(x, t)e

− i ωt− kxx( )dx dt,

f(x, t) �
1
2π


∞

−∞

∞

−∞


f kx,ω( e

− i ωt− kxx( )dkxdω.

(8)

Equation (7) can be obtained by the Fourier transform as
follows:

−ω2 Φ − c
2
L − iω

λ∗ + 2μ∗

ρ
  −k

2
x

Φ +
z
2 Φ

zz
2
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−ω2ψ − c
2
T − iω
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ρ
  −k

2
x

ψ +
z
2ψ
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(9)

Likewise, the vibration equation of subway tunnel beams
in frequency wave-number domain is given by

EbIbk
4
x − ρBω

2
  Wb � 2πFzδ ω − kxvc(  + a σzz kx, h

−
,ω( (

− σzz kx, h
+
,ω( .

(10)

It can be deduced by Equation (9) as follows:
Φ � A1e

c1z
+ A2e

− c1z
,

ψ � A3e
c2z

+ A4e
− c2z

,
(11)

where Ai (i� 1, 2, 3, 4) can be determined by the boundary
conditions: c1 �

����������������������������
(k2

x − ω2)/((c2L − iω(λ∗ + 2μ∗))/ρ)


and

c2 �
���������������������
(k2

x − ω2)/((c2T − iωμ∗)/ρ)


.
,e displacement and stress in the frequency wave-

number domain have the following expressions:

u � ikx
Φ +

zψ
zz

,

w �
z Φ
zz

− ikx
ψ,

(12)

σzz � λ − iωλ∗(  −k
2
x

Φ +
z
2 Φ

zz
2

⎛⎝ ⎞⎠

+ 2 μ − iωμ∗( 
z
2 Φ

zz
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(13a)

σzx � μ − iωμ∗(  2ikx

z Φ
zz

+ k
2
x

ψ +
z
2ψ

zz
2

⎛⎝ ⎞⎠. (13b)

Substituting Equation (2) into Equations (13a) and (13b)
and inversion of the Fourier transform give the frequency
domain fundamental solution.

3.2. Equivalent Stiffness of Layered Soil-BeamSystemBased on
TRMMethod. It can be seen from the fundamental solution
that for the stress and displacement solutions in the fre-
quency wave-number domain of the Lj layer of soil, the
unknown coefficients a, c, b, and d in the general solution
can be replaced by aje− c

j

1zj , cje− c
j

2zj , bjec
j

1zj−1 , and djec
j

2zj−1 in
the Cartesian coordinate system (Figure 1), where zj and
zj−1are the coordinates of the upper and lower surface of
layer Lj. A large 4N× 4N matrix will be formed in using the
traditional transfer matrix methods, which will inevitably
lead to the matrix ill-conditioned problems for the dynamic
response of high-frequency, thereby affecting the accuracy of
the calculation results.

Using the TRM method, the transmission and trans-
mission waves of each layer of the soil can be expressed by
the soil waves subjected to a moving load, so as to avoid
solving large linear equations and make the calculation
results more accurately. ,e frequency wave-number do-
main solution for the layer Lj can be written as follows by
means of matrix ψj(ξ, z,ω):

Ψj
(ξ, z,ω)6×1 � u

j

x
u

j

z
σj

xz
σj

zz
 

T
,

Ψj
(ξ, z,ω)6×1 �

Dj

d Dj
u

Sj

d Sj
u

⎡⎢⎢⎣ ⎤⎥⎥⎦ Wj

d(z)T Wj
u(z)T 

T
,

Wj

d(ξ, z,ω) � b
j
e

− c
j

1 z− zj−1( 
d

j
e

− c
j

2 z− zj−1(  ,

Wj
u(ξ, z,ω) � ajec

j

1 z− zj(  cjec
j

2 z− zj(  
T

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(14)
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where Re(c
j
i ≥ 0, (i � 1, 2)), Dj

d(ξ,ω)2×2, Dj
u(ξ,ω)2×2,

Sj

d(ξ,ω)2×2, and Sj
u(ξ,ω)2×2 are represented by Dj

d �

ikx −c
j
2

−c
j
1 −ikx

 ,Dj
u �

ikx c
j
2

c
j
1 −ikx

 , Sj

d �
−2ikxc

j
1 c

j

c
j 2ikxc

j
2

 ,

and Sj
u �

2ikxc
j
1 c

j

c
j 2ikxc

j
2

 , respectively; cj � (2k2x − ω2)/

((C2
T − iωμ∗)/ρ).
,e unknown coefficients of the layer Lj can be repre-

sented by the down going and up going wave vectors in this
layer according to Equation (14), respectively:

Wj

d ξ, zj−1,ω  � bj(ξ,ω) dj(ξ,ω) 
T
,

Wj
u ξ, zj,ω  � aj(ξ,ω) cj(ξ,ω) 

T
,

Wj

d(ξ, z,ω) � Ej ξ, z − zj−1,ω Wj

d ξ, zj−1,ω ,

Wj
u(ξ, z,ω) � Ej ξ, zj − z,ω Wj

u ξ, zj,ω ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (15)

where Ej(Z) � e
− c

j

1Z 0
0 e

− c
j

2Z , j� 1, 2, N.

,e continuity condition of the layered soil in the fre-
quency wave-number domain is given by

Ψj ξ, zj,ω  � Ψj+1 ξ, zj,ω , j � 1, 2, . . . , N − 1. (16)

Substituting Equation (14) into Equation (16) gives a new
form as follows:

−Dj+1
d Dj

u

−Sj+1
d Sj

u

⎡⎢⎢⎣ ⎤⎥⎥⎦
Wj+1

d zj 

Wj
u zj 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �
−Dj

d Dj+1
u

−Sj

d Sj+1
u

⎡⎢⎢⎣ ⎤⎥⎥⎦
Wj

d zj 

Wj+1
u zj 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(17)

Matrix inverse operation on Equation (17) can be ob-
tained as follows:

Wj+1
d zj 

Wj
u zj 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �
Tj

d(ξ,ω) Rj
u(ξ,ω)

Rj

d(ξ,ω) Tj
u(ξ,ω)

⎡⎢⎢⎣ ⎤⎥⎥⎦
Wj

d zj 

Wj+1
u zj 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (18)

where Rj
u and Rj

d are represented by the reflection matrix of
up going and down going wave, respectively; Tj

d and Tj
u are

represented by the transmission matrix of up going and
down going wave, respectively. ,ey can be expressed as
follows:

Tj

d(ξ,ω) Rj
u(ξ,ω)

Rj

d(ξ,ω) Tj
u(ξ,ω)

⎡⎢⎢⎣ ⎤⎥⎥⎦ �
Dj+1

d Dj
u

−Sj+1
d Sj

u

⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1
−Dj

d Dj+1
u

−Sj

d Sj+1
u

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(19)

,e down going wave vector of each layer can be rep-
resented by the wave vector of the corresponding upper
layer, and the up going wave vector can be expressed by the
down going wave vector of this layer according to Equations
(5a) and (5b). ,erefore, the wave vector of each layer under
the tunnel structure can be denoted by the down going wave
vector WL

d(ξ, zL,ω) of the layer subjected to a moving load,
recursively:

Wj

d ξ, zj−1,ω  � Tg(j−1)

de Tg(j−2)

de · · ·Tg2
deT

g1
d WL

d ξ, zL,ω( ,

Wj
u ξ, zj,ω  � Rgj

d W
j

d ξ, zj,ω ,

Rgj

d � Rj

d + Tj
ueR

j+1
de Tgj

d ,

Tgj

de � I − Rj
ueR

gj+1
de 

− 1
Tj

de,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(20)

where Tj

de Rj
ue

Rj

de Tj
ue

  �
Tj

d Rj
u

Rj

d Tj
u

 
Ej

(zj) 0
0 Ej+1

(zj+1)
⎡⎣ ⎤⎦ and

Tgj

de Rgj
ue

Rgj

de Tgj
ue

  �
Tgj

d Rgj
u

Rgj

d Tgj
u

 
Ej

(zj) 0
0 Ej+1

(zj+1)
⎡⎣ ⎤⎦, j � L + 1,

L + 2, . . . , N.
In the same way, the wave vector of each layer above the

tunnel structure can also be denoted by the up going wave
vectorWL

u(ξ, zL−1,ω) of the layer subjected to a moving load:

Wj
u ξ, zj,ω  � Tgj

ueT
g(j+1)
ue · · ·Tg(L−2)

de Tg(L−1)
u WL

u ξ, zL−1,ω( ,

Wj

d ξ, zj−1,ω  � Rg(j−1)
ue Wj

u ξ, zj,ω ,

Rgj
u � Rj

u + Rj

deR
j−1
ue Tgj

u ,

Tgj
u � I − Rj

deR
g(j− 1)
ue 

− 1
Tj
u,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(21)

where j � 1, 2, . . . , L − 1.
Due to the stress jump appeared in the L th-layer soil

where the tunnel structure is located, the up going and down
going wave vectors {WL

d(ξ, z,ω), WL
u(ξ, z,ω)} of the layer

can be expressed as follows:

a
L
(ξ,ω) � a

l1
(ξ,ω) + H(s − z)a

l2
(ξ,ω),

c
L
(ξ,ω) � c

l1
(ξ,ω) + H(s − z)c

l2
(ξ,ω),

b
L
(ξ,ω) � b

l1
(ξ,ω) + H(z − s)b

l2
(ξ,ω).

d
L
(ξ,ω) � d

l1
(ξ,ω) + H(z − s)d

l2
(ξ,ω).

(22)

,e wave vectors of the Lth layer soil can be obtained by
means of the TRM method:

bl1 dl1 
T

� R
g

uE(h) al1 cl1 
T
,

al2 cl2 
T

� R
g

dE(H) bl2 dl2 
T
.

⎫⎪⎪⎬

⎪⎪⎭
, (23)

Considering the continuous boundary conditions of the
displacement at the soil-tunnel structure interface, the
general solutions of Equations (4a), (4b), and (14) can be
written as follows:

D
l1
d E(h)

b
l1

d
l1

⎧⎨

⎩

⎫⎬

⎭ + D
l1
u

a
l1

c
l1

⎧⎨

⎩

⎫⎬

⎭ �
0

wb

 ,

D
l2
d

b
l2

d
l2

⎧⎨

⎩

⎫⎬

⎭ + D
l2
u E(H)

a
l2

c
l2

⎧⎨

⎩

⎫⎬

⎭ �
0

wb

 .

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (24)

Taking into account the stress balance boundary con-
ditions of the displacement at the soil-tunnel structure in-
terface, one may write the equation as
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a S
l2
dσzE(H)

b
l2

d
l2

⎧⎨

⎩

⎫⎬

⎭ + S
l2
uσz

a
l2

c
l2

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦

− a S
l1
dσzE(h)

b
l1

d
l1

⎧⎨

⎩

⎫⎬

⎭ + S
l1
uσz

a
l1

c
l1

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦ � q,

(25)

where q denotes the reaction force of soil foundation, and
Sl1

dσz, Sl1
uσz, Sl2

dσz, and Sl2
uσz are determined by Equation (14).

,e equivalent stiffness matrix between reaction force q
of the layered soil foundation and displacement wb of the
viscoelastic Euler beam can be obtained in accordance with
Equation (23). Substitution of the equivalent stiffness matrix
into Equation (14) yields the following expression for so-
lutions of the surface ground vibration.

As far as the tunnel structure due to a moving load is
concerned, the wave vectors of viscoelastic beam layer can be
solved by Equation (22) and the others by Equations (19) and
(20). Finally, the displacement and stress with respect to the
frequency wave-number solution can be derived by Equa-
tion (14). Universally, all variables in the frequency wave-
number domain are expressed by Ω as follows:

Ω(ξ, z,ω) � Ω
∗
(ξ, z,ω)Fzδ(ω + ξc). (26)

4. Numerical Results and Discussions

Applying the double inverse Fourier transforms to Equation
(16), one obtains the general solutions inthe time-space
domain. Moreover, the above transforms can be simplified
in accordance with the function of Dirac-δ:

Ω(x, z, t) �
1
2π

 
2
Fz 

+∞

−∞

Ω(ξ, z, −ξc)e
iξ x− vct( )dξ. (27)

It is difficult to obtain a closed-form solution of the
Fourier inverse transform due to the complexity of the
integrand. ,is article uses the FFTmethod to complete the
Fourier inverse transform. ,erefore, the FFT method is
adopted to complete the inverse transforms in this paper. In
addition, the existence of soil viscosity will prevent branch
points and singularities on the integration path of the
horizontal wave-number ξ caused by the application of the
viscoelastic model. ,e scale of discrete sample points for
wave-number ξ is N� 4096 [6], the space interval is ∆x� 0.1,
and the calculation space is Lx �N∆x.

In the following sections, four types of surface ground
vibration due to a moving load for a three-layered soil-
viscoelastic Euler beam system will be considered. A moving
point load with an amplitude Fz acts on the viscoelastic beam
in the layered soil at a constant velocity vc along the positive
direction of the x-axis. Each layer of the soil foundation with
their thickness of h1 � h2 � 3.5m and h3 �15.0m has the
same density ρ� 1.7×103 kg/m3 and the same Poisson’s ratio
υ� 0.3, respectively. For each layer, three different values of
the shear modulus μ(i)

s � E(i)
s /(2.0∗ (1 + vs)) (i� 1, 2, 3),

respectively, are considered, where vs �

������

μ(2)
s /ρs



[6]. In this
paper, a standard solid model is used in the viscoelastic beam
system with the parameters of E(1)

p and E(2)
p .

4.1. Example 1. For a homogeneous soil foundation, the
material parameters for the layered soil are given as follows:
E(i)

s � 2.0×109 Pa, E∗ � 3.0×104 Pa,E(1)
p � E(2)

p � 2.0×109 Pa,
and η� 0.0. Figure 2 shows that the variation of vertical and
horizontal displacements located at the point A (0.0, 0.0m)
when the load is moving with an amplitude Fz � 1.0×104N/m
and a velocity vc � 30.0m/s with time t. In Figure 2(a), the
maximum and minimum values of present solution are
1.5mm and −1.52mm, respectively, which are very close to
the results of Metrikine et al. [6]. ,e curve in Figure 2(b) is
funnel-shaped, and the minimum value is 4.8mm.,is result
is slightly less than that of Metrikine et al. [6]. It can be seen
from Figure 2 that the current solution is very close to the
solution in the literature, and the maximum difference is not
more than 0.2mm. ,erefore, it can be considered that the
results in present solution are consistent with those in [6].

4.2. Example 2. ,e section aimed to study the effect of
elastic modulus and viscosity coefficient on the surface
ground vibration. ,e material parameters for the layered
soil are given as follows:E(1)

p � E(2)
p �1.0×109 Pa,

2.0×109 Pa, 5.0×109 Pa, and η� 3.0×105 Pa. ,e values of
other calculation parameters are the same as in example 1.
,e moving point load acts on the viscoelastic beam in the
layered soil along the x-axis at the velocity vc � 0.5 vs.

Figure 3 shows the variation of the shear modulus with
the calculation frequency of viscoelastic beamwith respect to
the different elastic parameters. As shown in Figure 3, the
shear modulus is a function of frequency and increases as the
elastic modulus of the viscoelastic beam.

In Figure 4, the variation of vertical and horizontal
displacements located at the observation point A (0.0, 0.0m)
with time t are plotted as solid lines following the different
elasticity parameters, respectively.

As shown in Figure 4, the surface ground vibration of
layered soil decreases with the increase of the shear modulus,
and the attenuation of vibration becomes slower. It can be
seen that the greater the rigidity of the track beam structure,
the greater the energy dissipated as an energy absorbing
layer, and the smaller the energy transmitted in the free field
of the foundation caused by the load acting on the sur-
rounding soil through the beam.

4.3. Example 3. In order to investigate the effect of dif-
ferent viscosity coefficients with respect to the viscoelastic
beam, a series of the viscosity coefficients η� 3.0 ×105 Pa,
3.0 ×107 Pa, and 3.0 ×109 Pa are utilized to simulate. ,e
elastic parameters for the layered soil are given as follows:
E(1)

p � E(2)
p � 2.0 ×109 Pa, and the values of other cal-

culation parameters are the same as those in example 1.
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,emoving point load acts on the viscoelastic beam in the
layered soil along the x-axis at the velocity vc � 0.5 vs.

Figure 5 shows the variation of the shear modulus with the
calculation frequency of viscoelastic beam. As shown in Fig-
ure 5, when the viscosity coefficient of the viscoelastic beam η is
unequal to zero, the elastic modulus of the beam is a complex
modulus, and it increases with the increase of the calculation
frequency. However, when the viscosity coefficient increases to
a certain value (η� 3.0×109Pa, e.g.), the viscoelastic Euler beam
behaves as plastic, and its elastic modulus will not change with
the calculation frequency after a certain frequency. ,us, the
standard solidmodel of viscoelastic beam can describe the creep
and relaxation of materials properly.

Figure 6 shows that the variation of vertical and hori-
zontal displacements located at the observation point A (0.0,
0.0m) with time t under different elastic parameters, re-
spectively. As shown in Figure 6, as the viscosity coefficient
of the beam increases, the vibration amplitude of the soil
surface will decrease, but the impact is limited.

4.4. Example 4. ,e effect of the differentiation of layered
soil on the surface vibration subjected to a moving load will
be investigated in this section. ,ere are three cases with
respect to the complex Lame constant of layered soil: CASE
(A) μ(1): μ(2): μ(3) � 1 :1 :1, CASE (B) μ(1): μ(2): μ(3) � 0.1 :1 :1,

–4 –3 –2 –1 0 1 2 3 4
–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

u x
 (m

m
)

t (s)

Present solution
Solution of ref [13]

(a)

–4 –3 –2 –1 0 1 2 3 4
t (s)

Present solution
Solution of ref [13]

–5

–4

–3

–2

–1

0

1

u z
 (m

m
)

(b)

Figure 2: Comparison with reference results: (a) horizontal displacement; (b) vertical displacement.
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Figure 3: Variation of shear modulus of viscoelastic beam with frequency under different elastic parameters.
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and CASE (C) μ(1): μ(2): μ(3) � 1 :1:10, respectively. ,e
material parameters for the layered soil are given as follows:
E(2)

s � 3.0×107 Pa, E(1)
p � E(2)

p � 2.0×109 Pa, and
η� 3.0×107 Pa, and the velocity of moving point load
vc � 0.2vs, vc � 0.5vs, and vc � 1.2vs respectively. ,e values of
other calculation parameters are the same as those in ex-
ample 1.

,e variation of vertical and horizontal displacements
spectrum with frequency located at the observation point A
(0.0, 0.0m) under different layered soil is shown in Figures 7
and 8, respectively.

From Figures 7 and 8, one can see that when the load
velocity is rather low (vc � 0.2vs, e.g.), the vertical and
horizontal displacements spectrum of the observation point
are mainly distributed in the lower frequency range, whereas
the load velocity exceeds the shear wave velocity of the soil,
and the distribution of the vertical and horizontal dis-
placements spectrum of the observation point increases
almost 2 times than before. In addition, for the layered soil
with weak interlayer, the values of vertical and horizontal
displacements spectrum with respect to the observation
point will increase and with the increase of the load velocity.
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Figure 4: Variation of the observation point A (0.0, 0.0m) displacement with time t under different elastic parameters: (a) vertical
displacement; (b) horizontal displacement.
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Figure 5: Variation of the observation point A (0.0, 0.0m) displacement with time t under different elastic parameters.
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Figure 6: Variation of the observation point A (0.0, 0.0m) displacement with time t under different elastic parameters: (a) vertical
displacement; (b) horizontal displacement.
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Figure 7: Variation of the observation point A (0.0, 0.0m) vertical displacement spectrum with frequency under different layered soil: (a)
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,e peak displacement spectrum of the observation point
appears at a smaller frequency position at the same time, and
the approximate number of the peak displacement spectrum
also increases. On the contrary, for the layered soil with hard
interlayer, the above conclusion will be just the opposite.

,e variation of vertical and horizontal displacements
spectrum located at the observation point A (0.0, 0.0m) with
time t under different layered soil is plotted in Figures 9 and
10, respectively. One can see from the figures that when the
load velocity is rather low (e.g.,vc � 0.2vs), the dynamic re-
sponse in the time domain of the vertical and horizontal
displacements located at the observation point is symmet-
rically distributed on both sides of the loading arrival time.
As the load velocity increases, the displacement amplitude of

the observation point increases and the vibration duration of
the soil surface is longer, then its symmetry with respect to
the moment of loading arrival will be disappeared accom-
panied by the phenomenon of shock wave. Figures 9 and 10
obviously show that the wave pattern for t <0 has a higher
frequency and smaller amplitude than that for t >0. ,e
difference in frequencies is because of the Doppler effect,
implying that an observed wave possesses a higher frequency
when the load moves towards the observation point (t <0),
and, on the other hand, the wave frequency becomes smaller
when the distance between the load and the observation
point grows (t >0).

Furthermore, the vertical and horizontal displacements
of the observation point provided that vc � 0.2vs are the
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Figure 8: Variation of the observation pointA (0.0, 0.0m) horizontal displacement spectrumwith frequency under different layered soil: (a)
vc � 0.2vs, (b) vc � 0.5vs, (c) vc � 1.2vs.
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largest in CASE (B), followed by CASE (A) and CASE (C),
implying that surface vibration of layered soil with weak
interlayer is greater than that with stiffer layer in the case of
lower load velocity. Nevertheless, the vertical and horizontal
displacements of the observation point with weak interlayer
in the layered soil can reach the maximum value in the case

of vc � 0.5vs, and there is definite fluctuation. For a ho-
mogeneous soil foundation, the vertical and horizontal
displacement amplitudes of the observation point are the
largest in the case of vc � 1.2vs. ,e existence of weak in-
terlayer in the soil foundation makes the vibration attenu-
ation slower.
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Figure 9: Variation of the observation points A (0.0, 0.0m) vertical displacement spectrum with time t under different layered soil: (a)
vc � 0.2vs, (b) vc � 0.5vs, (c) vc � 1.2vs.
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5. Conclusion

In this paper, considering the viscoelasticity of the concrete
material of the subway tunnel structure and the layered soil
foundation, using the standard linear elastic solid model and
the TRM method, the characteristics of the vibration of the
ground surface caused by the different load velocity in the
layered soil foundation are analyzed. Based on the numerical
simulations performed in this study, following conclusions
can be drawn:

(1) As the viscosity coefficient of the viscoelastic beam
increases, the vibration amplitude of the soil surface
will decrease, but the impact is limited.,erefore, the
creep and relaxation of the material can be described
by the standard solid model for viscoelastic beams,
which reflect the working conditions of the concrete
structure for subway tunnel properly.

(2) As the elastic modulus of the viscoelastic element
increases, the shear modulus of the viscoelastic beam
increases, the vibration of the layered soil surface will
decrease, and the vibration attenuation will slow
down. It can be seen that the greater the rigidity of
the track beam structure, the greater the energy
dissipated as an energy absorbing layer, and the
smaller the energy transmitted in the free field of the
foundation caused by the load acting on the sur-
rounding soil through the beam.

(3) When the load velocity is rather low, the displace-
ment spectra of vibrations are mainly distributed in
the lower frequency range, whereas the load velocity
exceeds the shear wave velocity of the soil, and the
spectrum is approximately twice as wide.

(4) For the layered soil with weak interlayer, the dis-
placements spectrum will increase with the increase
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Figure 10: Variation of the observation points A (0.0, 0.0m) horizontal displacement spectrum with time t under different layered soil: (a)
vc � 0.2vs, (b) vc � 0.5vs, (c) vc � 1.2vs.
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of the load velocity. ,e peak displacement spectrum
appears at a smaller frequency position at the same
time, and the approximate number of the peak
displacement spectrum also increases. On the con-
trary, for the layered soil with hard interlayer, the
above concludes will be just the opposite.

(5) ,e vertical and horizontal displacements of the
observation point with weak interlayer in the layered
soil can reach the maximum value in the case of
vc � 0.5vs, and there is definite fluctuation. For a
homogeneous soil foundation, the amplitude spec-
trum of vibration will peak while the load velocity
exceeds the shear wave velocity of the soil. ,e ex-
istence of weak interlayer in the soil foundation
makes the vibration attenuation slower.
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