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+e complete integration of scalar fourth-order ODEs with four-dimensional symmetry algebras is performed by utilizing Lie’s
method which was invoked to integrate scalar second-order ODEs admitting two-dimensional symmetry algebras. We obtain a
complete integration of all scalar fourth-order ODEs that possess four Lie point symmetries.

1. Introduction

Lie devised a method to integrate a scalar second-order
ordinary differential equation (ODE) if it admits a two-
dimensional symmetry algebra by reducing the order of
the equation twice and hence obtaining integrability by
quadratures for the ODE (see [1, 2]). Following the same
method, Ibragimov and Nucci [3] gave an algorithmic
procedure to integrate scalar third-order ODEs admitting
three-dimensional symmetry algebras. In their paper,
Cerquetelli et al. [4] classified scalar fourth-order ODEs
admitting four-dimensional symmetry algebras by first
presenting a classification of realizations of all four-di-
mensional Lie algebras in the plane. In their work, some
cases were missing which were then completed by Fatima
et al. in [5]. In [4], the authors had also introduced Lie’s
method for integrating fourth-order equations admitting
four-dimensional symmetry algebras.

In this note, we extend these works to complete the
integration of scalar fourth-order ODEs admitting four-
dimensional symmetry algebras. First, we compare the re-
alizations in the plane given in [4, 5] with that of the

realizations given in González-López et al. [6] and show that
they are compatible. For each case, we establish the required
coordinate transformations. To denote a general four-di-
mensional algebra, we have used the notation in [5], and for
the algebras in [6], the notation (m, n), wherem is the type of
algebra and n is the dimension of the algebra which in our
case is four, is utilized. We have then found all the scalar
fourth-order ODEs with symmetry and have also used the
classification given in [4, 5] whenever needed.+ereafter, we
perform a complete integration of all scalar fourth-order
ODEs possessing four symmetries. Note that, in [5], the
authors only consider the Lie algebraic classification and not
the integration of scalar fourth-order ODEs which admit
four-dimensional symmetry algebras. Here, apart from the
comparison of the realizations obtained in both [4, 5] with
that of [6], we obtain a complete integration of all scalar
fourth-order ODEs which admit four point symmetries.
Also, we present applications of our results.

In Section 2, we present the integration of all scalar
fourth-order ODEs that admit four Lie point symmetries.
We utilise a three-dimensional ideal of the algebra to reduce
the equation to order one which admits the quotient algebra
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and which is hence integrable. We present the main results
in tabular form: first, the correspondence of the realizations
utilized for fourth-order ODEs with that of González-López
et al. [6] is given in Table 1. +en, in Table 2, the canonical
forms of scalar fourth-order ODEs which possess 4 sym-
metries are presented. In Table 3, invariant representation of
4th-order ODEs admitting 3-dimensional ideals is listed.
+is is followed by the integrability of 4th-order ODEs with
four symmetries in Table 4.+emain features of integrability
are discussed thereafter. Section 3 deals with applications of
scalar higher-order ODEs. +ese occur in practice in beam
theory as well as in the reduction of partial differential
equations (PDEs) which arise in several areas. A brief
conclusion is provided with summary and related questions
in the last section.

2. Integration of Fourth-OrderODEsAdmitting
Four-Dimensional Algebras

Let a scalar fourth-order ODE admit a four-dimensional
symmetry algebra, say g4. Such an algebra always has a
three-dimensional ideal, say I3. We use it to transform
the fourth-order ODE into a first-order ODE in new
coordinates which are precisely the differential invariants
of I3 of order ≤3. +is transformed first-order ODE
admits g4/I3 and hence can be integrated easily [2]. +e
general form of solution of this first-order ODE in original
coordinates is a scalar third-order ODE admitting I3
which can be integrated further by Lie’s method as per-
formed in [3]. One notes that all the four-dimensional
algebras are solvable except for two cases which are (8)
and (9), and thus, the corresponding equations can be
integrated easily by quadratures. We follow the same steps
to integrate all possible scalar fourth-order ODEs pos-
sessing four-dimensional symmetry algebras. +is is the
reason that we give some of the cases in detail, and all the
necessary information for other cases is divided into four
tables in the following pages.

Remark 1. In Table 2, we have not stated the 4-dimensional
algebras (21, 4) and 4A1 of Table 1 for the reason that a 4th-
orderODE admitting these can bemapped to linearizableODEs
of the same order by point transformations that admit fifth
generators ϕ1(x)zy, ϕ1″ ≠ 0, with ϕ1 solving the linearized
ODE y(4) � (ϕ(4)(x)/ϕ(2)(x))y″ + H(x)(ϕ(2)y‴ − ϕ(3)(x)

y″) (ϕ1different from ϕ) and yzy of a linear ODE, re-
spectively. Since such ODEs must admit 5-dimensional
algebras, we exclude these. In Tables 2–4, we list the al-
gebras of Table 1 as (1) to (23). Also, a, b are constants and
H a function of its argument.

We present the salient features of integration of some
of the cases as in the above tables according to the no-
menclature utilized in the following tables below. +e
remaining cases in the tables are then easy to understand.

(1) (2A2, 5): X1 � zx, X2 � zy, X3 � xzx, X4 � yzy.
(13, 4): with the same generators.

Fourth-order equation:

y
(4)

�
y″

3

y′
2 H

y′y‴

y″
2

⎛⎝ ⎞⎠. (1)

+e three-dimensional ideal of the above algebra is
generated by X1, X2, and X3. Invariants of this three-
dimensional ideal of order ≤3 are u � y″y′

− 2, v

� y‴y′
− 3. Equation (1) in terms of u and v coordinates

is
v

u
2 − 2􏼠 􏼡v′ + 3

v

u
� uH

v

u
2􏼠 􏼡. (2)

Here, X4 in terms of u and v coordinates is − uzu − 2vzv

which is admitted by equation (2). Defining new co-
ordinates as u � ln(1/u), v � (v/u2), X4 is transformed
into zu. Note that these coordinates can be found by
solving the following system of linear first-order partial
differential equations by the method of characteristics:

− u
zu

zu

− 2v
zu

zv

� 1,

− u
zv

zu

− 2v
zv

zv

� 0.

(3)

Equation (2) in terms of u and v coordinates is

v′ � G(v), (4)

where G(v): � ((H(v) − 3v)/(2 − v)) and the equation
admits zu. Integrating this equation gives v � F(u + c1).
+is in terms of the original coordinates is a third-order
equation admitting the three-dimensional algebra gen-
erated by X1, X2, and X3 which can be integrated as
in [3].
(9) A3,8 ⊕A1, (sl(2, IR)⊕A1, 8): X1 � zy, X2 � xzx

+ yzy, X3 � 2xyzx + y2 zy, X4 � xzx.
(19, 4): X1 � zx, X2 � 2xzx + yzy, X3 � x2zx + xyzy,

X4 � yzy.
Coordinate transformations: x � y, y � x.
Change in basis: X1 � X1, X2 � (X2/2),

X3 � X3, X4 � X4.
Fourth-order equation:

y
(4)

�
4
3

y″′
2

y″
+

y″
2

y
H K1( 􏼁, (5)

where K1 � (y″′
2
y/y″3) + 9(y′

2/yy″) + 6(y′y‴/y″2).
+e three-dimensional ideal: X1, X2, and X3.
Invariants of order ≤3: u � y″y3, v � y‴y5 + 3y′y″y4.
Equation (5) in terms of u and v coordinates is as
follows:

v′ �
4
3

v

u
+

u
2

v
3 + H

v
2

u
3􏼠 􏼡􏼠 􏼡. (6)

X4 in terms of u and v coordinates: 4uzu + 6vzv.
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Table 1: Correspondence of the realizations in [5, 6].

Algebra in [5] Algebra in [6] Transformed generators Coordinate transformations
(2A2, 5) (13, 4) X1 � zx, X2 � zy, X3 � xzx, X4 � yzy Same generators

(2A2, 7)
(23, 4),
r� 2 X1 � e− xzy, X2 � zx, X3 � zy, X4 � yzy. x � − lnx, y � y

A3,2 ⊕A1
(22, 4),
r� 3 X1 � e− xzy, X2 � − xe− xzy, X3 � zx, X4 � zy x � − x, y � yex

A− 1
3,4⊕A1

(22, 4),
r� 3 X1 � e− xzy, X2 � exzy, X3 � zx, X4 � zy x � (lnx/2), y � y|x|(− 1/2)

Aa
3,4⊕A1

(22, 4),
r� 3 X1 � e− xzy, X2 � e− axzy, X3 � zx, X4 � zy x � (lnx/(1 − a)), y � y|x|(1/(a− 1))

A0
3,5⊕A1

(22, 4),
r� 3 X1 � sinxzy, X2 � cosxzy, X3 � zx, X4 � zy x � cot− 1 x, y � (y/(

�����
1 + x2

√
))

Ab
3,5⊕A1

(22, 4),
r� 3 X1 � e− bx sinxzy, X2 � e− bx cos xzy, X3 � zx, X4 � zy x � cot− 1 x, y � (e− barctanx/(

�����
1 + x2

√
))y

(sl(2, IR)⊕A1, 9) (14, 4) X1 � zx, X2 � xzx, X3 � x2zx, X4 � zy x � y, y � x

(sl(2, IR)⊕A1, 8) (19, 4) X1 � zx, X2 � 2xzx + yzy, X3 � x2zx + xyzy, X4 � yzy Scaling X2 by (1/2) only

A4,1
(22, 4),
r� 3 X1 � zy, X2 � xzy, X3 � (x2/2)zy, X4 � zx Same generators

Ab
4,2, b≠ 0, 1 (22, 4),

r� 3 X1 � e− bxzy, X2 � e− xzy, X3 � − xe− xzy, X4 � zx x � (lnx/(b − 1)), y � y|x|(b/(1− b))

A4,3
(22, 4),
r� 3 X1 � e− xzy, X2 � zy, X3 � − xzy, X4 � zx x � ln x, y � (y/x)

A4,4
(22, 4),
r� 3 X1 � e− xzy, X2 � − xe− xzy, X3 � (x2/2)e− xzy, X4 � zx x � − x, y � yex

Aa,b,c
4,5

(22, 4),
r� 3 X1 � e− axzy, X2 � e− bxzy, X3 � e− xzy, X4 � zx x � x, y � ye− ax

A1,1,1
4,5

(21, 4),
r� 2 X1 � zy, X2 � xzy, X3 � ϕ(x)zy, X4 � yzy x � ξ1(x) and y � y

Aa,b
4,6 , a> 0 (22, 4),

r� 3 X1 � e− axzy, X2 � e− bx cosxzy, X3 � e− bx sinxzy, X4 � zx x � x, y � ye− ax

A4,7
(25, 4),
r� 2 X1 � zy, X2 � xzy, X3 � − zx , X4 � x zx + (2y + x2)zy x � x, y � y + x2lnx

3
2

Ab
4,8, b � − 1 (24, 4), α � 0 X1 � zy, X2 � zx, X3 � xzy, X4 � xzx Same generators

Ab
4,8, |b|≤ 1,

b≠ − 1
(24, 4),
α � b + 1 X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + (1 + b)yzy Same generators

Ab
4,8, b � 1 (24, 4),

α � 2 X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + 2yzy Same generators

Ab
4,8, b � 0 (24, 4),

α � 1 X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + yzy Same generators

Ab
4,8, b≠ ±1 (24, 4),

α � ((b + 1)/b)
X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + ((1 + b)/b)yzy Scaling X4 by (1/b)

(A4,10, 7)
(23, 4),
r� 2 X1 � sinxzy, X2 � cos xzy, X3 � yzy, X4 � zx x � cot− 1 x, y � (y/(1 + x2)(1/2))

(A4,10, 6∗) (4, 4) X1 � zy, X2 � zx, X3 � xzx + yzy, X4 � − yzx + xzy Same generators

4A1
(20, 4),
r� 3 X1 � zy, X2 � xzy, X3 � ξ2(x)zy, X4 � ξ3(x)zy x � ξ1(x) and y � y

Table 2: Representative 4th-order ODEs with 4 symmetries.

Number Generators of algebras in [6] Corresponding fourth-order invariant equations
(1) X1 � zx, X2 � zy, X3 � xzx, X4 � yzy y(4) � (y″

3/y′2)(H(y′y‴)/y″2)

(2) X1 � e− xzy, X2 � zx, X3 � zy, X4 � yzy. y(4) � − y‴ + (y″ + y‴)H((y″ + y‴ )/(y′ + y″))
(3) X1 � e− xzy, X2 � − xe− xzy, X3 � zx, X4 � zy y(4) � − y‴ + (y″ + y‴)H((y″ + y‴)/(y′ + y″))
(4) X1 � e− xzy, X2 � exzy, X3 � zx, X4 � zy y(4) � y″ + H(y‴ − y′)
(5) X1 � e− xzy, X2 � e− axzy, X3 � zx, X4 � zy y(4) � − (a + 1)y‴ − ay″ + H(y‴ + (a + 1)y″ + ay′)
(6) X1 � sinxzy, X2 � cosxzy, X3 � zx, X4 � zy y(4) � − y″ + H(y‴ + y′)

(7) X1 � e− bx sinxzy, X2 � e− bx cosxzy y(4) � − 2by‴ − (b2 + 1)y‴ + H(K1)

X3 � zx, X4 � zy K1 � y‴ + 2by″ + (b2 + 1)y′

(8) X1 � zx, X2 � xzx, X3 � x2zx, X4 � zy

y(4) � 3(y″
3/y′2) + 6K1y″y′

2
+ y′

4
H(K1)

K1 � y‴y′
− 3

− (3/2)y″
2
y′

− 4
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Table 2: Continued.

Number Generators of algebras in [6] Corresponding fourth-order invariant equations

(9) X1 � zx, X2 � 2xzx + yzy y(4) � (4/3)(y″′
2/y″) + (y″

2/y)H(K1)

X3 � x2zx + xyzy, X4 � yzy K1 � (y″′
2y/y″3) + 9(y′

2/yy″) + 6(y′y‴/y″2)
(10) X1 � zy, X2 � xzy, X3 � (x2/2)zy, X4 � zx y(4) � H(y‴)

(11) X1 � e− bxzy, X2 � e− xzy, X3 � − xe− xzy, X4 � zx

y(4) � − (b + 2)y ‴ − (2b + 1)y″ − by′ + H(K1)

K1 � y‴ + (2 + b)y″ + (2b + 1)y′ + by

(12) X1 � e− xzy, X2 � zy, X3 � − xzy, X4 � zx y(4) � − y‴ + H(y″ + y‴)

(13) X1 � e− xzy, X2 � − xe− xzy y(4) � y‴H(y‴ex)
X3 � (x2/2)e− xzy, X4 � zx

(14) X1 � e− axzy, X2 � e− bxzy, X3 � e− xzy, X4 � zx

y(4) � − (a + b + 1)y‴ − (a + b + ab)y″ − aby′ + H(K1)

K1 � y‴ + (a + b + 1)y″ + (a + b + ab)y′ + aby

(15) X1 � e− axzy, X2 � e− bx cosxzy y(4) � − (a + 2b)y‴ − (b2 + 2ab + 1)y″ − a(b2 + 1)y′ + H(K1)

X3 � e− bx sin xzy, X4 � zx K1 � y‴ + (a + 2b)y″ + (b2 + 2ab + 1)y′ + a(b2 + 1)y

(16) X1 � zy, X2 � xzy y(4) � y″′
2
H(y″′

2
ey″ )

X3 � − zx , X4 � x zx + (2y + x2)zy

(17) X1 � zy, X2 � zx, X3 � xzy, X4 � xzx y(4) � y″′
(4/3)

H(y″′
− 2/y″− 3

)

(18) X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + (1 + b)yzy
y(4) � y″′

((b− 3)/(b− 2))
H(y″′

b− 1/y″b− 2
)

(19) X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + 2yzy y(4) � y″′
2
H(y″)

(20) X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + yzy y(4) � y″′
(3/2)

H(y″′
− 1/y″− 2

)

(21) X1 � zy, X2 � zx, X3 � xzy, X4 � xzx + ((1 + b)/b)yzy y(4) � y″′
((1− 3b)/(1− 2b))

H(y″′
((b− 1)/b)/y″((b− 2)/b)

)

(22) X1 � sinxzy, X2 � cosxzy, X3 � yzy, X4 � zx y(4) � − y″ + (y‴ + y′)H((y‴ + y′)/(y″ + y))

(23)
X1 � zy, X2 � zx y(4) � y″

3
((15y′

2
+ 10y′K1 + H(K1))/(1 + y′

2
)2)

X3 � xzx + yzy, X4 � − yzx + xzy K1 � ((1 + y′
2
)y‴/y″2) − 3y′

Table 3: Invariant representation of 4th-order ODEs admitting 3-dimensional ideals.

Algebras [6] 3-dimensional ideal Invariants of order ≤3 Invariant equation

(1) 〈X1, X2, X3〉 u � y″y′
− 2, v � y‴y′

− 3
((v/u2) − 2)v′ + 3(v/u) � uH(v/u2)

(2) 〈X1, X2, X3〉 u � y′ + y″, v � y″ + y‴ v′ � H(v/u)

(3) 〈X1, X2, X3〉
u � y″ + 2y′ + y

v′ � H(v)
v � y‴ + 2y″ + y′

(4) 〈X1, X2, X4〉 u � x, v � y‴ − y′ v′ � H(v)

(5) 〈X1, X2, X4〉
u � x

v′ � H(v)
v � y‴ + (a + 1)y″ + ay′

(6) 〈X1, X2, X4〉 u � x, v � y‴ + y′ v′ � H(v)

(7) 〈X1, X2, X4〉
u � x

v′ � H(v)
v � y‴ + 2by″ + (b2 + 1)y′

(8) 〈X1, X2, X3〉 u � y, v � y‴y′
− 3

− (3/2)y″
2
y′

− 4
v′ � H(v)

(9) 〈X1, X2, X3〉 u � y″y3, v � y‴y5 + 3y′y″y4 v′ � (4/3)(v/u) + (u2/v)(3 + H(v2/u3))

(10) 〈X1, X2, X3〉 u � x, v � y‴ v′ � H(v)

(11) 〈X1, X2, X3〉
u � x

v′ � H(v)
v � y‴ + (2 + b)y″ + (2b + 1)y′ + by

(12) 〈X1, X2, X3〉 u � x, v � y‴ + y″. v′ � H(v)

(13) 〈X1, X2, X3〉 u � x, v � y‴ v′ � vH(veu)

(14) 〈X1, X2, X3〉

u � x

v′ � H(v)v � y‴ + (a + b + 1)y″+
(a + b + ab)y′ + aby

(15) 〈X1, X2, X3〉

u � x

v′ � H(v)v � y‴ + (a + 2b)y″+
(b2 + 2ab + 1)y′ + a(b2 + 1)y

(16) 〈X1, X2, X3〉 u � y″, v � y‴ v′ � vH(v2eu)

(17) 〈X1, X2, X3〉 u � y″, v � y‴ v′ � v(1/3)H(v− 2/u− 3)

(18) 〈X1, X2, X3〉 u � y″, v � y‴ v′ � v(− 1/(b− 2))H(vb− 1/ub− 2)

(19) 〈X1, X2, X3〉 u � y″, v � y‴ v′ � vH(u)
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+e coordinates which transform X4 into zu: u �

(ln u/4) and v � (v2/u3).
Equation (6) in terms of u and v coordinates:

v′ �
32
3

v + 8H(v) + 24. (7)

We define G(v): � (32/3)v + 8H(v) + 24. +en,
equation (7) becomes

v′ � G(v). (8)

Admitting zu, equation (8) can now easily be
integrated.
(24) (A4,10, 6∗): X1 � zy, X2 � zx, X3 � xzx + yzy,

X4 � − yzx + xzy.
(4, 4): with the same generators.
Fourth-order equation:

y
(4)

� y″
3 15y′

2
+ 10y′K1 + H K1( 􏼁

1 + y′
2

􏼒 􏼓
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (9)

Table 3: Continued.

Algebras [6] 3-dimensional ideal Invariants of order ≤3 Invariant equation
(20) 〈X1, X2, X3〉 u � y″, v � y‴ v′ � v(1/2)H(v− 1/u− 2)

(21) 〈X1, X2, X3〉 u � y″, v � y‴ v′ � v(− b/(1− 2b))H(v((b− 1)/b)/u((b− 2)/b))

(22) 〈X1, X2, X3〉 u � y″ + y, v � y‴ + y′ v′ � H(v/u)

(23) 〈X1, X2, X4〉 u � y′, v � y‴y″
− 2 v′ � − 2v2 + ((15u2 + 10uK1 + H(K1))/(1 + u2)2)

K1 � (1 + u2)v − 3u

Table 4: Integrability of 4th-order ODEs admitting 4 symmetries.

Algebras. [6] Symmetry Canonical coordinates Integrable equation

(1) − uzu − 2vzv u � ln(1/u), v � (v/u2)
v′ � G(v)

G(v) : � ((H(v) − 3v)/(2 − v))

(2) uzu + vzv

u � ln u, v � (v/u)

v′ � H(v)

(3) zu v′ � H(v)

(4) zu v′ � H(v)

(5) zu v′ � H(v)

(6) zu v′ � H(v)

(7) zu v′ � H(v)

(8) zu v′ � H(v)

(9) 4uzu + 6vzv

u � (ln u/4) and v � (v2/u3)

v′ � H(v)

G(v) : � (32/3)v + 8H(v) + 24
(10) zu v′ � H(v)

(11) zu v′ � H(v)

(12) zu v′ � H(v)

(13) − zu + vzv

u � − u and v � veu

v′ � G(v)

G(v) : � − vH(v)

(14) zu v′ � H(v)

(15) zu v′ � H(v)

(16) 2zu − vzv u � (u/2) and v � v2eu v′ � G(v)

G(v): � 4vH(v)

(17) − 2uzu − 3vzv u � − (1/2)ln u, v � (v− 2/u− 3)
v′ � G(v)

G(v) : � 4v2/3H(v)

(18) (b − 1)uzu + (b − 2)vzv u � (1/(b − 1))ln u, v � (vb− 1/ub− 2)
v′ � G(v)

G(v) : � (b − 1)2v((b− 1)/(b− 2))H(v)

(19) − vzv u � u, v � − lnv v′ � − H(u)

(20) − uzu − 2vzv u � − ln u, v � (v− 1/u− 2)
v′ � G(v)

G(v) : � v1/2H(v)

(21) ((1 − b)/b)uzu + ((1 − 2b)/b)vzv u � (b/(1 − b))ln u, v � (v((b− 1)/b)/u((b− 2)/b))
v′ � G(v)

G(v) : � (b2/(1 − b)2)v((1− b)/(1− 2b))H(v)

(22) uzu + vzv u � ln u, v � (v/u) v′ � H(v)

(23) (1 + u2)zu + (3 − 2uv)zv u � arctan u, v � (1 + u2)v − 3u
v′ � G(v)

G(v): � H(v) − 2v2 − 3
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where K1 � ((1 + y′
2
)y‴/y″2) − 3y′. +e three-di-

mensional ideal of the above algebra is generated by
X1, X2, and X3. Invariants of this ideal of order ≤3 are
u � y′, v � y‴y″

− 2. Equation (9) in terms of u and v

coordinates is

v′ � − 2v
2

+
15u

2
+ 10uK1 + H K1( 􏼁

1 + u
2

􏼐 􏼑
2 , (10)

where K1 � (1 + u2)v − 3u. +is equation admits X4
which in terms of u and v coordinates is
(1 + u2)zu + (3 − 2uv)zv. Defining new coordinates as
u � arctan u, v � (1 + u2)v − 3u, X4 transforms into zu.
Equation (10) in terms of u and v coordinates then
becomes

v′ � G(v), (11)

where G(v) : � H(v) − 2v2 − 3. +is equation clearly
admits zu. Integrating equation (11) gives v � F(u + c1)

which in original coordinates is a third-order equation
admitting the three-dimensional algebra generated by
X1, X2, and X3 and therefore can be integrated further.
All the cases are given in Tables 1–4.

3. Applications

Fourth-order ODEs have many applications. +ey occur as
reductions of PDEs in, for example, fluid mechanics and
dynamic beam theory (see, e.g., [7–10]). Also, they appear in
static beam theory [11].

+e static Euler–Bernoulli beam ODE is of order 4 and
has the following form:

d2

dx
2 EI

d2y
dx

2􏼠 􏼡 � g. (12)

+is ODE relates the static beam’s deflection y at some
point x with the applied load g which can depend upon x

and y and the derivatives of the deflection y. Here, the
product EI is the flexural rigidity and, in many engineering
applications, is taken as constant.

Another form of a fourth-order ODE in beam-column
theory is

EI
d4y
dx

4 + P
d2y
dx

2 � f, (13)

in which y is the deflection laterally andf the intensity of the
distributed load. Also, P stands for the axial compressive
force.

Interesting work on certain classes of the static beam
model has been carried out in [12, 13] in which the authors
utilise the Lie and Noether approaches for reductions and
solutions.

Here, we show how the integration scheme obtained
here for fourth-order ODEs with four symmetries can be
used. If EI is constant, then (12) is a general fourth-order
ODE. It can be integrated by quadrature via the approach
here, provided it has 4 symmetries. +ere are thus many

cases as stated in Table 4. We mention two other examples
below for each of (12) and (13).

(1) In (6) of Table 2, we take EI � 1 and P � 1. +en, the
fourth-order ODE becomes

y
(4)

+ y″ � H y′ + y
‴

􏼒 􏼓. (14)

+erefore, the intensity of the distributed load f as in
(13) is H. +is ODE is integrable, as shown
in Tables 3 and 4.

(2) If we take EI � 1 in (12) and g � y″′
2
H(y″), then it

becomes

y
(4)

� y
‴2

H y″( 􏼁. (15)

+is corresponds to (19) in Table 2 and is integrable
by quadratures.

4. Conclusion

In this note, we firstly presented a reconciliation of the
existing realizations utilized for the classification of scalar
fourth-order ODEs that maximally admit four-dimensional
Lie algebras. +en, we provided a complete integration al-
gorithm for such equations thus completing the works [4, 5].
+e main results are concisely presented in Section 2,
wherein the correspondence of the realizations of [4, 5] is
given with those of [6]. +en, the scalar fourth-order
equations which possess four symmetries are listed followed
by their complete integrability.

In Section 3, we presented applications of the integration
results to equations in beam theory and fluids mechanics. It
is worthwhile mentioning that higher-order ODEs arise in
several applications, including symmetry reductions of
PDEs (see [7, 14, 15]), and various integration strategies are
useful, not least the symmetry approach advanced here.
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