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Transportation is regarded as an industry with high energy consumption and high CO2 emissions. Little attention has been paid to
the environmental performance improvement of China’s transportation industry, especially in a stepwise improvement way. In
this study, we first apply the closest targets DEAmethod to evaluate the environmental performance in the transportation industry
of 30 provincial-level regions in China’s mainland from 2010 to 2017. ,en, we incorporate the closest targets and context-
dependent DEA model and thus conform a stepwise projection path for each inefficient province to improve environmental
performance with less effort by the way of identifying a sequence of intermediate closest targets. ,e empirical study shows that
the environmental performance of the transportation industry obtained from the closest targets model is greater than that
obtained from the SBM model for each province. Among the three areas, the eastern area performs the best in environmental
performance followed by the central region and western region. Shanghai has the best environmental performance. Additionally,
compared with conventional DEA models, the proposed stepwise improvement method can generate easier and closer achieved
targets for the inefficient provinces. Hainan, Yunnan, and Xinjiang provinces have the lowest environmental performance, which
need four steps to achieve efficiency.

1. Introduction

With the benefit from the “reform and opening up”
launched in 1978, China’s economy has rapidly improved.
China’s GDP (gross domestic product) increased from
0.37 trillion yuan in 1978 to 90.03 trillion yuan in 2018,
with an average growth rate of 9.4% [1]. However, the
rapid economic growth has brought about problems of
huge energy consumption and pollution emissions (e.g.,
CO2 emissions) [2, 3]. In 2018, the total energy con-
sumption of China reached 4.64 billion tons of standard
coal equivalent (tce), 7.7 times that of 1978, ranking first in
the world [4]. ,e transportation industry has been the
third-largest energy consumer industry in China [5], and it
has become one of China’s main sources of CO2 emissions
[6, 7]. With the rapid development of the transportation
industry, the energy consumption and CO2 emissions of

the transportation industry will continue to grow [8]. In
2050, the energy consumption of China’s transportation
industry would increase to 636 million tons of oil
equivalent and produce 16.02 billion tons of CO2 [9].
Hence, it is of great importance to effectively assess the
environmental performance of the transportation industry
in China. By doing this, it may provide helpful information
to decision-makers to achieve a balance between economic
growth and sustainable development and finally to im-
prove environmental performance.

To properly evaluate the environmental performance
of the transportation industry, many scholars have pro-
posed approaches based on data envelopment analysis
(DEA) [10, 11]. DEA, which was first proposed by Charnes
et al. [12], has been extensively used to evaluate the rel-
ative performance of a set of homogeneous decision-
making units (DMUs) which consume multiple inputs to
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produce multiple outputs [13, 14]. In addition to evalu-
ating performance, DEA can also provide benchmarking
information or targets to guide inefficient DMUs to im-
prove their performance [15, 16]. Given its advantages,
DEA has been applied as an analytical technique in the
fields of agriculture, banking, transportation, supply
chain, and others [17]. ,us, we suggest the use of the
DEA methodology as the main tool to measure the en-
vironmental performance of the transportation industry
in China’s mainland.

Various DEA models have been applied to the envi-
ronmental performance evaluation of China’s trans-
portation industry (see [18–22]). However, the studies on the
environmental performance improvement of the trans-
portation industry are largely lacking. On the other hand,
prior research applying DEA approaches usually yields a
“furthest” target or benchmark for any inefficient DMU.
Under such circumstances, it is difficult for the inefficient
DMU to achieve efficiency along the direction determined
by its “furthest” target or benchmark in a single step because
of the large difference in the inputs and/or outputs between
it and the targets. To avoid this problem, one effective way is
to find the closest targets for the inefficient DMU.,e closest
targets have values for inputs and/or outputs similar to the
current values of the inefficient DMU; thus, it can achieve
such targets with less effort [15, 23]. However, when there is
a large performance gap between the inefficient DMU and its
corresponding closest target, it is still hard for such ineffi-
cient DMU to achieve the closest targets in a single step or in
a short time [24].

To fill the gaps in the prior literature, this paper proposes
a new stepwise improvement method that incorporates
closest targets and context-dependent DEA model. In
contrast to the traditional DEAmodels (e.g., SBM) that yield
the “furthest” targets for the inefficient DMUs, the proposed
approach in this study generates the closest targets that have
the inputs and outputs similar to the assessed inefficient
DMUs, which means that the inefficient DMUs can improve
to the efficient frontier with less effort along the direction to
the corresponding closest targets. In particular, to help an
inefficient DMU that is far away from its closest targets
achieve efficiency, our approach provides a stepwise im-
provement path that consists of several intermediate closest
targets on different levels of efficient frontier identified by
the context-dependent DEA approach, thus ensuring the
inefficient DMU improve to the efficient frontier by fol-
lowing this path.

,e rest of the paper is organized as follows. ,e
following section reviews the literature on environmental
performance evaluation of the transportation industry
based on DEA methods and the closest targets approaches
in DEA. In Section 3, we provide the preliminaries of
relevant DEA models. ,e stepwise improvement ap-
proach that incorporates the closest targets and context-
dependent DEA model is proposed in Section 4. In Section
5, we apply our approach to the transportation industry at
provincial administrative regions in mainland China. ,e
last section gives the conclusion and several possible re-
search directions.

2. Literature Review

2.1. Environmental Performance Evaluation of Transportation
Industry. Considering the importance of reducing CO2
emissions and energy consumption, a large body of the
literature has used DEA methods to evaluate the environ-
mental performance of transport sectors. Egilmez and Park
[25] integrated EIO-LCA and DEA to access the environ-
mental performance of the U.S. transportation industry.
Beltrán-Esteve and Picazo-Tadeo [26] used a directional
distance function approach to measure the environmental
performance changes in the transportation industry of 38
countries/regions from 1995 to 2009. ,ey found that the
improvement of environmental performance is mainly
driven by eco-innovation. Park et al. [11] applied a nonradial
SBM-DEA model to evaluate the environmental efficiency
and potential CO2 reduction of the transportation sectors in
the U.S. from years 2004 to 2012.,eir findings revealed that
the transportation sectors in the U.S. were environmentally
inefficient with an average environmental efficiency score
below 0.64. Mavi et al. [27] applied a common set of weights
double frontier DEA-based Malmquist productivity index
method to track the changes of the environmental perfor-
mance of the transportation industry in Iran. ,e results
indicated that the environmental performance of the
transportation industry in Iran had a constant or declining
trend from 2014 to 2017. Omrani et al. [28] used a DEA-
cooperative game approach to evaluate the energy efficiency
in transportation sector at the provincial level in Iran. ,ey
found that smaller provinces have higher energy efficiency.

In recent years, transportation industry has become one
of the industries with high energy consumption and high
CO2 emissions in China, and the environmental perfor-
mance evaluation of China’s transportation industry has
received widespread attention. Chang et al. [10] used a
nonradial SBM model to analyze the environmental effi-
ciency of China’s transportation sectors at the provincial
regional level. ,eir results showed that the environmental
efficiency of China’s transportation industry is very low, and
the environmental efficiencies of most provinces are below
50% of the target level. Cui and Li [29] employed a three-
stage virtual frontier DEA model to evaluate energy effi-
ciencies in the transportation industry of 30 Chinese pro-
vincial administrative regions.,ey found that structure and
management measures have impacts on transportation
energy performance. Wu et al. [18] measured the energy and
environmental performance of transportation systems at the
provincial level in China based on a parallel DEA approach.
,e result showed that there are large efficiency differences
between the passenger and freight transportation subsys-
tems. Stefaniec et al. [30] proposed a triple bottom line-
based network DEA approach to evaluate the environmental
performance of inland transportation in China. ,e results
indicated that the overall efficiency of the transportation
industry shows an upward trend. Zhu et al. [31] developed a
new equilibrium efficient frontier DEA approach to assess
the environmental performance of transportation sectors in
China under the constraints of energy consumption and
environmental pollutions. ,e findings revealed that there
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exist large disparities in environmental performance among
regions. Also, some scholars have paid attention to the
environmental performance of the transportation industry
focusing one region; for example, Tian et al. [32] utilized an
improved super-efficiency SBM-DEA model to measure the
sustainable development of the transportation industry in
Shaanxi province.

Besides, there are some scholars who analyzed the en-
vironmental performance of transportation subsectors, such
as the railroad sectors [33, 34], the airport transportation
[35–38], the land transportation [22, 39], and ports [20, 40].

2.2. Closest Targets Approach in DEA. Finding the closest
targets for inefficient DMUs to help them achieve efficiency
with less effort has been a hot issue in the DEA area. In DEA
research on finding closest targets, two primary ways have
attracted attention. One way is to identify all efficient facets,
calculate the least distance from the inefficient DMU to each
efficient facet, and finally choose the minimum distance
from these least distances. ,is type of method originated
from Briec [41], who used the Hölder distance function to
determine the least distance, and Frei and Harker [42], who
used the Euclidean distance to the Pareto-efficient frontier to
obtain the closest targets or benchmarks. Later, weighted
Euclidean distance approaches were proposed by Amirtei-
moori and Kordrostami [43] and Aparicio and Pastor [44],
among others. ,e other way is to find the closest targets for
a certain inefficient DMU based on similarity criteria is an
approach based originally on the mixed-integer linear
program proposed by Aparicio et al. [15], which can obtain
the closest target on the Pareto-efficient frontier for a given
inefficient DMU. In line with Aparicio et al. [15], Pastor and
Aparicio [45], Ando et al. [46], Aparicio and Pastor [47], and
Fukuyama et al. [48], the properties of such methodologies
were further improved (see [49] for a detailed discussion).

In addition to the research on property improvement,
the closest targets approach has also been applied to various
areas. An et al. [50] used the closest targets model based on
the enhanced Russell measure to evaluate the environmental
performance of 20 thermal power enterprises in Anhui

province of China. By using the closest targets method, Li
et al. [20] provided benchmarking information for primary
freight transportation seaports in China to improve their
environmental performance. Wu et al. [19] incorporated the
closest targets technique into carbon emissions abatement
allocation and applied it for carbon emissions abatement
target setting and allocation for 20 APEC economies.
Razipour-GhalehJough et al. [51] proposed a closest targets
model in the presence of weight restrictions to evaluate and
improve the efficiency of Iranian banks.

In reviewing the above discussed literature, we find that
although various DEA models have been used in the en-
vironmental performance evaluation of the transportation
industry, the studies on the environmental performance
improvement of the transportation industry are largely
requiring. Additionally, prior research applying DEA ap-
proaches usually yields a “furthest” target or benchmark for
the inefficient DMU. As a result, it is difficult for the in-
efficient DMU to achieve efficiency along the direction
determined by its “furthest” target or benchmark in a single
step because of the large difference in the inputs and outputs
between it and the targets. ,erefore, in this study, we in-
corporate closest targets and context-dependent DEAmodel
and thus conform a stepwise projection path for each in-
efficient province to improve environmental performance
with less effort by the way of identifying a sequence of
intermediate closest targets.

3. Preliminaries

3.1. Slacks-Based Measure (SBM) considering Undesirable
Outputs. Suppose that there are n DMUs, and each
DM Uj(j � 1, 2, · · · , n) consumes m inputs to produce s

desirable outputs accompanied by h undesirable outputs.
Variables xij(i � 1, 2, · · · , m), yrj(r � 1, 2, · · · , s), and
zqj(q � 1, 2, · · · , h) represent the i-th input, r-th desirable
output, and q-th undesirable output of
DM Uj(j � 1, 2, · · · , n), respectively. ,e production pos-
sibility set which is constructed by these n DMUs is defined
as follows [52, 53]:

T � (x, y, z)

􏽘

n

j�1
λjxij ≤xi, i � 1, 2, · · · , m,

􏽘

n

j�1
λjyrj ≥yr, r � 1, 2, · · · , s,

􏽘

n

j�1
λjzqj � zq, q � 1, 2, · · · , h, λj ≥ 0, j � 1, 2, · · · , n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (1)

Given an evaluated DM Uk, the following linear
program, namely, nonradial and nonoriented slacks-
based measure (SBM) based on production possibility set

(1) can be used to measure its relative environmental
efficiency [54–57]. Because the SBM model encompasses
the excesses of inputs and undesirable outputs and the
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shortfalls of desirable outputs simultaneously, this
technique has been widely used in environmental per-
formance evaluation:

ρ �min
1 − (1/m) 􏽐

m
i�1 s

−
ik/xik

1 +(1/(s + h)) 􏽐
s
r�1 s

+
rk/yrk + 􏽐

h
q�1 s

−
qk/zqk􏼐 􏼑

,

s.t. 􏽘
n

j�1
λjxij + s

−
i � xik, i � 1, 2, · · · , m,

􏽘

n

j�1
λjyrj − s

+
r � yrk, r � 1, 2, · · · , s,

􏽘

n

j�1
λjzqj + s

−
q � zqk, q � 1, 2, · · · , h,

λj ≥ 0, j � 1, 2, · · · , n,

s
−
i , s

+
r , s

−
q ≥ 0, ∀i, r, q.

(2)

In model (2), θ measures the relative environmental
efficiency of DM Uk; it ranges from 0 to 1, i.e., the higher
value of θ is, the better environmental efficiency DM Uk

achieves. s−
i and s−

q , respectively, represent the potential
reductions of i-th input and q-th undesirable output,
while s+

r indicates the potential expansion of r-th desir-
able output [54]. Additionally, λj(j � 1, 2, · · · , n) are in-
tensity variables which connect inputs and outputs.
Denoting the optimal solution of model (2) for DM Uk

by (θ∗, s− ∗
i , s+∗

r , s− ∗
q , λ∗j ), we have the following two

remarks.

Remark 1. DM Uk is strongly efficient if and only if θ∗ � 1,
and s− ∗

i � s+∗
r � s− ∗

q � 0,∀i, r, q. DM Uk is weakly efficient
if and only if θ∗ � 1 and s− ∗

i ≠ 0, s+∗
r ≠ 0, and s− ∗

q ≠ 0 for
some inputs and outputs.

Remark 2. θ∗ < 1 means DM Uk is inefficient, and the target
on the efficient frontier can be calculated by 􏽢xik � xik − s− ∗

ik ,
􏽢yrk � yrk + s+∗

rk , and 􏽢zqk � zqk − s− ∗
qk .

3.2. Closest Targets Model considering Undesirable Outputs.
To help the inefficient DMUs become efficient with the least
effort (minimizing the contraction of inputs and/or aug-
mentation of outputs), the closest target and minimum
distance to the Pareto-efficient frontier approach have been
proposed and investigated by many scholars (see Aparicio
et al. [49] for details). Denoting E as the set of strongly
efficient units, Aparicio et al. [15] constructed the following
strongly efficient frontier without considering undesirable
outputs under the assumption of constant returns to scale
(CRS):

SE � xi, yr( 􏼁

􏽘
j∈E

λjxij � xi, i � 1, 2, · · · , m,

􏽘
j∈E

λjyrj � yr, r � 1, 2, · · · , s,

􏽘

s

r�1
uryrj − 􏽘

m

i�1
wixij + φj � 0, ∀j ∈ E,

φj ≤Mbj, ∀j ∈ E,

λj ≤M 1 − bj􏼐 􏼑, ∀j ∈ E,

bj ∈ 0, 1{ }, ∀j ∈ E,

φj ≥ 0, ∀j ∈ E,

λj ≥ 0, ∀j ∈ E,

wi, ur ≥ 1, ∀i, r

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3)

where M is a large non-negative constant. ,e first two
constraints ensure that each DMU in T is a linear combi-
nation of strongly efficient DMUs. Constraints
􏽐s

r�1 uryrj − 􏽐
m
i�1 wixij + φj � 0,∀j ∈ E, and wi, ur ≥ 1,∀i, r

construct the hyperplanes that the units belonging to the
production possibility set either lie on or away from. If
λj > 0, that is, bj � 0 and φj � 0, ∀j ∈ E, then DM Uj is a
peer for other DMUs.

Considering the undesirable outputs, the following
model is proposed to evaluate the environmental efficiencies
for the inefficient DMUs on the basis of (3). ,e evaluated
inefficient DMU is denoted as DM Up.

ρ �max
1 − (1/m)􏽐

m
i�1s

−
ip/xip

1 +(1/s + h) 􏽐
s
r�1s

+
rp/yrp + 􏽐

h
q�1s

−
qp/zqp􏼐 􏼑

,

s.t. 􏽘
j∈E

λjxij � xip − s
−
ip, i � 1, 2, · · · , m,

􏽘
j∈E

λjyrj � yrp + s
+
rp, r � 1, 2, · · · , s,

􏽘
j∈E

λjzqj � zqp − s
−
qp, q � 1, 2, · · · , h,

􏽘

s

r�1
uryrj − 􏽘

m

i�1
wixij − 􏽘

h

q�1
vqzqj + φj � 0, ∀j ∈ E,

φj ≤Mbj, ∀j ∈ E,

λj ≤M 1 − bj􏼐 􏼑, ∀j ∈ E,

φj ≥ 0, ∀j ∈ E,

λj ≥ 0, ∀j ∈ E,

bj ∈ 0, 1{ }, ∀j ∈ E,

s
−
ip, s

+
rp, s

−
qp ≥ 0, ∀i, r, q,

wi, ur, vq ≥ 1, ∀i, r, q.

(4)

4 Mathematical Problems in Engineering



In model (4), the maximization of the objective function
helps the decision-makers discover the closest targets for
inefficient DM Up. ,e optimal solution of model (4) is
denoted as (ρ∗, λ∗j , s− ∗

ip , s+∗
rp , w∗i , u∗r ,φ∗j , b∗j ,∀i, r, j), and

DM Up can achieve the closest target on the efficient frontier
by 􏽢xip � xip − s− ∗

ip , 􏽢yrp � yrp + s+∗
rp , and 􏽢zqp � zqp − s− ∗

qp .
Compared with the target obtained from a conventional

DEA model, such as the SBM mentioned above, model (4)
generates a closest Pareto-efficient target on the efficient
frontier for any inefficient DMU. Such closest targets are as
similar as possible to the evaluated DMUs’ observed inputs
and outputs. ,erefore, each inefficient DMU can improve
its performance by moving toward efficiency along the di-
rection to its closest target with less effort than along the
projection direction used in the SBM model.

Figure 1 clearly illustrates the SBM projection and closest
target projection.

4. Stepwise Improvement Based on Closest
Targets in DEA

4.1. 4e Context-Dependent Model. Seiford and Zhu [58]
developed a context-dependent DEA model to divide all
assessed DMUs into different efficient frontiers, where the
DMUs located on the same frontier have similar perfor-
mance. ,us, an inefficient DMU can improve to be efficient
by step projection.

Denoting J1 � DM Uj, j � 1, 2, · · · , n􏽮 􏽯 as the set of all
assessed DMUs, Jd+1 � Jd − Ed, where Ed is the set of all
efficient DMUs in the d-th efficient frontier. In other words,
Ed � DM Uk ∈ Jd|θd∗

k � 1􏽮 􏽯 where θd∗
k is the optimal effi-

ciency yielded by the DEA model (e.g., CCR and SBM).
When d � 1, all efficient DMUs in E1 form the first-level
efficient frontier. When d � 2, all efficient DMUs in E1 are
eliminated, the remaining DMUs construct J2, and the ef-
ficient DMUs in J2 compose the set E2. Continuing this, all
the different levels of efficient frontiers are identified. ,e
following steps proposed by Seiford and Zhu [58] are applied
to obtain such frontiers:

(i) Step 1. Assess all DMUs in J1 by the DEA model to
identify the efficient DMUs which compose E1. ,e
efficient DMUs in E1 construct the first-level effi-
cient frontier.

(ii) Step 2. Eliminate the efficient DMUs in E1.
Reevaluate the residual DMUs in J2 and identify the
efficient DMUs which compose E2. ,e efficient
DMUs in E2 construct the second-level efficient
frontier. In other words, the efficient DMUs in the
previous level are always removed from the current
evaluation; that is, Jd+1 � Jd − Ed.

(iii) Step 3. Repeat step 2 until Jd+1 � ∅.

Figure 2 clearly illustrates the concept of the context-
dependent DEA model introduced by Seiford and Zhu [58],
in which four levels of efficient frontier are exhibited.

4.2. Stepwise-Closest Targets Model. Model (4) can help the
inefficient DMUs to improve to the Pareto-efficient frontier

with less effort than conventional DEA models. When an
inefficient DMU is far away from the efficient frontier, it may
be hard to improve to be efficient in one step because of its
current limited technology. In this section, we propose the
stepwise-closest targets model which incorporates the
closest targets and the context-dependent DEA model to
seek a stepwise improvement path for the inefficient DMUs,
as illustrated in Figure 3.

,e distinct advantage of the stepwise-closest targets
model is that it generates several intermediate closest targets
thus helping the inefficient DMUs, especially the inefficient
DMUs far away from the Pareto-efficient frontier improve to
the ultimate Pareto-efficient frontier step by step. Taking the
DMU C in Figure 3 as an example, for example, C1, C2, and
C3, are the three closest targets located on the first-level,

Y/X

Z/X

A

B

C

Closest target projection
SBM projection
Decision making units

Figure 1: Closest target projection and SBM projection.

Y/X

Z/X

A

B

CD

E
F

G

H

I

Level 1

Level 2

Level 3

Level 4

Closest target projection
SBM projection
Decision making units

Figure 2: Different levels of the efficient frontier.
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second-level, and third-level frontiers, respectively. We
should note that C3 is the easiest target for DMUC to achieve,
followed by C2 and C1.

5. Empirical Study

5.1. Background and Dataset. With the rapid economic
growth and urbanization, China’s transportation industry is
developing rapidly. ,e passenger and freight turnover
volumes in China have also grown with high-speed since
2000, i.e., the passenger turnover volumes increased from
1.23 trillion passenger-kilometers in 2000 to 3.42 trillion
passenger-kilometers in 2018, and the freight turnover in-
creased from 4.43 trillion ton-kilometers to 20.47 trillion
ton-kilometers [1].,e transportation industry is in a period
of rapid growth, the massive use of energy, and the gen-
eration of large amounts of CO2 emissions which result in
huge pressure on the environment. ,erefore, it is necessary
to evaluate and improve the environmental performance of
China’s transportation industry. Specifically, in this section,
we mainly focus on the evaluation and improvement of
environmental performance in transportation industry of 30
provincial-level regions (this study refers provincial-level
regions to provinces for convenience) in China’s mainland
from 2010 to 2017 (Tibet is excluded due to the missing
data).

Referring to Cui and Li et al. [29] and Wu et al. [18], we
select the number of staff working in the transportation
industry (Labor), transportation fixed assets investment
(Capital), and energy consumption of the transportation
industry (Energy consumption) as three inputs. Freight
turnover volume (FTV) and passenger turnover volume
(PTV) are two desirable outputs, and CO2 emissions are the
undesirable output. ,e data related to inputs (Labor,
Capital, and Energy consumption) and desirable outputs
(FTV and PTV) were extracted from China Statistical
Yearbook 2011–2018, China Energy Statistical Yearbook

2011–2018, and Ministry of Transport of the People’s
Republic.

Because the official data of provincial CO2 emissions in
China are not directly provided, following Chang et al. [10]
and Wu et al. [18], we use a fuel-based carbon footprint
model to measure the CO2 emissions in the regional
transportation industry. According to the Intergovern-
mental Panel on Climate Change guidelines [59], we cal-
culate the CO2 emissions by the following equation:

CO2 � 􏽘
n

i�1
E × CCFi × HEi × COFi ×

44
12

, (5)

where CO2 denotes the CO2 emissions (unit: ten thousand
tons); E represents the carbonaceous fuel; CCFi denotes the
carbon content factor of fuel i; HEiis the heat equivalent of
fuel i; COFi represents the carbon oxidation factor of fuel i;
and 44/12 represents the ratio of the molecular weight of
CO2 to the molecular weight of carbon. For the standard of
carbon dioxide emission factor, we applied National De-
velopment and Reform Commission (NDRC) (2007) in
China which has been successfully used by Chang et al. [10]
andWu et al. [18]. Also, the amount of consumption of each
fuel by each province in the transportation industry is from
China Energy Statistical Yearbook 2011–2018. A statistical
description of the inputs and outputs is reported in Table 1.

5.2. Environmental Performance Analysis. By calculating
model (2), we obtain the environmental performance of the
transportation industry in 30 provincial regions of China
from 2010 to 2017, and the results are reported in Table 2. To
be specific, columns 1 and 2 present the three regions and the
30 provinces, respectively. Columns 3–10 provide the en-
vironmental performance from 2010 to 2017, and the last
column presents the mean value of environmental perfor-
mance across the whole observation period. We can draw
the following conclusions from Table 2. First, the average
annual environmental performance from 2010 to 2017 was
0.4763, which reveals that there is a huge waste of energy in
the transportation industry. Second, there are 10 provinces
with an average annual environmental performance greater
than 0.4763 over these eight years. ,e top five provinces
with the highest average environmental performance in the
transportation industry were Shanghai (1.0000), Anhui
(0.9681), Henan (0.8705), Jiangxi (0.8088), and Hebei
(0.7918), respectively. ,ey all belong to the eastern and
central regions. ,e last five provinces with poor environ-
mental performance were Yunnan (0.1709), Sichuan
(0.2269), Qinghai (0.2314), Inner Mongolia (0.2607), and
Guizhou (0.2910), which all belong to the western region.
,ird, Shanghai performed the best environmental perfor-
mance from 2010 to 2017 with a performance score of 1 in
each year. Yunnan had the minimum average annual en-
vironmental performance which was 0.1709, which indicates
that there is a large gap in the environmental performance of
the transportation industry in various provinces.

Also, the environmental performance of the trans-
portation industry in 30 provincial-level regions obtained
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Figure 3: Stepwise projection based on closest target.
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from the closest targets model (4) is listed in Table 3. First,
the average annual environmental performance of China’s
transportation industry was 0.6733 over the eight years.
Two-third of provinces’ environmental performance exceeds
the average annual environmental performance. Second, the
eastern area performed the best (0.7444), followed by the
central area (0.7268) and the western area (0.5633). In the
eastern area, the environmental performance of Shanghai’s
transportation industry was 1 while Beijing had the mini-
mum (0.3723). In the central area, Anhui performed the best
which was 0.9858 and the minimum was 0.4671 for Hei-
longjiang. In the western area, the maximum environmental
performance was 0.7018 for Gansu and the minimum was
0.3718 for Yunnan.

Combining Tables 2 and 3 and Figure 4, we compare the
environmental performance of the transportation industry
of 30 provinces that, respectively, are obtained from the SBM
model (2) and the closest targets model (4) and draw the
following findings. First, the environmental performance
calculated by the closest targets approach (4) was higher than
that calculated by the SBM method (2) for each province.
Second, there are 14 provinces that have environmental
performance which exceeds the average in terms of the
closest targets model (4), while 10 provinces in terms of the
SBMmodel (2). ,ird, the central area performed the best in
environmental performance under the SBMmodel (2) while
the eastern area performed the best under the closest targets
model (4), and the western area had the worst environmental

Table 1: Statistical description of the inputs and outputs.

Variables Unit Mean S.D. min. max.

Input
Labor 103 persons 221.19 135.72 26.31 706.34
Capital 108 yuan 558.17 353.01 55.04 1872.55

Energy consumption 104 tce 1031.99 622.13 108.84 3278.28

Desirable output Freight turnover volume 108 ton-km 804.11 547.95 94.88 2998.23
Passenger turnover volume 108 passenger-km 5256.61 4857.81 419.68 27919.79

Undesirable output CO2 104 ton 2197.95 1324.00 234.28 6924.63

Table 2: Environmental performance of 30 Chinese provincial transportation industries (SBM model).

Area Province 2010 2011 2012 2013 2014 2015 2016 2017 Mean

Eastern

Beijing 0.1773 0.1966 0.2005 0.2105 0.2312 1.0000 0.1900 0.1320 0.2922
Tianjin 1.0000 1.0000 1.0000 0.4567 0.4310 0.4693 0.6086 1.0000 0.7457
Hebei 0.4448 0.4966 0.6208 0.7719 1.0000 1.0000 1.0000 1.0000 0.7918

Liaoning 0.3708 0.3889 0.5164 1.0000 1.0000 1.0000 1.0000 1.0000 0.7845
Shandong 0.4248 0.4421 0.3931 0.4884 0.4621 0.5452 0.5071 0.4148 0.4597
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Jiangsu 0.3107 0.3631 0.4441 0.6394 0.6136 0.6509 0.6532 0.5670 0.5303
Zhejiang 0.3472 0.3752 0.4137 0.4858 0.4671 0.5858 0.5631 0.4420 0.4600
Fujian 0.1904 0.1995 0.2248 0.2977 0.3244 0.3967 0.4266 0.3624 0.3028

Guangdong 0.2360 0.2948 0.4202 0.4223 0.5587 0.5189 0.6432 0.6135 0.4634
Hainan 0.2874 0.3352 0.3464 0.2599 0.4436 0.4117 0.3084 0.2481 0.3301

Central

Shanxi 0.1535 0.1608 0.1879 0.3023 0.3575 0.4181 0.4496 0.3499 0.2974
Jilin 0.2016 0.2990 0.3854 0.5669 0.3512 0.3661 0.3606 0.3603 0.3614

Heilongjiang 0.1870 0.1694 0.2250 0.4776 0.4079 0.4343 0.3725 0.3189 0.3241
Anhui 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7448 0.9681
Jiangxi 0.4378 0.4691 0.5638 1.0000 1.0000 1.0000 1.0000 1.0000 0.8088
Henan 0.6543 0.6472 0.6628 1.0000 1.0000 1.0000 1.0000 1.0000 0.8705
Hubei 0.2178 0.2524 0.3109 0.3708 0.3717 0.4817 0.4792 0.4126 0.3621
Hunan 0.3056 0.3245 0.4024 1.0000 1.0000 1.0000 1.0000 1.0000 0.7541

Western

Inner Mongolia 0.2289 0.2343 0.2366 0.2506 0.2391 0.2883 0.3046 0.3033 0.2607
Guangxi 0.2718 0.2986 0.3451 0.4067 0.3715 0.5178 0.5415 0.4488 0.4003

Chongqing 0.2055 0.2411 0.2678 0.2738 0.3143 0.3956 0.3664 0.2927 0.2946
Sichuan 0.1751 0.1891 0.2249 0.2827 0.2229 0.2792 0.2469 0.1945 0.2269
Guizhou 0.2079 0.2161 0.2338 0.2814 0.2717 0.3272 0.3578 0.4319 0.2910
Yunnan 0.1153 0.1331 0.1585 0.1941 0.1732 0.2127 0.2064 0.1738 0.1709
Shaanxi 0.2096 0.2434 0.3277 0.6054 0.4163 0.4810 0.5274 0.4144 0.4032
Gansu 0.3765 0.4309 0.4709 0.5035 0.4550 0.5808 0.5928 0.4536 0.4830
Qinghai 0.1816 0.1948 0.2152 0.2402 0.2429 0.2756 0.2746 0.2260 0.2314
Ningxia 0.3135 0.3224 0.3137 0.3841 0.3340 0.3866 0.3694 0.2684 0.3365
Xinjiang 0.2235 0.2167 0.2104 0.3153 0.3036 0.4536 0.3549 0.1818 0.2825
Mean 0.3485 0.3712 0.4108 0.5163 0.5121 0.5826 0.5568 0.5118 0.4763
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performance over the eight years in terms of both methods.
Fourth, only Shanghai province performed the best in terms
of the SBM model and closest targets approach while
Yunnan province performed the worst.

5.3. Environmental Performance Improvement Projection
Based on the SBMandClosest TargetsModels. In this section,
we chose the year 2017 as an example to demonstrate the
environmental performance improvement projection based

Table 3: Environmental performance of 30 Chinese provincial transportation industries (closest targets model (4)).

Area Province 2010 2011 2012 2013 2014 2015 2016 2017 Mean

Eastern

Beijing 0.2191 0.2215 0.2228 0.3441 0.3311 1.0000 0.3388 0.3010 0.3723
Tianjin 1.0000 1.0000 1.0000 0.7182 0.7510 0.8816 0.8167 1.0000 0.8959
Hebei 0.6652 0.7079 0.7440 0.8393 1.0000 1.0000 1.0000 1.0000 0.8696

Liaoning 0.7586 0.7066 0.7673 1.0000 1.0000 1.0000 1.0000 1.0000 0.9041
Shandong 0.6540 0.6236 0.5892 0.7728 0.7575 0.8459 0.7913 0.8355 0.7337
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Jiangsu 0.5440 0.5566 0.6308 0.9156 0.8880 0.8508 0.8353 0.9276 0.7686
Zhejiang 0.6258 0.6216 0.6647 0.7941 0.7893 0.8241 0.7919 0.7276 0.7299
Fujian 0.4741 0.4677 0.4824 0.6128 0.6746 0.7367 0.7090 0.7216 0.6099

Guangdong 0.4026 0.4427 0.5567 0.7121 0.8313 0.8502 0.8607 0.8739 0.6913
Hainan 0.5689 0.5675 0.5516 0.5264 0.7707 0.7211 0.5958 0.6072 0.6137

Central

Shanxi 0.4231 0.4211 0.4398 0.6166 0.6684 0.7705 0.6792 0.7175 0.5920
Jilin 0.3572 0.4549 0.4222 0.6450 0.6221 0.7412 0.6555 0.7476 0.5807

Heilongjiang 0.3643 0.3339 0.3666 0.4910 0.4686 0.7092 0.4631 0.5398 0.4671
Anhui 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8863 0.9858
Jiangxi 0.5540 0.5860 0.6362 1.0000 1.0000 1.0000 1.0000 1.0000 0.8470
Henan 0.7381 0.7441 0.7491 1.0000 1.0000 1.0000 1.0000 1.0000 0.9039
Hubei 0.3969 0.3878 0.4465 0.7407 0.7462 0.8290 0.8260 0.8538 0.6534
Hunan 0.4139 0.4240 0.4387 1.0000 1.0000 1.0000 1.0000 1.0000 0.7846

Western

Inner Mongolia 0.4982 0.4512 0.4386 0.5337 0.5352 0.5528 0.5997 0.6741 0.5354
Guangxi 0.4682 0.4805 0.5240 0.7209 0.7228 0.8402 0.8262 0.8022 0.6731

Chongqing 0.4434 0.4862 0.4776 0.5853 0.6387 0.8653 0.6643 0.6653 0.6033
Sichuan 0.2686 0.2601 0.2827 0.5623 0.5033 0.7118 0.5103 0.4960 0.4494
Guizhou 0.3172 0.2884 0.2912 0.6051 0.5914 0.6088 0.5997 0.6559 0.4947
Yunnan 0.2110 0.2083 0.2251 0.4751 0.4337 0.5227 0.4433 0.4555 0.3718
Shaanxi 0.4036 0.4172 0.4976 0.8530 0.7540 0.9650 0.8140 0.7516 0.6820
Gansu 0.5266 0.5483 0.5515 0.8314 0.7864 0.8899 0.7904 0.6900 0.7018
Qinghai 0.4051 0.4150 0.4079 0.5050 0.5266 0.6881 0.5220 0.5808 0.5063
Ningxia 0.6650 0.6131 0.5781 0.7392 0.6788 0.6674 0.6500 0.6114 0.6504
Xinjiang 0.4243 0.3763 0.3409 0.6555 0.6228 0.7673 0.5773 0.4649 0.5286
Mean 0.5264 0.5271 0.5441 0.7265 0.7364 0.8280 0.7453 0.7529 0.6733
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Figure 4: Comparison of the average environmental performance.
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Table 4: Environmental performance improvement projection results.

Province
Input Desirable output Undesirable output Score

Labor Capital Energy PTV FTV CO2

Beijing
517.79 254.49 1263.53 253.16 958.42 2619.59

55.95 (89%) 73.43 (71%) 180.87 (86%) 253.16 (0%) 1182.45 (16%) 377.18 (86%) 0.1320
240.74 (54%) 254.49 (0%) 773.91 (39%) 388.63 (26%) 1205.02 (17%) 1619.04 (38%) 0.3010

Shanxi
206.55 290.45 1010.52 373.76 4185.03 2143.22

64.71 (69%) 212.27 (27%) 285.91 (72%) 401.18 (6%) 4185.03 (0%) 600.70 (72%) 0.3499
206.55 (0%) 290.45 (0%) 956.42 (5%) 649.91 (30%) 4185.03 (0%) 2024.94 (6%) 0.7175

Inner Mongolia
184.38 700.86 879.71 362.66 5146.76 1887.13

79.59 (57%) 261.05 (63%) 351.61 (60%) 493.38 (21%) 5146.76 (0%) 738.75 (61%) 0.3033
184.38 (0%) 150.71 (78%) 879.71 (0%) 362.66 (0%) 6096.44 (13%) 1871.37 (1%) 0.6741

Jilin
124.04 244.47 694.29 425.36 1634.65 1544.33

68.61 (45%) 225.06 (8%) 303.14 (56%) 425.36 (0%) 4437.25 (39%) 636.90 (59%) 0.3603
124.04 (0%) 244.47 (0%) 654.39 (6%) 525.02 (16%) 2246.98 (21%) 1403.78 (9%) 0.7476

Heilongjiang
220.33 208.91 1196.45 452.05 1657.69 2426.61

80.48 (63%) 208.91 (0%) 322.38 (73%) 452.05 (0%) 3986.18 (37%) 675.92 (72%) 0.3189
220.33 (0%) 208.91 (0%) 1027.54 (14%) 568.31 (17%) 3083.05 (32%) 2129.68 (12%) 0.5398

Jiangsu
405.01 672.81 2086.08 1515.26 9057.60 4356.11

276.62 (32%) 672.81 (0%) 1080.83 (48%) 1515.26 (0%) 12699.81 (22%) 2264.83 (48%) 0.5670
405.01 (0%) 672.81 (0%) 1915.84 (8%) 1614.78 (6%) 9057.60 (0%) 4051.45 (7%) 0.9276

Zhejiang
257.92 1556.07 1462.13 1096.04 10106.23 3103.11

176.80 (31%) 579.92 (63%) 781.11 (47%) 1096.04 (0%) 11433.55 (10%) 1641.13 (47%) 0.4420
257.92 (0%) 951.73 (39%) 1462.13 (0%) 1563.26 (23%) 10106.23 (0%) 3095.47 (0%) 0.7276

Anhui
203.26 836.32 1043.40 1153.69 11429.77 2198.14

186.10 (8%) 610.42 (27%) 822.19 (21%) 1153.69 (0%) 12034.88 (5%) 1727.44 (21%) 0.7448
203.26 (0%) 705.65 (16%) 1016.46 (3%) 1307.89 (11%) 11429.77 (0%) 2142.67 (3%) 0.8863

Fujian
202.06 890.26 1102.15 604.23 6779.76 2325.35

104.84 (48%) 343.88 (61%) 463.17 (58%) 649.92 (7%) 6779.76 (0%) 973.14 (58%) 0.3624
202.06 (0%) 160.92 (82%) 1092.60 (1%) 604.23 (0%) 6829.83 (1%) 2325.35 (0%) 0.7216

Shandong
412.43 907.36 2144.70 1247.26 9719.46 4552.25

201.19 (51%) 659.93 (27%) 888.87 (59%) 1247.26 (0%) 13011.02 (20%) 1867.55 (59%) 0.4148
412.43 (0%) 896.28 (1%) 2144.70 (0%) 1845.34 (24%) 9719.46 (0%) 4544.32 (0%) 0.8355

Hubei
292.94 987.15 1795.95 1278.14 6344.76 3785.23

206.18 (30%) 676.27 (31%) 910.88 (49%) 1278.14 (0%) 13333.18 (34%) 1913.79 (49%) 0.4126
292.94 (0%) 865.18 (12%) 1785.06 (1%) 1673.09 (19%) 6344.76 (0%) 3785.23 (0%) 0.8538

Guangdong
706.34 1325.28 3278.28 2012.47 27919.79 6924.63

438.19 (38%) 1325.28 (0%) 1977.19 (40%) 2466.13 (16%) 27919.79 (0%) 4162.16 (40%) 0.6135
706.34 (0%) 829.08 (37%) 3265.91 (0%) 2012.47 (0%) 27919.79 (0%) 6924.63 (0%) 0.8739

Guangxi
157.67 802.96 969.08 778.31 4613.32 2051.94

125.55 (20%) 411.81 (49%) 554.67 (43%) 778.31 (0%) 8119.14 (30%) 1165.39 (43%) 0.4488
157.67 (0%) 544.27 (32%) 967.83 (0%) 988.48 (18%) 4613.32 (0%) 2051.94 (0%) 0.8022

Hainan
61.10 172.35 293.12 129.29 864.26 608.46

20.86 (66%) 68.41 (60%) 92.14 (69%) 129.29 (0%) 1348.72 (26%) 193.59 (68%) 0.2481
61.10 (0%) 114.43 (34%) 288.99 (1%) 203.37 (27%) 1084.97 (17%) 608.46 (0%) 0.6072

Chongqing
238.76 504.49 972.33 496.34 3374.34 2023.75

80.06 (66%) 262.62 (48%) 353.72 (64%) 496.34 (0%) 5177.68 (26%) 743.18 (63%) 0.2927
181.99 (24%) 432.67 (14%) 957.83 (1%) 798.64 (27%) 3374.34 (0%) 2023.75 (0%) 0.6653

Sichuan
315.40 1457.44 1583.01 881.52 2696.17 3248.94

142.20 (55%) 466.41 (68%) 628.22 (60%) 881.52 (0%) 9195.69 (41%) 1319.91 (59%) 0.1945
315.40 (0%) 862.27 (41%) 1551.79 (2%) 1128.88 (18%) 4861.78 (31%) 3248.94 (0%) 0.4960

Guizhou
104.80 1650.62 687.26 720.13 1656.48 1439.64

104.80 (0%) 383.22 (77%) 608.94 (11%) 720.13 (0%) 4637.58 (39%) 1288.29 (11%) 0.4319
104.80 (0%) 501.21 (70%) 679.56 (1%) 720.13 (0%) 2194.34 (20%) 1439.64 (0%) 0.6559

Yunnan
158.75 1600.46 1047.92 453.39 1824.96 2223.38

73.14 (54%) 239.89 (a85%) 323.11 (69%) 453.39 (0%) 4729.58 (38%) 678.87 (69%) 0.1738
158.75 (0%) 973.74 (39%) 1047.37 (0%) 795.26 (30%) 2714.52 (25%) 2223.38 (0%) 0.4555
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Table 4: Continued.

Province
Input Desirable output Undesirable output Score

Labor Capital Energy PTV FTV CO2

Shaanxi
235.19 590.17 845.14 760.86 3760.64 1733.97

122.73 (48%) 402.57 (32%) 542.24 (36%) 760.86 (0%) 7937.07 (34%) 1139.26 (34%) 0.4144
191.17 (19%) 277.27 (53%) 821.58 (3%) 760.86 (0%) 3760.64 (0%) 1733.97 (0%) 0.7516

Gansu
113.54 865.34 489.76 619.65 2439.66 1048.07

99.96 (12%) 327.86 (62%) 441.60 (10%) 619.65 (0%) 6463.98 (38%) 927.81 (11%) 0.4536
113.54 (0%) 311.16 (64%) 489.76 (0%) 619.65 (0%) 3107.86 (18%) 1031.57 (2%) 0.6900

Qinghai
42.75 446.61 193.46 136.80 519.46 397.67

22.07 (48%) 72.38 (84%) 97.49 (50%) 136.80 (0%) 1427.08 (39%) 204.84 (48%) 0.2260
42.75 (0%) 117.22 (74%) 188.89 (2%) 142.05 (4%) 757.49 (24%) 397.67 (0%) 0.5808

Ningxia
32.64 200.45 213.50 99.19 753.72 439.76

16.00 (51%) 52.48 (74%) 70.69 (67%) 99.19 (0%) 1034.72 (21%) 148.52 (66%) 0.2684
32.64 (0%) 130.03 (35%) 208.86 (2%) 177.81 (31%) 753.72 (0%) 439.76 (0%) 0.6114

Xinjiang
153.21 1872.55 1042.84 428.54 2176.35 2170.89

69.13 (55%) 226.74 (88%) 305.40 (71%) 428.54 (0%) 4470.40 (34%) 641.66 (70%) 0.1818
153.21 (0%) 1040.52 (44%) 1030.09 (1%) 791.92 (31%) 2831.29 (19%) 2170.89 (0%) 0.4649

Table 5: Environmental performance improvement projection results for the nearest upper-level efficient frontier.

Province
Input Desirable output Undesirable output Score

Labor Capital Energy PTV FTV CO2

E2

Jiangsu
405.01 672.81 2086.08 1515.26 9057.60 4356.11

276.62 (32%) 672.81 (0%) 1080.83 (48%) 1515.26 (0%) 12699.81 (40%) 2264.83 (48%) 0.5670
405.01 (0%) 672.81 (0%) 1915.84 (8%) 1614.78 (7%) 9057.60 (0%) 4051.45 (7%) 0.9276

Anhui
203.26 836.32 1043.40 1153.69 11429.77 2198.14

186.10 (8%) 610.42 (27%) 822.19 (21%) 1153.69 (0%) 12034.88 (5%) 1727.44 (21%) 0.7448
203.26 (0%) 705.65 (16%) 1016.46 (3%) 1307.89 (13%) 11429.77 (0%) 2142.67 (3%) 0.8863

Guangdong
706.34 1325.28 3278.28 2012.47 27919.79 6924.63

438.19 (38%) 1325.28 (0%) 1977.19 (40%) 2466.13 (23%) 27919.79 (0%) 4162.16 (40%) 0.6135
706.34 (0%) 829.08 (37%) 3265.91 (0%) 2012.47 (0%) 27919.79 (0%) 6924.63 (0%) 0.8739

Guizhou
104.80 1650.62 687.26 720.13 1656.48 1439.64

104.80 (0%) 383.22 (77%) 608.94 (11%) 720.13 (0%) 4637.58 (180%) 1288.29 (11%) 0.4319
104.80 (0%) 501.21 (70%) 679.56 (1%) 720.13 (0%) 2194.34 (32%) 1439.64 (0%) 0.6559

Gansu
113.54 865.34 489.76 619.65 2439.66 1048.07

99.96 (12%) 327.86 (62%) 441.60 (10%) 619.65 (0%) 6463.98 (165%) 927.81 (11%) 0.4536
113.54 (0%) 311.16 (64%) 489.76 (0%) 619.65 (0%) 3107.86 (27%) 1031.57 (2%) 0.6900
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Table 5: Continued.

Province
Input Desirable output Undesirable output Score

Labor Capital Energy PTV FTV CO2

E3

Shanxi
206.55 290.45 1010.52 373.76 4185.03 2143.22

79.03 (62%) 290.45 (0%) 398.07 (61%) 404.72 (8%) 4185.03 (0%) 839.03 (61%) 0.4813
179.71 (13%) 290.45 (0%) 906.44 (10%) 572.97 (53%) 4185.03 (0%) 1901.62 (11%) 0.7071

Jilin
124.04 244.47 694.29 425.36 1634.65 1544.33

95.66 (23%) 244.47 (0%) 492.10 (29%) 425.36 (0%) 3320.53 (103%) 1030.92 (33%) 0.5683
124.04 (0%) 244.47 (0%) 654.91 (6%) 461.45 (8%) 2491.20 (52%) 1390.00 (10%) 0.7448

Heilongjiang
220.33 208.91 1196.45 452.05 1657.69 2426.61

118.17 (46%) 208.91 (0%) 608.56 (49%) 452.05 (0%) 2816.77 (70%) 1271.28 (48%) 0.4898
152.46 (31%) 208.91 (0%) 802.64 (33%) 465.29 (3%) 2486.46 (50%) 1655.80 (32%) 0.5053

Zhejiang
257.92 1556.07 1462.13 1096.04 10106.23 3103.11

193.10 (25%) 794.53 (49%) 991.26 (32%) 1096.04 (0%) 10858.68 (7%) 2088.31 (33%) 0.5695
257.92 (0%) 1556.07 (0%) 1410.40 (4%) 1377.11 (26%) 10106.23 (0%) 2964.23 (4%) 0.8878

Fujian
202.06 890.26 1102.15 604.23 6779.76 2325.35

120.57 (40%) 496.08 (44%) 618.91 (44%) 684.33 (13%) 6779.76 (0%) 1303.86 (44%) 0.4803
202.06 (0%) 890.26 (0%) 1081.67 (2%) 912.41 (51%) 6779.76 (0%) 2269.54 (2%) 0.8158

Shandong
412.43 907.36 2144.70 1247.26 9719.46 4552.25

219.75 (47%) 904.15 (0%) 1128.03 (47%) 1247.26 (0%) 12356.83 (27%) 2376.43 (48%) 0.5482
412.43 (0%) 907.36 (0%) 2142.26 (0%) 1581.35 (27%) 9719.46 (0%) 4482.36 (2%) 0.9052

Hubei
292.94 987.15 1795.95 1278.14 6344.76 3785.23

225.19 (23%) 926.54 (6%) 1155.96 (36%) 1278.14 (0%) 12662.79 (100%) 2435.27 (36%) 0.5402
292.94 (0%) 987.15 (0%) 1576.41 (12%) 1278.14 (0%) 7888.61 (24%) 3301.41 (13%) 0.8355

Guangxi
157.67 802.96 969.08 778.31 4613.32 2051.94

137.13 (13%) 564.21 (30%) 703.91 (27%) 778.31 (0%) 7710.91 (67%) 1482.94 (28%) 0.5821
157.67 (0%) 802.96 (0%) 860.88 (11%) 778.31 (0%) 4968.19 (8%) 1805.09 (12%) 0.8970

Shaanxi
235.19 590.17 845.14 760.86 3760.64 1733.97

134.05 (43%) 551.56 (7%) 688.13 (19%) 760.86 (0%) 7537.99 (100%) 1449.68 (16%) 0.5563
173.13 (26%) 590.17 (0%) 826.74 (2%) 760.86 (0%) 4900.82 (30%) 1733.97 (0%) 0.8037

E4

Beijing
517.79 254.49 1263.53 253.16 958.42 2619.59

83.71 (84%) 184.17 (28%) 435.31 (66%) 253.16 (0%) 1972.78 (106%) 923.98 (65%) 0.2614
337.11 (35%) 233.03 (8%) 1263.53 (0%) 395.26 (56%) 1460.44 (52%) 2583.51 (1%) 0.4893

Inner Mongolia
184.38 700.86 879.71 362.66 5146.76 1887.13

156.90 (15%) 700.86 (0%) 859.42 (2%) 588.21 (62%) 5146.76 (0%) 1824.05 (3%) 0.7736
165.79 (10%) 647.10 (8%) 879.71 (0%) 450.56 (24%) 5146.76 (0%) 1860.02 (1%) 0.8552

Chongqing
238.76 504.49 972.33 496.34 3374.34 2023.75

140.38 (41%) 504.49 (0%) 617.87 (36%) 496.34 (0%) 3374.34 (0%) 1290.34 (36%) 0.6612
238.76 (0%) 504.49 (0%) 972.02 (0%) 625.61 (26%) 4067.42 (21%) 2023.75 (0%) 0.8446

Sichuan
315.40 1457.44 1583.01 881.52 2696.17 3248.94

207.44 (34%) 1251.50 (14%) 1175.95 (26%) 881.52 (0%) 8128.16 (201%) 2495.75 (23%) 0.4306
266.66 (15%) 578.14 (60%) 1476.22 (7%) 881.52 (0%) 3329.01 (23%) 3248.94 (0%) 0.6467

Qinghai
42.75 446.61 193.46 136.80 519.46 397.67

32.19 (25%) 194.22 (57%) 182.50 (6%) 136.80 (0%) 1261.41 (143%) 387.31 (3%) 0.4785
41.26 (3%) 111.98 (75%) 185.54 (4%) 136.80 (0%) 601.70 (16%) 397.67 (0%) 0.6722

Ningxia
32.64 200.45 213.50 99.19 753.72 439.76

21.74 (33%) 121.87 (39%) 127.98 (40%) 99.19 (0%) 753.72 (0%) 271.31 (38%) 0.5538
32.64 (0%) 132.22 (34%) 202.13 (5%) 139.14 (40%) 753.72 (0%) 424.86 (3%) 0.7233

E5

Hainan
61.10 172.35 293.12 129.29 864.26 608.46

61.10 (0%) 138.67 (20%) 254.68 (13%) 129.29 (0%) 884.76 (2%) 529.74 (13%) 0.8479
61.10 (0%) 172.35 (0%) 269.67 (8%) 129.29 (0%) 864.26 (0%) 559.07 (8%) 0.9463

Yunnan
158.75 1600.46 1047.92 453.39 1824.96 2223.38

158.75 (0%) 911.53 (43%) 990.45 (5%) 453.39 (0%) 3796.66 (108%) 2051.14 (8%) 0.6048
158.75 (0%) 1600.46 (0%) 751.42 (28%) 487.09 (7%) 1863.20 (2%) 1553.98 (30%) 0.7736

Xinjiang
153.21 1872.55 1042.84 428.54 2176.35 2170.89

153.21 (0%) 860.02 (54%) 940.98 (10%) 428.54 (0%) 3704.67 (70%) 1952.29 (10%) 0.6210
153.21 (0%) 1525.66 (19%) 787.24 (25%) 478.64 (12%) 2176.35 (0%) 1622.28 (25%) 0.7333
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on the SBMmodel (2) and closest targets approach (4). From
Tables 2 and 3, we find that 7 provinces are efficient in 2017
in terms of both methods. Here, we mainly pay attention to
the improvement of inefficient provinces.

Table 4 provides the environmental performance im-
provement projections of the inefficient provinces in terms of
the SBMmodel (2) and closest targetsmodel (4). To be specific,
the first row shows the original values of the inputs and outputs
of each province. ,e improvement targets obtained from the
SBMmodel (2) and closest targets method (4) are presented in
the second row and third row, respectively. To be more in-
tuitive, the proportions of the original value relative to the
projected targets that need to be increased/decreased (im-
provement percentages) are presented in parentheses. Taking
Jiangsu province as an example, its original values of inputs,
desirable outputs, and undesirable output are 505.01, 672.81,
2086.08, 1515.26, 9057.60, and 4356.11, respectively. Its inputs/
outputs targets are 276.62, 672.81, 1080.83, 1515.26, 12699.81,
and 2264.83 with respect to the SBM model (2), while the
targets change to 405.01, 672.81, 1915.84, 1614.78, 9057.60, and
4051.45 with respect to the closest targets model (4). ,ese
figures show that Jiangsu province can become efficient by
reducing two inputs (labor by 32% and energy by 48%) and the
undesirable output (CO2 by 48%), while increasing one de-
sirable output (FTV by 22%) based on the SBM model (2).
However, in terms of the closest targets model (4), Jiangsu
province achieves efficiency by reducing energy by 8% and
CO2 by 7%, while increasing PTV by 6%. It indicates that the
closest targets may be more easily achieved with less im-
provement than a conventional radial model.

5.4. Stepwise Environmental Performance Improvement
Projection Based on the SBM and Closest Targets Models.
Utilizing the calculation steps proposed by Seiford and Zhu
[58], 30 provinces are divided into five different levels of
efficient frontiers, and columns 1 and 2 in Table 5 report
these levels of the efficient frontier and the provinces they
contain. In addition, Table 5 gives the stepwise improvement
targets for the inefficient provinces based on the SBMmodel
and closest targets model. To be specific, for each province
that is inefficient at a particular level, its original values of
inputs and outputs are presented in the first row, and the
stepwise improvement targets calculated by the SBM and
closest targets model are listed in the second row and third

row, i.e., row “E2” lists the targets located on the level 1
efficient frontier, namely, the ultimate frontier, row “E3”
gives the targets located on the level 2 efficient frontier, and
so on.

We still take Jiangsu province as an example. It is identified
as efficient in the level 2 frontier, whichmeans it can improve to
the level 1 frontier in one step. ,e targets yielded by the
stepwise-closest targets model prove that this province would
achieve efficiency by reducing one input (energy by 8%) and one
undesirable output (CO2 by 7%) while increasing one desirable
output (PTV by 7%). However, it becomes efficient by adjusting
two inputs (reduce labor by 32% and energy by 48%), one
desirable output (increase FTV by 40%), and one undesirable
output (reduce CO2 by 48%) with the SBM model. ,at is,
Jiangsu province can achieve the closest targets more easily.
Note that we assume that reducing the number of input/output
variables to change makes a change easier without considering
the improvement costs of inputs and/or outputs. ,is is a
reasonable simplifying assumption although in real-life situa-
tions it may be harder to change one variable by 1% than
another variable by 10%.

Moreover, we choose Hainan province which is at the
lowest efficiency level (E5) as another example. Table 6
reports the stepwise targets of Hainan based on the SBM
model and closest targets model, and Figure 5 clearly
demonstrates the corresponding improvement percentages

Table 6: Stepwise environmental performance improvement projection results for all level efficient frontiers of Hainan province.

Province
Input Desirable output Undesirable output Score

Labor Capital Energy PTV FTV CO2

Yunnan 61.10 172.35 293.12 129.29 864.26 608.46
E1 20.86 (66%) 68.41 (60%) 92.14 (69%) 129.29 (0%) 1348.72 (56%) 193.59 (68%) 0.2481
E1 61.10 (0%) 114.43 (34%) 288.99 (1%) 203.37 (57%) 1084.97 (26%) 608.46 (0%) 0.6072
E2 22.78 (63%) 93.72 (46%) 116.93 (60%) 129.29 (0%) 1280.91 (48%) 246.34 (60%) 0.3227
E2 56.63 (7%) 172.35 (0%) 291.76 (0%) 198.21 (53%) 1103.39 (28%) 608.46 (0%) 0.7042
E3 27.16 (56%) 144.92 (16%) 163.62 (44%) 129.29 (0%) 864.26 (0%) 346.65 (43%) 0.5375
E3 55.91 (8%) 81.12 (53%) 292.93 (0%) 129.29 (0%) 864.26 (0%) 608.46 (0%) 0.7950
E4 61.10 (0%) 138.67 (20%) 254.68 (13%) 129.29 (0%) 884.76 (2%) 529.74 (13%) 0.8479
E4 61.10 (0%) 172.35 (0%) 269.67 (8%) 129.29 (0%) 864.26 (0%) 559.07 (8%) 0.9463
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Figure 5: Environmental performance improvement projection
results of Hainan based on the stepwise-closest targets model.
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for different levels in terms of the stepwise-closest targets
model. Hainan is located on the level 5 frontier, which
means that it needs four steps to achieve efficiency. For
example, Hainan can improve to the level 4 efficient frontier
by reducing energy by 8% and CO2 by 8% when using the
closest targets model and achieve the environmental effi-
ciency of 0.9463.

In summary, compared with the SBM model, the closest
targets model can generate easier and closer achieved targets
for the inefficient provinces. An inefficient province would
become efficient with the minimization of reduction of
inputs and undesirable outputs and/or augmentation of
desirable outputs.

6. Conclusion

,e transportation industry has greatly promoted China’s
economic development but also is a major source of CO2
emissions, which hurt the environment. ,erefore, it is
necessary to measure and improve its environmental per-
formance. In the current study, using the data of the
transportation industry of 30 provincial-level regions in
China during the period of 2010–2017, we incorporate the
closest targets and context-dependent DEA model to eval-
uate the environmental performance. Moreover, our pro-
posed stepwise-closest targets method can identify a
sequence of intermediate closest targets and form a stepwise
projection path for each inefficient province so as to achieve
the goal of improving environmental performance with less
effort. We draw the following findings from the empirical
study.

First, the environmental performance of the trans-
portation industry obtained from the closest targets model is
greater than that obtained from the SBM model for each
province. Among the three areas, the eastern area performed
best in environmental performance, followed by the central
area, and the western area performed the worst. Only
Shanghai province performed the best in terms of the SBM
model and closest targets approach while Yunnan province
performed the worst.

Second, compared with the conventional SBM model,
the closest targets model can generate easier and closer
achieved targets for the inefficient provinces. An ineffi-
cient province may not achieve efficiency in a short time
when a large efficiency gap exists between it and efficient
frontier, and the stepwise-closest targets model can help
the inefficient province to improve to efficiency using
several intermediate closest targets, each of which can
encourage the province to continue its improvement
efforts.

,ere are three provinces (Hainan, Yunnan, and Xin-
jiang) with the lowest environmental performance, which
need four steps to achieve efficiency.

,is study is not free of limitations, and several future
research directions should be considered. First, our study’s
method directs the inefficient DMUs to the Pareto-efficient
frontier via a path consisting of several intermediate closest
targets, and these targets are hypothetical DMUs, so we
suggest limiting the intermediate targets to the existing

DMUs in the future study. Second, future methods could
also take varying improvement costs of inputs and outputs
into consideration and find a path with the minimum im-
provement costs.
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