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Radial basis function (RBF) has been widely used in many scientific computing and engineering applications, for instance,
multidimensional scattered data interpolation and solving partial differential equations. However, the accuracy and stability of the
RBF methods often strongly depend on the shape parameter. A coupled RBF (CRBF) method was proposed recently and
successfully applied to solve the Poisson equation and the heat transfer equation (Appl. Math. Lett., 2019, 97: 93–98). Numerical
results show that the CRBF method completely overcomes the troublesome issue of the optimal shape parameter that is a
formidable obstacle to global schemes. In this paper, we further extend the CRBF method to solve the elastostatic problems.
Discretization schemes are present in detail. With two elastostatic numerical examples, it is found that both numerical solutions of
the CRBF method and the condition numbers of the discretized matrices are almost independent of the shape parameter. In
addition, even if the traditional RBF methods take the optimal shape parameter, the CRBF method achieves better accuracy.

1. Introduction

A radial function ϕ(rj) is a function of the Euclidean norm
rj � ‖x − xj‖2, where x ∈ Rn is the center point and xj ∈ Rn

is a point in the influence domain of x. In the past few
decades, the radial function has been used as a special basis
function for solving interpolation problems and discretizing
partial differential equations (PDEs) by means of collocation
techniques [1–3], which is referred to as the radial basis
function (RBF) method in this paper.'e interest in the RBF
method has three principal reasons [4]: (i) the approximate
value by using RBF can be estimated without using meshes;
(ii) RBF gives very accurate results both for interpolation
problems and for solving partial differential equations; (iii)
there is enough flexibility in the choice of basis functions.

Many RBFs have been proposed and carefully studied in
the past few decades [1]. Most of them can be categorized
into two groups: infinitely smooth and piecewise smooth
(see some typical RBFs listed in Table 1). For the former
group, the infinitely smooth RBFs (such as Multiquadric
(MQ), Inverse Multiquadric (IMQ), and Gaussian (GA))
lead to spectral convergence, which is a great advantage in

actual applications. However, these types of RBFs contain a
user-defined positive shape parameter, called c, which
controls the stability and accuracy of the RBFs approxi-
mation. 'e optimal shape parameter c may result in an ill-
conditioned linear system [5, 6]. 'us, the value of the shape
parameter has to be carefully selected. In contrast, the RBFs
associated with the latter group are not infinitely differen-
tiable and seem to be easier to implement than those in the
former group due to the free of shape parameter. However,
they only lead to an algebraic rate of convergence and thus
are rarely used alone in applications. 'erefore, many re-
searchers prefer to use the former group in many scientific
computing and engineering applications.

As stated above, the choice of a suitable value of the
shape parameter in the infinitely smooth RBFs is very im-
portant and has been an ongoing challenge problem. Up to
now, no mathematical theory has been developed to rule the
selection of an adequate value but only several approaches
are available in the open literature [7–11]. In the early works,
many researchers tried to present some empirical formulas
based on the number and distribution of data points to select
a good value for the shape parameter; see [12–14] for
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examples. 'ese empirical formulas work well for some
special problems but may not be good for other problems.
By testing numerous numerical experiments, Rippa [15]
pointed out that the value of the optimal shape parameter
depends on not only the number and distribution of data
points, but also the data vector and the precision of the
computation. In the same paper, Rippa also proposed a
very interesting algorithm, called the Leave-One-Out Cross
Validation (LOOCV) algorithm, to select a good value of
the shape parameter. Recently, some improvements of the
LOOCV algorithm have been deeply studied; see [16–20]
and references therein. Other techniques for finding the
optimal shape parameter include the energy-based method
[7, 9], the sample solution approach [10], the interval
method [21], and so on. Another type of technique [22, 23],
i.e., bypassing the problem of the optimal shape parameter
selection by reducing its influence on the stability of the
method, is also of great interest. One of the representative
works for the latter approach is the coupled RBF (CRBF)
method studied recently in [23]. 'e CRBF method is
developed by coupling the classical infinitely smooth RBF
with the conical spline. Two numerical examples, i.e., the
Poisson equation and the heat transfer equation, have been
studied in [23] and showed that the CRBF method suffi-
ciently inherits the high accuracy of the infinitely smooth
RBF and the stability property of the piecewise smooth
RBF. Most importantly, the CRBF method produces a
relatively well-conditioned solution system and maintains
almost invariable accuracy as the shape parameter ranges
from 1 to 109. 'erefore, the CRBF method completely
overcomes the troublesome issue of the optimal shape
parameter that is a formidable obstacle to global schemes
for solving these two types of PDEs.

In this paper, we extend the CRBF method, which be-
longs to a class of meshfree methods, to solve the elastostatic
problems to further show its high accuracy and stability. In
fact, the application of the meshfree method for the solution
of the elastostatic problems is not a new issue. Many
meshfree methods have been studied in the past few decades.
'ere are the global RBF and local RBF based on strong
formulation (also called the meshfree collocation method or
Kansa’s method) [24–29], the global Galerkin weak form
(called the radial point interpolation meshfree method)

[30–32], the local Petrov-Galerkin weak from (called the
local radial point interpolation meshfree method) [33], the
strong-weak form [34], and so on. For good surveys of
meshfree methods, we refer the readers to [35–38]. Com-
pared with other meshfree methods, the classical RBF
method based on strong formulation has the advantages of
simple form, easy implementation, and high precision. 'e
objective of this work is to apply the CRBF method studied
recently in [23] to solve the elastostatic problems. Dis-
cretization scheme of the CRBF method for solving a typical
two-dimensional plane stress problem is present in detail.
With two numerical examples, our findings show that the
CRBFmethod has better accuracy and convergence rate than
the traditional RBF method even if the latter takes the
optimal shape parameter. Furthermore, both the accuracy of
the CRBF method and the condition numbers of the dis-
cretized matrices are also almost independent of the shape
parameter.

'e rest of this work is organized as follows. In Section 2,
we first briefly review the CRBF method and describe the
formulation of the CRBF method for the solution of the
elastostatic problems. In Section 3, we apply the CRBF
method to specifically solve two well-known problems, i.e.,
the Timoshenko’s beam and an infinite plate with a central
hole. Both regular and irregular nodes distribution are
considered. Condition numbers of the discretized system
matrices and accuracy of the CRBF method are studied in
detail with a large range of the shape parameter. Comparison
of the accuracy of the CRBF method and the classical RBF
methods is present. Finally, we end this work with some
conclusions and outlooks in Section 4.

2. The CRBF Method for Elastostatic Problems

In this section, we first briefly review the coupled radial basis
function (CRBF) as well as using the CRBF method for
interpolation and solving general boundary value problem of
partial differential equations. 'en, we apply the CRBF
method to specifically solve the elastostatic problems.

2.1."eConstruction of CRBFs. By redefining the expression
c2 + r2j in the classical MQ, IMQ, IQ RBFs as (c2 + r2j)/c2 and
coupling the redefined RBFs with the conical spline r5j ,
Zhang [23] proposed a new class of RBFs, which are referred
to as the CRBFs in this paper; see specific expressions in
Table 2. Note that there still exists the shape parameter, c,
tuned by users in the CRBFs. Although there are no theo-
retical results to guarantee the accuracy and stability of the
CRBF method, numerous numerical experiments from the
Poisson equation and the heat transfer equation studied in
[23] show that the CRBF method has much better accuracy
than the classical RBF method and, most importantly,
completely overcomes the troublesome issue of the optimal
shape parameter.

Now, we first turn to use the CRBFs defined in Table 2 to
construct the interpolant s(x) for approximating the
function f(x) by a linear combination of translates of single
CRBF on a scattered data set (xj, fj)

N

j�1. Here, xj

Table 1: Some typical RBFs.

Name Expression
Infinitely smooth RBFs
Multiquadric (MQ)

������
c2 + r2j



Inverse Multiquadric (IMQ) 1/
������
c2 + r2j



Gaussian (GA) e
(− r2

j
/c2)

Inverse Quadric (IQ) 1/(c2 + r2j)

Piecewise smooth RBFs
Cubic r3j

'in plate spline (TPS) r2j log(rj)

Linear rj

Note: rj � ‖x − xj‖2, c represents the shape parameter.
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(j � 1, . . . , N) are called centers of CRBF. 'us, for data
values fj � f(xj), j � 1, . . . , N, at given set of centers, the
CRBF interpolant takes the form

s(x) � 
N

j�1
λjϕ

CRBF x − xj

�����

�����2
 , (1)

where ϕCRBF(‖x − xj‖2) is a coupled radial basis function
defined as in Table 2 and λj 

N

j�1 are the coefficients. For
simplicity, the superscript “CRBF” will be omitted hereafter.
'e unknown coefficients λj 

N

j�1 can be determined by
enforcing the following interpolation conditions:

s xi(  � f xi( , (i � 1, . . . , N), (2)

which leads to a system of linear equations

Aλ � f , (3)

where A is the N × N interpolation matrix with entries
(A)i,j � ϕ(‖xi − xj‖2) and f � (f1, . . . , fN)T is the right-
hand side vector including the given ordinates at centers. If
the interpolation matrix A is nonsingular, by solving the
linear system (3), the coefficients λj are determined and thus,
the interpolant function s(x) will be obtained.

'e coupled radial basis function approximation can be
also used as a reliable tool for solving PDEs. Consider the
following boundary value problem:

Ls(x) � f(x), inΩ,

Bs(x) � g(x), on Γ,
 (4)

where L is a linear differential operator, B is a boundary
differential operator,Ω is a bounded and connected domain,
and Γ is the boundary of Ω. Assume a set of distinct nodes
xi 

N�NI+Nb

i�1 with NI interior nodes being located inside the
domainΩ and Nb boundary nodes along its boundary Γ. We
are looking for an approximation to the solution s(x) of
equation (4) in the vector space spanned by the CRBFs
ϕ(‖x − xj‖2), j � 1, . . . , N. Suppose that (1) is an approxi-
mate solution. For the interior and boundary nodes, we have



N

j�1
λjLϕ xi − xj

�����

�����  � f xi( , i � 1, 2, . . . , NI,



N

j�1
λjBϕ xi − xj

�����

�����  � g xi( , i � NI + 1, . . . , N,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

or in matrix form

Aλ �
AL

AB

 λ �
fL
fB

  � f , (6)

where (AL)i,j � Lϕ(ri,j) (i � 1, . . . , NI, j � 1, . . . , N),
(AB)i,j � Bϕ(ri,j) (i � NI + 1, . . . , N, j � 1, . . . , N),
fL � (f(x1), . . . , f(xNI

))T, fL � (f(xNI+1), . . . , f(xN))T

and ri,j � ‖xi − xj‖2. By solving the system of linear equa-
tions (6), the vector of unknown coefficients λ will be de-
termined and an approximation solution of (4) is obtained.

2.2. "e Elastostatic Problem and the CRBF Formulation.
For simplicity, we only consider the two-dimensional
elastostatic problem here. Note that the CRBF method can
be easily extended to solve three-dimensional problems. For
the plane stress problem, the elastostatic equation, written in
terms of displacements, is

E

1 − μ2

z
2

zx
2 +

1 − μ
2

z
2

zy
2

1 + μ
2

z
2

zx zy

1 + μ
2

z
2

zx zy

z
2

zy
2 +

1 − μ
2

z
2

zx
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u

v

⎛⎝ ⎞⎠ �

fx

fy

⎛⎜⎝ ⎞⎟⎠, inΩ, (7)

with the displacement boundary (or essential boundary)
condition

u � u,

v � v, on Γu,
(8)

and the stress boundary (or natural boundary) condition

σxx τxy

τyx σyy

⎛⎝ ⎞⎠
l

m
  �

tx

ty

⎛⎝ ⎞⎠, on Γt, (9)

where u and v are the horizontal and vertical displacements,
σxx and σyy are the normal stresses, τxy � τyx is the shear
stress, fx and fy are the given body forces, u and v are the
given displacement constraints on the displacement

Table 2: 'e coupled RBFs.

Name Expression

CMQ (
������
c2 + r2j


/c) + r5j

CIMQ (c/
������
c2 + r2j


) + r5j

CGA e
− r2

j
/c2

+ r5j

CIQ (c2/
������
c2 + r2j


) + r5j

Note: rj � ‖x − xj‖2, c represents the shape parameter.
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boundary Γu, tx and ty are the given stress constraints on the
stress boundary Γt, E and μ stand for Young’s modulus and
Poisson’s ratio, and l and m represent the cosine of the
normal direction outside the slope. 'e stresses σxx, σyy, τxy

and the displacements u, v have the following relationship:

σxx �
E

1 − μ2
zu

zx
+ μ

zv

zy
 ,

σyy �
E

1 − μ2
μ

zu

zx
+

zv

zy
 ,

τxy �
E

2(1 + μ)

zu

zy
+

zv

zx
 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

By using (10), the stress boundary condition (9) can be
expressed in terms of displacements. On the contrary, once
the elastostatic equations (7)–(9) are solved for the dis-
placements, the corresponding stresses can be obtained
through (10).

Next, we apply the CRBF method studied in the above
subsection to solve elastostatic equations (7)–(9). Assume a
set of distinct nodes xi 

N�NI+Nb1+Nb2
i�1 with NI interior nodes

being located inside the domain Ω, Nb1
nodes along the

displacement boundary Γu, and Nb2
nodes along the stress

boundary Γt. In the CRBF method, the displacement ap-
proximate solutions u(x) and v(x) are separately spanned by
a set of translated CRBFs, i.e.,

u(x) � 
N

j�1
ajϕ rj ,

v(x) � 
N

j�1
bjϕ rj ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where aj and bj (j � 1, . . . , N) are the unknown coefficients
and ϕ(rj) with rj � ‖x − xj‖2 is the coupled radial basis
function defined as in Table 2. To get approximate solutions
u(x) and v(x), the unknown coefficients aj and bj are
computed by collocation of (7) at a given set of interior
nodes and collocation of the boundary conditions (8)-(9) at
boundary nodes. Let λ be a vector of length 2N containing
the unknowns

λ � a1, . . . , aN, b1, . . . , bN( 
T
. (12)

Substituting (11) into the elastostatic equation (7) and
boundary conditions (8)-(9) leads to the following system of
linear equations:

Aλ �

AL

ABu

ABs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
λ �

fL
fBu

fBs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� f , (13)

where the submatrix AL ∈ R2NI×2N and the subvector
fL ∈ R2NI correspond to the interior nodes (i � 1, . . . , NI,
j � 1, . . . , N) with

AL( i,j �
E

1 − μ2
z
2ϕ ri,j 

zx
2 +

1 − μ
2

z
2ϕ ri,j 

zy
2

⎡⎣ ⎤⎦,

AL( i,j+N �
E

2(1 − μ)

z
2ϕ ri,j 

zx zy
,

AL( i+NI,j �
E

2(1 − μ)

z
2ϕ ri,j 

zx zy
,

AL( i+NI,j+N �
E

1 − μ2
z
2ϕ ri,j 

zy
2 +

1 − μ
2

z
2ϕ ri,j 

zx
2

⎡⎣ ⎤⎦,

fL( i � fx xi( ,

fL( i+NI
� fy xi( ,

(14)

the submatrix ABu
∈ R2Nb1×2N and the subvector

fBu
∈ R2Nb1 correspond to the displacement boundary nodes

(i � 2NI + 1, . . . , 2NI + Nb1, j � 1, . . . , N) with

ABu
 

i,j
� ϕ ri,j ,

ABu
 

i+Nb1 ,j+N
� ϕ ri,j ,

fBu
 

i
� u xi( ,

fBu
 

i+Nb1
� v xi( ,

(15)

the submatrixABs
∈ R2Nb2×2N and the subvector fBs

∈ R2Nb2

correspond to the stress boundary nodes
(i � 2(NI + Nb1) + 1, . . . , 2(NI + Nb1) + Nb2, j � 1, . . . , N)
with

ABs
 

i,j
�

lE

1 − μ2
zϕ ri,j 

zx
+

mE

2(1 + μ)

zϕ ri,j 

zy
,

ABs
 

i,j+N
�

mE

2(1 + μ)

zϕ ri,j 

zx
+

lEμ
1 − μ2

zϕ ri,j 

zy
,

ABs
 

i+Nb2 ,j
�

mEμ
1 − μ2

zϕ ri,j 

zx
+

lE

2(1 + μ)

zϕ ri,j 

zy
,

ABs
 

i+Nb2 ,j+N
�

lE

2(1 + μ)

zϕ ri,j 

zx
+

mE

1 − μ2
zϕ ri,j 

zy
,

fBs
 

i
� tx xi( ,

fBs
 

i+Nb2
� ty xi( .

(16)

If the linear system (13) is solvable, i.e., the coefficient
matrix A is nonsingular, the coefficients aj and bj can be
obtained. As with the traditional RBF method, it is very
difficult to prove the invertibility of CRBF coefficient matrix
(13). However, numerous numerical results (see [23] and
also the next section) show that the coefficient matrix A
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obtained in the CRBF method is nonsingular and has a
smaller condition number than that of the traditional RBF
method. Most importantly, the condition numbers of the
CRBF discretized matrices are moderate and stable inde-
pendent of the shape parameter c. Once the coefficients aj

and bj are obtained, we get the approximate solution
functions u(x) and v(x) for the horizontal and vertical
displacements, respectively. In addition, the stresses can be
computed by

σxx �
E

1 − μ2


N

j�1
aj

zϕ rj 

zx
+ μ

N

j�1
bj

zϕ rj 

zy
⎛⎝ ⎞⎠,

σyy �
E

1 − μ2
μ

N

j�1
aj

zϕ rj 

zx
+ 

N

j�1
bj

zϕ rj 

zy
⎛⎝ ⎞⎠,

τxy �
E

2(1 + μ)


N

j�1
aj

zϕ rj 

zy
+ 

N

j�1
bj

zϕ rj 

zx
⎛⎝ ⎞⎠.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

3. Numerical Examples

In this section, two numerical examples are present to show
the advantages of the newly developed CRBFmethod over the
traditional RBF method for the solution of the elastostatic
problems. In actual computations, we choose two coupled
radial basis functions, i.e., the CMQ and CIMQ RBFs.
Correspondingly, two traditional radial basis functions, i.e.,
the MQ and IMQ RBFs, are adopted. In the first example, we
consider a cantilever beam carrying an end load. In the second
example, we study an infinite plate with a central hole loaded
by traction at infinity in the horizontal direction. Both
problems are well-known and have analytical solutions.

In order to evaluate the performance of the CRBF
method as well as the RBF method, we use the following
relative errors with respect to the displacement and the
stress:

ru �
ue

i − ui

����
����2

ue
i

����
����2

,

rσ �
σe

i − σi

����
����2

σe
i

����
����2

,

(18)

where ui � [ui vi] and σi � [(σxx)i (σyy)i (τxy)i] are the
numerical solutions of the displacement and the stress,
respectively, at the ith node, and ue

i and σe
i are the corre-

sponding analytical solutions at the ith node.

3.1. Cantilever Beam. For the first example, we consider the
cantilever beam of length L, height D, and unit width, which
is subjected to traction P at the right free hand; see Figure 1.
In particular, a coordinate system with the y-axis centered at
the midplane of the beam is used. 'us, the upper and the
lower surfaces of the beam are located at y � ± (D/2). 'e
analytical solution of the displacement is [23]

u
e

� −
P

6EI
y −

D

2
  (6L − 3x)x +(2 + μ) y

2
− Dy  ,

v
e

�
P

6EI
3 μ y −

D

2
 

2
(L − x) +(4 + 5 μ)

D
2
x

4
+(3L − x)x

2
 ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

where E is Young’s modulus, ] is Poisson’s ratio, and I is the
moment of inertia. 'e stresses corresponding to the above
displacements are

σe
xx � −

P(L − x)

I
y −

D

2
 ,

σe
yy � 0,

τe
xy � −

P

2I
y
2

− Dy .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

'e cantilever beam problem is chosen for numerical
example because it is a widely known and well-understood.
Many meshfree methods use this problem as a standard test
problem; see [26, 29–32] for examples. However, in many
existing works, they did not consider the case that the
boundary conditions are necessary to match the exact solu-
tions. 'erefore, the conclusions based on numerical errors
computed using these solutions are questionable. Augarde
and Deeks pointed out this fact in [25]; see also [29]. In fact,
the displacements given in (19) are not an exact solution of the
plane stress equations only if the load is distributed para-
bolically (the third equation in (20)) and if the essential
boundary conditions are applied at x � 0 according to (19).
To fairly compare the numerical errors computed by different
solution methods, Simonenko et al. suggested using Dirichlet
boundary conditions given by (1) in all boundaries of the
beam and comparing the numerical solutions with the exact
solution for displacements (19) and stresses (20) [29]. In this
paper, we adopt the same strategy when computing numerical
solutions with the traditional RBF methods and the CRBF
methods. Some parameters are taken as L � 12, D � 2,
E � 1000, ] � 0.3, P � 1, and I � D3/12.

3.1.1. Relationship between Relative Error and Shape
Parameter. We first show that the CRBF methods have high
accuracy and the shape parameters have almost no effects on
the accuracy of the CRBF methods. To better show these
results, we consider both regular and irregular nodes dis-
tribution. In Figures 2(a) and 2(b), we plot the regular 73 ×

y

D/2

D
x

P

L

–D/2

Figure 1: Cantilever beam.
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13 (totally 949) nodes and the irregular 949 nodes, re-
spectively. Relative errors with respect to ru and rσ are
plotted in Figure 3. In particular, Figures 3(a) and 3(b) plot
the relative errors ru with respect to the shape parameter c

(varying from 1 to 100) for regular and irregular nodes
distribution, respectively. Figures 3(c) and 3(d) plot the
corresponding relative errors of rσ .

It can be found from these figures that the CRBF
methods always have better displacement accuracies than
the traditional RBF methods. When the optimal shape pa-
rameters c of the MQ and IMQ RBFs are obtained by
minimizing the relative errors rσ , the traditional RBF
methods seem to perform a little better than the CRBF
methods. However, the optimal shape parameters c for rσ
may not be optimal for ru. 'erefore, it is a big problem for
the traditional RBF methods to find optimal shape pa-
rameters. Most importantly, both ru and rσ of the CMQ and
CIMQ CRBF methods are almost independent of the shape
parameter. 'ese numerical results show that the CRBF
methods not only have better accuracy but also show better
stability than the traditional RBF methods when solving the
Cantilever beam problem.

3.1.2. Relationship between Condition Number and Shape
Parameter. Condition number of the discretized matrix is
an important index for a solution method. High condition
number may result in instability and sometimes make the
solution unacceptable. In this subsection, we show nu-
merical results about the condition numbers of the RBF and
CRBF discretized matrices. In particular, Figures 4(a) and
4(b) plot the condition numbers of four discretized matrices
for regular and irregular nodes distribution with respect to
different shape parameters c (varying from 1 to 100),
respectively.

From these two figures, we can see that the condition
numbers of the MQ and IMQ RBF methods change greatly.
When the shape parameter c is very small, the condition
numbers of the MQ and IMQ RBF methods are not large.
However, in this case, we see from Figure 3 that both dis-
placement and stress relative errors are not good. When the
shape parameter c becomes large, the condition numbers of
the MQ and IMQ RBF methods become large, too. From
Figure 4, we also see that the CRBF methods produce rel-
atively well-conditioned solution systems, whose condition
numbers are moderate and almost independent of the shape

parameter. 'ese results show again that the CRBF methods
show better stability and robustness than the traditional RBF
methods when solving the Cantilever beam problem.

3.1.3. Convergence Analysis, Computational Results, and
Simulation. In this subsection, we study the convergence of
the CRBF methods when solving the cantilever beam
problem. Here, only four regular nodes distributions, i.e.,
13 × 3 (13 nodes in the x direction, 3 nodes in the y di-
rection), 25 × 5, 49 × 9, and 73 × 13, are considered. 'e
computational results are listed in Table 3. 'e convergence
curves of displacement and stress with different nodes
distribution are plotted in Figure 5. In Table 3, copt stands for
the optimal shape parameter, Cond(A) represents the
condition number of the matrix A, and CPU denotes the
elapsed CPU times. Here, the optimal shape parameters copt
are obtained by minimizing the relative errors of dis-
placement ru. In Figure 5, h is the maximum size of nodes
arrangement.

From Table 3 and Figure 5, we see that the RBF methods
do not show convergence for solving the cantilever beam
problem since relative errors ru and rσ do not slow down as
number of nodes increases. However, the CRBF methods
exhibit very nice convergence properties. For small sizes, the
accuracy of the traditional RBFmethods is better than that of
the CRBF methods. However, for large sizes, the CRBF
methods show better computational results.

To further show the computational results, we plot both
analytical solution and numerical solution of the CRBF
methods with the CMQ RBF in Figures 6 and 7. More
specifically, Figures 6(a) and 6(b) plot the displacement for
regular 73 × 13 nodes and irregular 949 nodes, respectively.
Figure 7(a) plots the normal stress σxx and Figure 7(b) plots
the shear stress τxy for regular nodes distribution. From
these figures, we see that the numerical solutions of the
CRBF methods are in good agreement with the analytical
solutions.

3.2. Plate with a Hole. For the second test problem, we
consider an infinite plate with a central circular hole of
radius a subjected to a unidirectional tensile load of σ0 at
infinity in the x direction (see Figure 8(a)). 'is is a typical
plane stress problem and has been used as a standard test
case to assess the accuracy of different meshfree methods
[29, 30, 32]. By taking advantage of its symmetry, only a

(a) (b)

Figure 2: Cantilever beam, 949 regular and irregular nodes distribution. (a) Regular 949 (73×13) nodes. (b) Irregular 949 nodes.
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quarter of the model is considered in the analysis (see
Figure 8(b)).

'e second test problem can be discussed in polar co-
ordinates or Cartesian coordinates system. Here, we only

consider the Cartesian coordinates system. 'e analytical
solutions of the displacements are
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Figure 3: Cantilever beam, relationship between relative errors and shape parameter for regular and irregular nodes distribution. (a) ru vs
“c,” regular nodes. (b) ru vs “c,” irregular nodes. (c) rσ vs “c,” regular nodes. (d) rσ vs “c,” irregular nodes.
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where

G �
E

2(1 + v)
,

κ �
3 − v

1 + v
.

(22)

'e corresponding analytical solutions of the stresses are
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In actual computations, we solve the problem with
σ0 � 1, E � 1000, Lx � 5, Ly � 5, a � 1, v � 0.3, and
Dirichlet boundary conditions [29].

3.2.1. Relationship between Relative Error and Shape
Parameter. We first study the influence of shape parameters
in the CRBF method on the numerical results. To this end,
we take two typical nodes distributions, which are plotted in
Figure 9. In particular, Figure 9(a) plots 289 nodes and
Figure 9(b) plots 625 nodes. As can be seen from these
figures, nodes near round holes are denser than elsewhere as
stress concentration will occur around the round hole. In

Figure 10, we show numerical results of the RBF methods
and the CRBF methods. More specifically, Figures 10(a) and
10(b) plot the relative errors of displacements with respect to
the shape parameter c varying from 1 to 100 for 289 nodes
distribution and 625 nodes distribution, respectively.
Figures 10(c) and 10(d) plot the same items for the relative
errors of stress.

From the numerical results plotted in Figure 10, we see
that for the traditional RBF method the relative errors of
both displacement and stress vary greatly, while for the
CRBF method the relative errors of both displacement and
stress remain almost constant when the shape parameter
varies from 1 to 100. 'e optimal parameters of the MQ and
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Figure 4: Cantilever beam, 949 regular and irregular nodes distribution. (a) Cond(A) vs “c,” regular nodes. (b) Cond(A) vs “c,” irregular
nodes.
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IMQ RBFs seem small.'e relative errors of displacement of
the CRBF method are slightly worse than those of the MQ
RBFmethod and are much better than those of the IMQRBF
method even if the optimal parameters are used. However, in
terms of the relative errors of stress, the CRBF methods are
always much better than the traditional RBF methods. 'ese
numerical results show again that the CRBF methods not
only perform more robustly but also have higher accuracy
than the traditional RBF methods for solving the elastostatic
problems.

3.2.2. Relationship between Condition Number and Shape
Parameter. In this subsection, we study the condition
numbers of the CRBF and RBF discretized matrices arising
from the elastostatic equations, in particular the plate with a
central hole problem. In Figure 11, we plot the curves of the
condition numbers. More specifically, Figure 11(a) shows
the relationship between the condition numbers of the
discretized matrices and the shape parameters for the case of
289 nodes distribution. Figure 11(b) shows the same items
for the case of 625 nodes distribution.

Table 3: Computational results of different methods for example 1 with regular nodes distribution.

Nodes
Method

MQ IMQ CMQ CIMQ

13 × 3

copt 33 36 100 1
ru 4.06e − 6 5.22e− 6 1.42e− 4 1.30e− 4
rσ 6.86e− 2 6.21e − 2 1.30e− 1 1.25e− 1

Cond(A) 2.58e+ 18 1.22e+ 18 2.80e + 8 3.99e+ 8
CPU 0.0623 0.0614 0.0803 0.0784

25 × 5

copt 14 15 90 0.9
ru 2.97e − 6 3.34e− 6 2.18e− 5 1.76e− 5
rσ 6.42e − 4 9.57e− 4 1.30e− 2 8.90e− 3

Cond(A) 2.40e+ 20 8.86e+ 20 4.04e + 10 2.02e+ 11
CPU 0.1829 0.1629 0.1869 0.1706

49 × 9

copt 4 5 100 0.9
ru 1.00e − 6 3.05e− 6 2.53e− 6 1.67e− 6
rσ 1.18e − 4 3.36e− 4 1.90e− 3 1.30e− 3

Cond(A) 1.52e+ 22 1.15e+ 22 5.39e+ 13 5.94e + 12
CPU 0.6011 0.6076 0.7263 0.7426

73 × 13

copt 2 3 82 0.9
ru 7.79e− 7 4.79e− 6 6.82e− 7 5.27e − 7
rσ 2.49e − 4 7.01e− 4 6.02e− 4 4.71e− 4

Cond(A) 4.70e+ 23 7.64e+ 23 9.28e + 11 9.31e+ 13
CPU 1.8951 2.0297 2.6501 2.6482
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Figure 5: Cantilever beam, convergence study. (a) Convergence curves of displacement. (b) Convergence curves of stress.

Mathematical Problems in Engineering 9



"o": analytical solution; ".": CRBF (CMQ) numerical solution

(a)

"o": analytical solution; ".": CRBF (CMQ) numerical solution

(b)

Figure 6: Cantilever beam, computational results of displacement (scaled 0.1) using CRBF (CMQ). (a) Displacement, regular nodes. (b)
Displacement, irregular nodes.
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Figure 7: Cantilever beam, computational results of stress using CRBF (CMQ). (a) Normal stress σxx, regular nodes. (b) Shear stress τxy,
regular nodes.
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Figure 8: Plate with a central circular hole and its model problem. (a) Plate with a hole. (b) A quarter of the plate and boundary conditions.
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Figure 9: Plate with a central circular hole, two typical nodes distributions. (a) 289 nodes. (b) 625 nodes.
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Figure 10: Plate with a hole, relationship between relative errors and shape parameter for 289 and 625 nodes distribution. (a) ru vs “c,” 289
nodes. (b) ru vs “c,” 625 nodes. (c) rσ vs “c,” 289 nodes. (d) rσ vs “c,” 625 nodes.
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From Figure 11, we see that the condition numbers of the
RBF discretized matrices vary greatly with respect to the
shape parameter and for most cases are larger than 1020,
which are very ill-conditioned matrices, while the condition
numbers of the CRBF discretized matrices almost remain
constant even if the shape parameter c varies from 1 to 100.
For the cases of 289 and 625 nodes distribution, the con-
dition numbers of the CRBF discretized matrices are near
1014 and 1015, which are much smaller than those of the RBF
discretized matrices. 'is, again, shows that the CRBF
method is more stable than the traditional RBF method for
solving the elastostatic problems.

3.2.3. Convergence Analysis, Computational Results, and
Simulation. In this subsection, we further study the CRBF
methods for solving the elastostatic equation, in particular
the plate with a central hole problem, and show some
computational results. For convergence studies, three dif-
ferent nodes distributions with 289 nodes, 625 nodes, and
1089 nodes are considered here. We plot the 289 nodes and
625 nodes in Figure 9. All these three nodes distributions can
be found in [35]. 'e computational results are present in
Table 4. Note that the optimal shape parameters listed in
Table 4 are obtained by minimizing the relative errors of
displacement. To better show the convergence properties, we
plot the convergence curves of the four discussed methods in
Figure 12. From these results, we find that both the RBF
methods and the CRBF methods exhibit high convergence
for solving the second test problem. 'e optimal shape
parameters of the MQ and IMQ RBFs are small. In terms of

relative errors, the CRBF methods seem slightly better than
the traditional RBF method. However, from the aspect of
condition numbers of discretized matrices, the CRBF
methods have obvious advantages. Most importantly, there
is no need to choose the optimal shape parameters for the
CRBF methods.

'e displacements computed by the CRBF method at
nodes are plotted and compared with the exact solutions (see
Figure 13(a) for 289 nodes distribution and Figure 13(b) for
625 nodes distribution). Figures 14(a) and 14(b) plot the
analytical solution and the CRBF (CMQ) solution of stress
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Figure 11: Plate with a hole, relationship between condition number and shape parameter for 289 and 625 nodes distribution. (a) Cond(A)
vs “c,” 289 nodes. (b) Cond(A) vs “c,” 625 nodes.

Table 4: Computational results of different methods for example 2.

Nodes Method
MQ IMQ CMQ CIMQ

289

copt 0.9 1 1 0.9
ru 4.30e− 4 5.50e− 3 4.09e− 4 3.68e − 4
rσ 1.40e − 2 1.04e− 1 2.43e− 2 3.15e− 2

Cond(A) 3.12e+ 17 5.72e+ 16 4.79e + 13 4.80e+ 13
CPU 0.3981 0.4379 0.4612 0.5214

625

copt 0.8 1 1 25
ru 1.80e− 4 1.70e− 3 1.14e − 4 1.16e− 4
rσ 5.50e − 3 4.05e− 2 9.00e− 3 9.20e− 3

Cond(A) 5.71e+ 21 3.84e+ 21 8.69e+ 14 8.68e + 14
CPU 0.9825 1.0741 1.4227 1.4343

1089

copt 0.8 0.8 0.9 59
ru 7.17e− 5 1.00e− 3 4.56e − 5 4.65e− 5
rσ 2.50e− 3 3.96e− 2 4.30e − 3 4.40e− 3

Cond(A) 3.52e+ 22 2.87e+ 22 6.81e + 15 6.81e + 15
CPU 2.3289 2.5018 3.4022 3.5612
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Figure 12: Plate with a hole, convergence study. (a) Convergence curves of displacement. (b) Convergence curves of stress.
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Figure 13: Plate with a hole, computational results of displacement using CRBF (CMQ). (a) 289 nodes. (b) 625 nodes.
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Figure 14: Continued.
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σxx. Figures 14(c) and 14(d) plot the analytical solution and
the CRBF (CMQ) solution of shear stress τxy. 'ese plots
also show excellent agreements between the analytical results
and numerical results.

4. Conclusions and Outlooks

As is known to all, the traditional RBF method has the
advantages of high accuracy and flexibility. When solving
the partial differential equations, the RBF method is a truly
meshfree method. However, the accuracy and stability of the
RBF method strongly depend on the shape parameter. How
to choose the optimal parameter for the RBF method is an
ongoing challenge problem. A coupled radial basis function
(CRBF) method, which was developed by coupling the in-
finitely smooth RBF with the conical spline, was proposed
recently in [23]. Two numerical examples arising from the
Poisson equation and the heat transfer equation show that
the CRBF method completely overcomes the troublesome
issue of the optimal shape parameter. In this paper, we
further extend the new methodology of the CRBF method to
solve the elastostatic problems. Numerical results show that
solutions of both the displacement and the stress (the first
derivative of displacement) as well as the condition numbers
of the CRBF discretized matrices are almost independent of
the shape parameter. Moreover, the CRBF method achieves
better accuracy than the traditional RBF methods even with
optimal shape parameters. 'e results of this study further
expand the application scope of the CRBF method.

Although the CRBF method was successfully applied to
solve the elastostatic problems, only global collocation
scheme is considered in this paper. 'e discretized matrices
are dense, which is not suitable for solving large scale
problems. In addition, only two 2D numerical examples are
used to verify the efficiency of the CRBF method; no the-
oretical result is provided to guarantee the accuracy, con-
vergence, and stability of the CRBF method. Meshfree

methods have great advantages in solving 3D problems.
'erefore, future works should focus on 3D problems, more
applications of the CRBF method, studying the local CRBF
methods, combining the CRBF with other meshfree
methods, and providing some theoretical results.
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