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In this paper, the impacts of transaction cost are investigated under a tradable credit scheme (TCS) considering user heterogeneity.
Under the credit scheme, a certain number of credits are initially distributed among all the travelers for a specific O-D pair, and a
link-specific number of credits are charged from travelers using that link. .e scheme allows for free trading of the credits among
travelers, and both the sellers and buyers need to pay an extra transaction cost, which is associated with trading volume. Travelers
in the network are assumed to be heterogenous with a discrete value of time (VOT). For a given tradable credit scheme and
discrete VOT set, the combined network user equilibrium (UE) and credit-trading market equilibrium (ME) are formulated as a
variational inequality (VI) problem, and the conditions for the uniqueness of the network flow pattern and the credit price at
equilibrium are established. A bisection-based trial-and-error method is proposed to solve the proposed VI problems. Based on
the simulation results, the computational advantages of the proposed method are demonstrated. .en, an example network is
presented to investigate the effect of transaction cost in different kinds of markets. It is found that the implementation of
transaction cost can suppress trading volume and either elevate or drive down the equilibrium credit price. Besides, it is also found
that users with the lowest VOT suffer the most from the increase in transaction cost, while those with the higher VOT are more
likely to experience a reduction in travel cost with the implementation of TCS.

1. Introduction

Tradable credit scheme (TCS) is a novel quantity-based
instrument for managing traffic demand, which is designed
to restrict the use of private cars. In the scheme, a central
authority allocates credits to eligible travelers, and the latter
need to redeem them when driving on the roads with credit
charge. .ere is a market running under the scheme,
through which credits can be freely traded. In this way,
credits will flow to those with the highest value of car use
(usually people with higher income), whereas those with the
lower value of time (VOT) will be “pushed” out of the
charging roads and get a compensation by selling their extra
credits.

As an appealing alternative to the well-known road
pricing scheme, TCS outperforms it in the following two
aspects [1]. First, a TCS is revenue-neutral since the credit

charge fees only circulate among travelers and there does not
exist a direct financial transfer from travelers to the gov-
ernment..is can greatly enhance the public acceptability of
the scheme. Second, since low-VOTusers can get monetary
benefits by selling their unused credits, the equity issue
arising from the marginal-cost pricing scheme can be
partially addressed.

1.1. Literature Review. Yang and Wang [1] first established
the mathematical model of tradable credit scheme in a
general network equilibrium context. From then on, a
growing number of works has been devoted to the appli-
cation of TCS in tackling transportation problems. Among
the extensions, user heterogeneity is considered as an im-
portant issue throughout the development of TCS and in-
corporated by a large number of researchers. Wang et al. [2]
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extended the seminal work to a case with multiclass users and
developed a TCS that can decentralize system optimal flow
patterns in such a heterogenous context. Later, Zhu et al. [3]
generalized the groups with discrete VOTs into a continu-
ously distributed VOT and also developed a system optimal
TCS. With a continuously distributed VOT, Tian et al. [4]
examined the efficiency of TCS for managing bottleneck
congestion and modal split in a competitive highway/transit
network with a continuously distributed VOT. More recently,
Wang et al. [5] proposed a tradable O-D-based travel credit
scheme to manage mobility in a bimodal transportation
network with heterogenous users in VOT. Miralinaghi and
Peeta [6] focused on TCS-based multiperiod equilibrium
modeling framework tominimize the vehicular emissions in a
traffic network over a planning horizon, considering multi-
class users with different VOTs. Also, Wu et al. [7] and He
et al. [8] considered the user heterogeneity in terms of dif-
ferent income levels and path choice behaviors in the context
of TCS, respectively. Miralinaghi et al. [9] considered com-
muters’ heterogeneities in terms of value-of-time, schedule
delay, and loss aversion behavior in purchasing credits and
showed the impact of initial credit allocation in a dynamic
context.

Besides, Shirmohammadi et al. [10] established the
identity between congestion pricing and tradable credit
schemes in managing network and demonstrated how the
identity fell apart when uncertainty in transportation supply
or demand was taken into account. Later, the authors
proposed a credit scheme to control the maximum queue
length at a bottleneck [11]. Wang et al. [12] proposed a
bilevel programming model for continuous network design
problem with TCS and equity constraints. Miralinaghi and
Peeta [13] proposed a multiperiod TCS, in which travelers
determined whether to consume or sell their credits in the
current period or to transfer to future periods. Based on the
multiperiod TCS, the authors moved on to minimize the
vehicular emissions in a traffic network over a planning
horizon [6, 14]. Wang and Zhang [15] investigated joint
implementation of tradable credit and road pricing in
public-private partnership (PPP) networks by simulta-
neously taking into account Cournot–Nash (CN) players
and user equilibrium (UE) players. Also, in PPP networks,
Bao et al. [16] employed the TCS on traffic mobility man-
agement through a novel kind of private financing of public
road, build-equity-credit (BEC) scheme, hoping to achieve a
triple win for government, private firms, and travelers.
Combining TCS and link capacity improvement, Wang et al.
[17] proposed a biobjective bilevel programming model to
balance economic growth and environmental management.
Integrating link-based discrete credit charging scheme into
the discrete network design problem, Wang et al. [18]
proposed a mixed-integer nonlinear bilevel programming
model to improve the network performance from the per-
spectives of both transport network planning and travel
demand management. For autonomous vehicle (AV)
management, Zhang et al. [19] investigated the traffic
equilibriums for mixed traffic flows of human-driven ve-
hicles and connected autonomous vehicles in the context of
TCS, and Seilabi et al. [20] developed a scheme for travel

demand and lane management strategies in the AV tran-
sition era. .ere are also some works including a case study
based on experiments [21–24]. More detailed recent reviews
in be found in [25, 26]. All of these works fulfill the
framework of TCS and provide good inspirations for this
paper.

1.2. Research Objectives and Contributions. In the literature,
most of the works presumed that transaction costs were “low
enough” and ignorable in their framework, citing the fact
that transaction may be made using affordable electronic
technologies at low costs. However, as demonstrated in Nie
[27], the transaction cost incurred during credit trading may
not be reduced to a negligible level even with an ideal, fully
computerized system. It would still take time to find and
match potential buyers and sellers within the credit-trading
market. .e ignorance of transaction cost can lead to an
underestimate on actual travel cost and thus a totally dif-
ferent flow pattern.

To the best of the authors’ knowledge, only four papers
considering transaction cost in a TCS can be found. Nie [27]
established an optimization model that incorporates
transaction cost and investigated the performance of various
combinations of the credit price, the government price, and
the marginal transaction cost. He et al. [8] examined the
effects of transaction cost on a network with Cournot–Nash
players andWardrop-equilibrium players, in which different
forms of transaction cost are adopted for different types of
users. Bao et al. [28] focused on the equilibrium status and
the optimal design of TCS when transaction cost as well as
travelers’ loss aversion is considered. More recently, Zhang
et al. [29] investigated the impact of transaction cost on
social equity in terms of different user classes. All the four
papers adopted a linear function of transaction cost.
However, it may not be the case in reality. As Cason and
Gangadharan put it [30], a decreasing marginal transaction
cost can occur if any discount is offered over quantity or
people become familiar with the market and can match their
trading partners with less searching and information costs.
Similarly, an increasing marginal cost can occur when the
scheme is initially implemented and people need to make
more effort to search and find a better trading partner to
trade more credits [31]. Given the fact that different forms of
transaction cost may affect the system in different ways, in
this paper, we investigate the impacts of three typical forms
of transaction costs under a TCS considering user
heterogeneity.

.e contributions of this paper are threefold. First, we
incorporate user heterogeneity as well as transaction cost
into a variational inequality (VI) model and establish the
conditions for the uniqueness of the network flow pattern
and the credit price at equilibrium. Second, a novel bisec-
tion-based trial-and-error method is proposed to solve the
proposed VI problem and its convergence to the equilibrium
solution is mathematically proved. .ird, we assume three
different types of transaction costs and numerically inves-
tigate the impacts of these transaction costs on the credit
market and individual better-off degree under various
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settings, which can provide managerial insights for markets
with different operate mechanisms.

.e remainder of this paper is organized as follows. In
Section 2, we analyze the UE and ME under a credit scheme
considering transaction cost. .en, an equivalent variational
inequality (VI) formulation is presented and the uniqueness
of solutions is demonstrated. In Section 3, the theoretical
conditions for decentralizing SO flow pattern are discussed.
In Section 4, we propose a solution algorithm for the
problem and present the details on it. In Section 5, we
present example networks to test the computational effi-
ciency of the proposed algorithm and examine the impacts
of transaction cost under a given credit scheme. Eventually,
we present concluding remarks and recommendations for
future research in Section 6.

2. Traffic Equilibrium under a Given Tradable
Credit Scheme considering Transaction Cost

2.1. Tradable Credit Scheme with Transaction Cost. Let G �

(N, A) be a general transportation network defined by a set of
nodes N and a set of directed links A. Let W denote the set of
O-D pairs and Rw denote the set of all paths connecting O-D

pair w ∈W. A discrete set of user classes in terms of VOT,
denoted by M, is assumed in this paper. Let βm denote the
average VOT for users of class m∈M, and further
β � (βm, m ∈M). .e travel demand is assumed to be given
and fixed, denoted by a vector (dm

w > 0, w ∈W, m ∈M)T, and
dm

w is the demand of user classm∈M within O-D pair w ∈W.
.e flow of user classm∈M on path r∈Rw is denoted by fm

r,w.
A separable link travel time function, ta (va), which is strictly
convex and monotonically increasing with the aggregate link
flow va on link a∈A, is assumed..e class-specific link flow vm

a

and the aggregate link flow va on link a∈A have the following
relationships with the path flow:

v
m
a � 􏽘

w∈W
􏽘

r∈Rw

f
m
r,wδ

w
a,r, a ∈ A, m ∈M,

va � 􏽘
m∈M

v
m
a , a ∈ A,

(1)

where δw
a,r � 1 if link a belongs to path r and 0 otherwise. For

notational simplicity, we denote path and link flows in
vectors as fM � (fm

r,w, r ∈ Rw, w ∈W, m ∈M)T,
v � (va, a ∈ A)T, and vM

a � (vm
a , a ∈ A, m ∈M)T. .e fea-

sible set of flow patterns (fM, vM, v) can be defined by

Ω � f
M

, v
M

, v􏼐 􏼑

va � 􏽘
m∈M

v
m
a , v

m
a � 􏽘

w∈W
􏽘

r∈Rw

f
m
r,wδ

w
a,r a ∈ A

􏽘
r∈Rw

f
m
r,w � d

m
w , f

m
r,w ≥ 0 r ∈ R

w
, w ∈W, m ∈M

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (2)

In this paper, we adopt an O-D-specific allocation of
credits at the initial stage. Denote φ � (φw, w ∈W)T as the
general O-D-specific but user-anonymous credit allocation
scheme, where ϕw is the amount of credits distributed to
travelers within O-D pair w ∈W. Let K denote the total
amount of distributed credits, satisfying with
K � 􏽐w∈W􏽐m∈Mφwdm

w . .e link-specific credit charging
scheme is denoted by κ � (κa, a ∈ A)T, where κa is the credit
charge for any traveler who uses link a ∈A. We use (K, κ) to
characterize a credit charge scheme κ under a total number
of credits K issued in the market.

Further, we define the feasible set of credit schemes that
guarantees the existence of equilibrium flow patterns as Ψ,
which is given by

ψ � (K, κ)|∃ f
M

, v
M

, v􏼐 􏼑 ∈ Ω such that 􏽘
a∈A

κava ≤K
⎧⎨

⎩

⎫⎬

⎭.

(3)

Moreover, we assume that both sellers and buyers need
to pay the same amount of additional cost in a transaction
(through trading credits, sellers gain monetary benefit by
giving up their trips or choosing alternative mode of
transport, and buyers pay for excess demand of credits but
benefit from the congestion relief; therefore, either more
monetary benefit or less travel time, every traveler gets what
they want and neither buyers nor sellers need to be further

compensated; from the standpoint of equity, we assume that
both sellers and buyers need to pay the same transaction cost
in this paper). .e transaction cost, Tw

r , is defined as a
function of trading volume |ew

r |.

T
w
r � T

w
r e

w
r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 � ρ · e

w
r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η
, r ∈ R

w
, w ∈W, (4)

where ρ is a proportionality constant and η represents the
function form of transaction cost, which depends on the
market operating mechanism. In particular, η< 1 implies a
decreasing marginal transaction cost, which can occur if the
broker offers discount over quantity or travelers become more
experienced with the market and can thus fulfill their credit
demands with less searching and information costs, and we
refer to this market as a “trading-encouraging” one; η> 1
implies an increasing marginal cost, which can be justified by
the fact that travelers may have to make more effort to search
and find a better trading partner to trade more credits, and we
refer to this market as a “trading-controlling” one, and η� 1
implies a linear function with constant marginal cost, indi-
cating that the difficulty in trading credits does not changewith
the trading volume; we refer to this market as a moderate one.

.e term ew
r here is defined by

e
w
r � 􏽘

a∈A
kaδ

w
a,r − φw � k

w
r − φw, r ∈ R

w
, w ∈W, (5)

where κw
r � 􏽐a∈Aκaδ

w
a,r. Since the charged credits are equal to

the issued at equilibrium, the total trading volume (TV)
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should be the extra credit demands for all the travelers on
paths with ew

r > 0, i.e.,

TV � 􏽘
w∈W

􏽘
r∈Rw

+

e
w
r f

w
r , (6)

where Rw
+ � r ∈ Rw|ew

r > 0􏼈 􏼉.
Based on the assumptions above, the generalized travel

cost (travel disutility) for each traveler consists of three parts:
(1) travel time in monetary unit; (2) credit cost; and (3)
transaction cost. .e generalized travel cost for user class m
using path r between O-D pair w is given by

c
m
r,w � 􏽘

a∈A
βm

ta va( 􏼁δw
a,r + pe

w
r + T

w
r , r ∈ R

w
, w ∈W, m ∈M,

(7)

where p denotes the unit credit price. .e credit cost for
using a path r ∈Rw is given by the gap between the charge
and initial distribution credits, ew

r , multiplied by the unit
credit price, p. Similarly, this term can be either positive or
negative, representing a cost or a reward, respectively.

2.2. Variational Inequalities Formulation. Since the credit
cost ew

r and the transaction cost Tw
r are nonadditive of link

costs, it is technically hard to describe the problem by a
link-based optimization model. In the literature, Nie [27]
and He et al. [8] addressed this difficulty by introducing a
new variable, gw

r , which represents the travelers who choose
to trade their credits in the market on path r connecting
O-D pair w, into the minimization program and incor-
porating the total transaction cost into the objective
function. However, Zhang et al. [29] proved that the
equilibrium solution of this variable is nonunique, meaning
that the credit trading in the market is unpredictable. By
comparison, a path-based optimization model can incor-
porate the nonadditive cost without adding any new var-
iable. Actually, Bao et al. [28] successfully formulated the
combined network user equilibrium (UE) and credit-
trading market equilibrium (ME) considering transaction
cost as a variational inequality (VI) formulation. .erefore,
a VI formulation is also adopted in this paper. Different
from [28], we further consider the user heterogeneity in
terms of VOT in the model.

Let p∗ denote the unit credit price at credit market
equilibrium and (fM, vM, v) denote the UE flow pattern.
.en, given a feasible credit scheme (K, κ) ∈Ψ, the UE
conditions can be written as

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r � μm∗

w , if f
m∗
r,w > 0, r ∈ R

w
, w ∈W, m ∈M, (8)

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r � μm∗

w , if f
m∗
r,w � 0, r ∈ R

w
, w ∈W, m ∈M, (9)

and the credit ME conditions are given by

􏽘
a∈A

κav
∗
a � K, if p

∗ > 0, (10)

􏽘
a∈A

κav
∗
a ≤K, if p

∗
� 0, (11)

where (fM∗, vM∗, v) ∈ Ω. Equations (7) and (8) imply that,
at UE equilibrium, all utilized paths by user class m ∈M
between O-D pair w ∈W have equal and minimal

generalized travel cost μm∗
w in monetary unit. Meanwhile,

equations (10) and (11) represent the credit market clearing
conditions, which imply that the equilibrium credit price is
positive only if all the issued credits are consumed.

In the following proposition, we show how to obtain the
UE and ME solutions under a given credit scheme.

Proposition 1. Given a tradable credit scheme
(K, κ) ∈ ψ, (fM∗, vM∗, v) ∈ 􏽥Ω(K, κ) is the aggregate UE
flow pattern if and only if it solves the following VI problem:

􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p∗ e
w
r + T

w
r

⎛⎝ ⎞⎠ f
m
r,w − f

∗
r,w􏼐 􏼑

+ 􏽘
a∈A

κav
∗
a − K⎛⎝ ⎞⎠ p − p

∗
( 􏼁≥ 0, ∀ f

M
, v

M
, v􏼐 􏼑 ∈ 􏽥Ω (K, κ), ∀p≥ 0,

(12)

where

􏽥Ω (K, κ) � f
M

, v
M

, v􏼐 􏼑| 􏽘
a∈A

κava ≤K, f
M

, v
M

, v􏼐 􏼑 ∈ Ω
⎧⎨

⎩

⎫⎬

⎭ ∈ Ω, (13)

4 Mathematical Problems in Engineering



and the equilibrium credit price, p∗, corresponds to the
Lagrange multiplier associated with the credit conservation
constraint:

􏽘
a∈A

κava ≤K. (14)

Proof. Let (fM, vM, v) ∈ 􏽥Ω(K, κ) and κ be a solution of VI
problem (12); then, we have

􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δr

a,r + p
∗
e

w
r + T

w
r

⎛⎝ ⎞⎠f
m∗
r,w + 􏽘

a∈A
κav
∗
a

⎛⎝ ⎞⎠p
∗

≤ 􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r

⎛⎝ ⎞⎠f
m
r,w

+ 􏽘
a∈A

κav
∗
a − K⎛⎝ ⎞⎠, ∀ f

M
, v

M
, v􏼐 􏼑 ∈ 􏽥Ω (K, κ), ∀p≥ 0.

(15)

So, (fM, vM, v) ∈ 􏽥Ω (K, κ) solves VI problem (12) if
and only if it solves the following optimization problem [32]:

min
fM,vM,v( ),p

􏽘
w∈W

􏽘
r∈R

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p∗ e
w
r + T

w
r

⎛⎝ ⎞⎠f
m
r,w + 􏽘

a∈A
κav
∗
a − K⎛⎝ ⎞⎠p, (16)

subject to

f
M

, v
M

, v􏼐 􏼑 ∈ 􏽥Ω (K, κ), p≥ 0, (17)

with v∗ fixed and 􏽥Ω(K, κ) being a polyhedron; the above
optimization problem is a linear program. .e Lagrangian
function is

L � 􏽘
w∈W

􏽘
r∈R

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r

⎛⎝ ⎞⎠f
m
r,w

+ 􏽘
a∈A

κav
∗
a − K⎛⎝ ⎞⎠p − 􏽘

w∈W
􏽘

m∈M
μm

w 􏽘
r∈Rw

f
m
r,w − d

m
w

⎛⎝ ⎞⎠.

(18)

.e Karush–Kuhn–Tucker (KKT) conditions for this
problem are

f
m∗
r,w 􏽘

a∈A
βm

ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r − μm

w
⎛⎝ ⎞⎠ � 0, r ∈ R

w
, w ∈W, m ∈M, (19)

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r − μm

w ≥ 0, r ∈ R
w

, w ∈W, m ∈M, (20)

f
m∗
r,w ≥ 0, r ∈ R

w
, w ∈W, m ∈M, (21)

􏽘
r∈Rw

􏽘
m∈M

f
m∗
r,w � d

m
w , w ∈W, (22)
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􏽘
a∈A

κav
∗
a − K⎛⎝ ⎞⎠p

∗
� 0, (23)

􏽘
a∈A

κav
∗
a − K≤ 0, p

∗ ≥ 0. (24)

Obviously, the above conditions (19), (20) and (23), (24)
are equivalent to the user equilibrium conditions (8), (9) and
the credit market equilibrium conditions (10), (11). Con-
dition (21) represents the nonnegative path flows and
condition (22) represents the flow conservation. .e
Lagrange multipliers p∗ and μm

w , w ∈W, and m ∈M cor-
respond to the unit credit price at market equilibrium and
the minimal generalized travel cost for O-D pair w for user
class m at user equilibrium. .is completes the proof. □

Proposition 2. ;ere exists at least one solution to VI
problem (12).

Proof. Due to the convexity and nonemptiness of the
feasible set 􏽥Ω(K, κ) and the continuity of the generalized
travel cost 􏽐a∈Aβ

mta(v∗a )δw
a,r + p∗ew

r + T(|ew
r |), r ∈ Rw,

w ∈W, m ∈M and 􏽐a∈Aκav∗a − K with respect to path flow
pattern fM and credit price p, we can conclude based on [32]
that at least one solution (fM∗, vM∗, v∗) and p∗ satisfying
VI problem (12) exists. □

2.3. Uniqueness of the Link Flow Pattern and Equilibrium
Credit Price. .en, we move on to establish the uniqueness
condition for the UE flow pattern and corresponding credit
price solved by VI problem (12).

Before that, the following lemma is needed, since the
proposed VI formulation does not coincide with any op-
timization problem due to user heterogeneity.

Lemma 1. Let (fM∗, vM∗, v∗) and p∗ denote the solution of
VI problem (12); then, at equilibrium, 􏽐w∈W􏽐r∈Rw

􏽐m∈M(􏽐a∈Aβ
mta(v∗a )δw

a,r + p∗ew
r + Tw

r )(fm
r,w − fm∗

r,w)≥ 0.

Proof. If p∗ � 0, from inequality (15), we have

􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r

⎛⎝ ⎞⎠ f
m
r,w − f

m∗
r,w􏼐 􏼑

≥ K − 􏽘
a∈A

κav
∗
a

⎛⎝ ⎞⎠p, ∀ f
M

, v
M

, v􏼐 􏼑 ∈ 􏽥Ω(K, κ), ∀p≥ 0.

(25)

Since (fM∗, vM∗, v∗) ∈ 􏽥Ω(Κ, κ), we have 􏽐a∈Aκav∗a ≤K,
adding that p≥ 0; it can be referred that
(K − 􏽐a∈Aκav∗a )p≥ 0. .us, the left-hand-side term in the
above inequality must be equal or greater than zero, i.e.,

􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r

⎛⎝ ⎞⎠ f
m
r,w − f

m∗
r,w􏼐 􏼑≥ 0.

(26)

If p∗ ≠ 0, then at equilibrium, the market equilibrium
condition must be satisfied, i.e., 􏽐a∈Aκav∗a − K. Since
(fM∗, vM∗, v∗) is the solution of VI problem (12), we have

􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r

⎛⎝ ⎞⎠ f
m
r,w − f

m∗
r,w􏼐 􏼑 + 􏽘

a∈A
κav
∗
a − K⎛⎝ ⎞⎠

p − p
∗

( 􏼁 � 􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r + p
∗
e

w
r + T

w
r

⎛⎝ ⎞⎠ f
m
r,w − f

m∗
r,w􏼐 􏼑≥ 0, ∀ f

M
, v

M
, v􏼐 􏼑 ∈ (K, κ), ∀p≥ 0.

(27)

.us, we can say that the inequality
􏽐w∈W􏽐r∈Rw 􏽐m∈M(􏽐a∈Aβ

mta(v∗a )δw
a,r + p∗ew

r + Tw
r )(fm

r,w −

fm∗
r,w)≥ 0 holds at equilibrium. .is completes the proof.

With Lemma 1, we now can give the sufficient condition
for the uniqueness of the link flow pattern..e proof process
follows that of [28], originating from [33]. □

Proposition 3. Given a tradable credit scheme (K, κ) ∈Ψ, if t
(v) is strictly weighted average monotone over β on 􏽥Ω(K, κ)

[2], that is,

􏽘
a∈A

􏽘
m∈M

βm
ta va
′( 􏼁 − ta va

″( 􏼁( 􏼁 v
m′
a − v

m″
a􏼒 􏼓> 0, (28)

then the aggregate UE link flow pattern v∗ is unique.

Proof. Suppose two solution flow patterns and corre-
sponding credit prices (fM′ , vM′ , v′) ∈ 􏽥Ω(K, κ), p′ ≥ 0 and
(fM″ , vM″ , v″) ∈ 􏽥Ω (K, κ),p″ ≥ 0 with v′ ≠ v″ to VI problem
(12); then, by setting (fM∗, vM∗, v∗) ∈ (fM′ , vM′ , v′), p∗ �

p′ and (fM, vM, v) � (fM″ , vM″ , v″), p� p″, we have
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􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta va
′( 􏼁δw

a,r + p′ew
r + T

w
r

⎛⎝ ⎞⎠ f
m″
r,w − f

m′
r,w􏼒 􏼓≥ 0.

(29)

By exchanging (fM′ , vM′ , v′, p′) and (fM″ , vM″ , v″,
p″), we have

􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

􏽘
a∈A

βm
ta va
″( 􏼁δw

a,r + p″ew
r + T

w
r

⎛⎝ ⎞⎠ f
m′
r,w − f

m″
r,w􏼒 􏼓≥ 0.

(30)

Adding equations (29) and (30) yields

􏽘
a∈A

􏽘
m∈M

βm
ta va
′( 􏼁 − ta va

″( 􏼁( 􏼁 v
m′
a − v

m″
a􏼒 􏼓

+ 􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

p′ − p″( 􏼁e
w
r f

m′
r,w − f

m″
r,w􏼒 􏼓≥ 0.

(31)

It should be noted that at equilibrium, the total credits
sold must be equal to the total credits bought at the credit
market, that is,

􏽘
w∈W

􏽘
r∈Rw

􏽘
m∈M

e
w
r f

m
r,w � 0, ∀ f

m
, v

M
, v􏼐 􏼑 ∈ 􏽥Ω (K, κ).

(32)

.en, inequality (31) can be transformed into

􏽘
a∈A

􏽘
m∈M

βm
ta va
″( 􏼁 − ta va

′( 􏼁( 􏼁 va
′ − v

m″
a􏼒 􏼓≥ 0, (33)

which clearly contradicts inequality (27). .erefore, the
aggregate UE link flow pattern must be unique if t(v) is
strictly weighted average monotone over β on 􏽥Ω (K, κ). .is
completes the proof.

With the uniqueness of flow pattern, we can further
establish the conditions for unique equilibrium credit
price. □

Proposition 4. Given a tradable credit scheme (K, κ) ∈Ψ, the
equilibrium credit price p∗ is unique if (1) v∗ is unique and (2)
among all the corresponding UE path flow patterns fM∗, there
exists at least one user class m whose equilibrium path
set always contains the same two (or more) paths connecting
one O-D pair with different credit charges.

Proof. It should be noted that with a given link flow pattern
v∗, the uniqueness of path flow pattern fM∗ cannot be
ensured. In other words, even if v∗ is unique, fM∗ is gen-
erally not unique. We define ΩM∗

f as the set of all UE path
flow patterns fM∗. Accordingly, it is assumed that for any
fM∗ ∈ ΩM∗

f , the equilibrium path set of a user class m
always contains two paths, r1, r2 ∈Rw connecting O-D pair w

and κw
r1
≠ κw

r2
. Since ew

r � κw
r − φw, it is clear that ew

r1
≠ ew

r2
.

From UE condition (8), we have

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r1
+ p
∗
e

w
r1

+ T
w
r1

� μm∗
w , (34)

􏽘
a∈A

βm
ta v
∗
a( 􏼁δw

a,r2
+ p
∗
e

w
r2

+ T
w
r2

� μm∗
w . (35)

Subtracting equation (35) by equation (34) yields

p
∗

�
􏽐a∈Aβ

m
ta v
∗
a( 􏼁 δw

a,r1
− δw

a,r2
􏼐 􏼑 + T

w
r1

− T
w
r2

e
w
r2

− e
w
r1

. (36)

Apparently, if v∗ is unique, p∗ can be uniquely deter-
mined by equation (36). .is completes the proof.

Accordingly, the uniqueness of credit price cannot be
ensured when there is only one path connecting each O-D
pair, as exemplified by Yang and Wang [1]. However, the
uniqueness conditions are easy to achieve in small network
and much easier in large-size network in reality due to the
multiple paths connecting each O-D pair.

In the above discussion, it is demonstrated that the pro-
posed VI problem has a unique solution related to link flow
pattern and credit price. However, due to the existence of
market equilibrium price involved in the travel disutility credit
the credit market clearing conditions as constraints, it is a
challenge for traditional solution methods like Frank–Wolfe to
solve the problem. .us, we propose a new solution algorithm
for this problem, which is introduced in the next section. □

3. Tradable Credit Scheme Design considering
Transaction Cost

As shown in [2], in the absence of transaction cost, a given
SO link flow pattern 􏽥v, either cost-based or time-based, can
be decentralized by any tradable credit scheme ( 􏽥K, 􏽥κ)

contained in the following nonempty polyhedron with ME
credit price p∗ � 1:

􏽘
a∈A

􏽘
m∈M

βm
ta 􏽥va( 􏼁δw

a,r + 􏽘
a∈A

􏽥κa􏽥va � 􏽘
w∈W

􏽘
m∈M

μm
w d

m
w , (37)

􏽘
m∈M

βm
ta 􏽥va( 􏼁δw

a,r + 􏽘
a∈A

􏽥κaδ
w
a,r ≥ μ

m
w , r ∈ R

w
, w ∈W, m ∈M.

(38)

Based on the above knowledge on credit scheme design,
we can give the sufficient conditions for decentralizing SO
flow pattern under a tradable credit scheme considering
transaction cost.

Proposition 5. Assume the credit scheme ( 􏽥K, 􏽥κ) is determined
by conditions (37) and (38) and t(v) is strictly weighted average
monotone over β on 􏽥Ω( 􏽥K, 􏽥κ). ;e solution of VI problem (12)
can be decentralized into SO flow pattern only when the fol-
lowing conditions are satisfied: (1) among all the corresponding
UE path flow patterns fM∗, there exists at least one user class m
whose equilibrium path set always contains the same two (or
more) paths r1 and r2 connecting one O-D pair w with different
credit charges and (2) the charges satisfy 􏽥κw

r1
+ 􏽥κw

r2
� 2φw.

Proof. .e strict weighted average monotonicity and the
first condition are assumed for the uniqueness of the
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aggregate UE flow pattern and ME credit price, respectively.
With p∗ � 1, ( 􏽥K, 􏽥κ) can be easily proved to be the target
scheme. However, due to the existence of transaction cost,
the condition p∗ � 1 cannot be ensured. To make it hold and
decentralize the SO flow pattern, 􏽥κw

r1
+ 􏽥κw

r2
� 2φw should be

satisfied for the two related paths. .e reason is given below.
Since ( 􏽥K, 􏽥κ) is determined by conditions (37) and (38),

we have

􏽘
a∈A

βm
ta 􏽥va( 􏼁δw

a,r1
+ 􏽥κw

r1
� 􏽘

a∈A
βm

ta 􏽥va( 􏼁δw
a,r2

+ 􏽥κw
r2

,

􏽘
a∈A

βm
ta 􏽥va( 􏼁 δw

a,r1
− δw

a,r2
􏼐 􏼑 � 􏽥κw

r2
− 􏽥κw

r1
� e

w
r2

− e
w
r1

.
(39)

When SO is achieved, we have

p
∗

�
􏽐a∈Aβ

m
ta 􏽥va( 􏼁 δw

a,r1
− δw

a,r2
􏼐 􏼑 + T

w
r1

− T
w
r2

e
w
r2

− e
w
r1

� 1 +
T

w
r1

− T
w
r2

e
w
r2

− e
w
r1

.

(40)

From the second condition, we can get

􏽥κw
r1

− φw � − κw
r1

− φw􏼐 􏼑, (41)

namely,

e
w
r1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � e
w
r2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (42)

and it follows readily that

T
w
r1

� T
w
r2

. (43)

.en, we have

p
∗

� 1 +
T

w
r1

− T
w
r2

e
w
r2

− e
w
r1

� 1. (44)

Considering the other conditions above, we can con-
clude that the solution of VI problem (12) can be decen-
tralized into SO flow pattern. .is completes the proof.

With the two conditions in Proposition 5 satisfied, the
tradable credit scheme achieving SO flow pattern can be
determined. As mentioned before, the first condition can be
always ensured in realistic network; however, the second
condition is rather difficult to achieve in practice. .is is
because the exact two paths for calculation of credit price can
be only determined endogenously based on the resultant
flow pattern. In other words, we cannot locate the referred r1
and r2 in Proposition 5 in the network when designing the
credit scheme. .us, the conditions for decentralizing SO
flow pattern are theoretical but not practical. In fact, all the
three papers considering transaction cost [8, 27, 28] have
consistently concluded that it is practically difficult to design
a credit scheme decentralizing SO flow pattern when
transaction cost is present. □

4. Solution Algorithm

Under a given TCS, solving the credit price is a critical step to
find the equilibrium flow pattern. Since the ME credit price is
exactly the Lagrangian multiplier with respect to the credit
conservation constraint, algorithms that can acquire solutions
to both the primal and the dual problems are theoretically able
to solve VI problem (12). In the literature, a gradient pro-
jection method was proposed by Han and Cheng [34] for
solving equilibrium credit price and successfully applied in
solving minimization model [35] and VI model [19]. In this
section, a more efficient trial-and-error method is developed
to solve the credit price in VI problem (12).

Essentially, a trial-and-error method is to find an
equilibrium where the input equals the output when the
analytical relationship between the two terms is uncertain.
.e trial-and-error method has been widely adopted in
congestion pricing. Yang et al. [36] first developed a trial-
and-error implementation scheme of marginal-cost pricing
on a general road network in the absence of demand
functions. .en, Han and Yang [37] updated the scheme by
reducing the trials needed for termination. Zhou et al. [38]
proposed a trial-and-error congestion pricing scheme that
addresses the capacity constraints as well. More recently,
Guo et al. [39] proposed two trial-and-error operation
schemes for the transport system when both the function of
in-vehicle congestion costs and the distribution of perceived
travel cost errors are unknown.

In the context of TCS, Wang and Yang [40] proposed a
trial-and-error implementation of the tradable credit
schemes for a single road. Later, the authors extended it to a
general network case [41]. Different from the two existing
works, which focus on solving equilibrium travel demand
and optimal credit charge pattern, respectively, we propose a
trial-and-error method for solving the equilibrium credit
price in this paper.

In Yang et al.’s work [36], a trial-and-error method was
proposed for the implementation of marginal-cost pricing in
the absence of demand function. It inputs a target demand d
and outputs the observed demand d in each iteration. And it is
proved that the input and the output can both converge to the
system optimal (SO) solution dSO. In this example, the input as
well as the output is the travel demand pattern, and the demand
function relating the travel cost and travel demand is uncertain.
In the system proposed in this paper, the uncertainty lies in the
relationship between the link flow pattern and the resultant
credit price. .us, following the same trial-and-error fashion,
we can iteratively input a credit price and solve an updated
price as an output until the two matches with each other. In
each iteration of the trial-and-error procedure, the method of
successive averages (MSA) [42] is applied to solve the UE flow
patterns, which is termed “inner iterations.” Accordingly, the
iterative updates on credit price is termed “outer iterations.”

In the MSA, the move size αn is not determined on the
basis of some characteristics of the current solution. Instead,
the sequence of move sizes α1, α2, . . . is determined priori.
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And the predetermined sequence of move sizes should
satisfy the following two conditions:

0< αn ≤ 1, (45)

􏽘

∞

n�1
αn � +∞, (46)

􏽘

∞

n�1
α2n < +∞. (47)

Condition (45) represents the nonnegative move sizes.
Conditions (46) and (47) guarantee that the algorithm will
not stop prematurely and the variance of the variable will
diminish as the iterations progress, respectively. A typical
sequence of αn is αn � 1/n+ 1. And to settle the non-
monotonic convergence using the relative change in link
flow, the convergence measure on the flow in the last several
iterations is applied, as shown in the following equation:

����������������

􏽐a∈A v
(n+1)
a − v

(n)
a􏼐 􏼑

2
􏽱

􏽐a∈Av
(n)
a

≤ ε0, (48)

where

v
(n)
a �

1
m

v
(n)
a + v

(n−1)
a + · · · + v

(n−m+1)
a􏼐 􏼑 �

1
m

􏽘

m−1

l�0
v

(n−1)
a .

(49)

.e details of the complete algorithm are given as
follows:

Step 0. Determine the constant of tolerances εp and ε0
and the sequence of move sizes αn � 1/(n + 1). Let
[pa(1) + pb(1)] denote the initial search interval with
pa (1)� 0, and pb (1) is a sufficiently large number
ensuring that the ME credit price p∗ is within the
interval. Set p(1) � [pa(1) + pb(1)]/2.
Step 1. Run an MSA algorithm with p (i).

(i) Initialization. Perform all-or-nothing assignments
for each user class based on the set of initial travel
disutility cM(0)

r,w using equation (6) given p� p (i),
vM � 0, and v � 0. .is generates a set of link flow
(vM(1)

, v(1)). Set n: � 1.
(ii) Update. cm(n)

r,w � 􏽐a∈Aβ
mta(v(n)

a )δw
a,r + p(i)ew

r + Tw
r

and get cM(n)

r,w .
(iii) Direction Finding. Perform all-or-nothing as-

signments for each user class based on the current
set of travel disutility cM(n)

r,w given p� p (i),
vM � vM(n) , and v � v(n). .is yields an auxiliary
link flow pattern (yM(n)

, y(n)).
(iv) Move. Find the new flow pattern (vM(n+1)

, v(n+1)) by
setting

v
M(n+1)

� v
M(n)

+ αn y
M(n)

− v
M(n)

􏼒 􏼓. (50)

(v) Convergence Criterion. If the convergence criterion

􏽘
m∈M

������������������

􏽐a∈A v
m(n+1)
a − v

m(n)
a􏼐 􏼑

􏽱

􏽐a∈Av
m(n)
a

≤ ε0, (51)

is satisfied, stop the MSA algorithm and return
vM∗(i) � vM(n+1) , v∗(i) � v(n+1). Otherwise, set
n≔ n+ 1 and go to (ii).

Step 2. Check the scheme validity. If 􏽐a∈Aκav∗a <K, set p
(i+ 1)� 0. Otherwise, calculate p(i) using equation
(36). Let

pa(i + 1) � max pa(i), min (p(i), p (i))􏼈 􏼉,

pb(i + 1) � max pb(i), min (p(i), p (i))􏼈 􏼉.
(52)

.en, set

p(i + 1) �
1
2

pa(i + 1) + pb(i + 1)􏼂 􏼃. (53)

Step 3. If the convergence criterion

|p(i + 1) − p(i)|≤ εp, (54)

is satisfied, stop the algorithm and return p∗ � p (i) and
p∗ � p(i) and (vM∗(i), v∗(i)). Otherwise, set i≔ i+ 1
and go to Step 1.

Next, we show that the algorithm is guaranteed to
converge, and the convergence point exactly refers to the UE
flow pattern (vM∗, v∗) and ME credit price p∗.

First, we demonstrate some essential convergence
properties of MSA as inner iteration.

Proposition 6. With a given credit price p (i), the generated
link flows by the iterative procedure have the following
convergence properties:

lim
n⟶∞

v
M(n)

� v
M∗

(i),

lim
n⟶∞

v
(n)

� v
∗
(i),

lim
n⟶∞

􏽘
m∈M

�������������������

􏽐a∈A v
m(n+1)
a − v

m(n)
a􏼐 􏼑

2
􏽱

􏽐a∈Av
m(n)
a

� 0,

(55)

where (vM∗(i), v∗(i)) is the UE link flow pattern with the
generalized travel cost function (6) in i-th iteration with p (i).

Proof. It should be noted that in each inner iteration with
MSA, the credit cost and transaction cost can be seen as
constants in the generalized travel cost function (6), since the
credit price and the trading volume are given before. .us,
the generalized travel cost cm

r,w is strictly convex in terms of
link flows. With a descent vector d(n) � yM(n)

− vM(n) , the
proposition of convergence regarding the method of suc-
cessive averages [42] does hold for the link flow updating
rule in equation (50). In other words, we have
limn⟶∞v(n) � v∗(i), which naturally results in
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limn⟶∞􏽐m∈M(

�����������������

􏽐a∈A(v(n+1)
a − vm(n)

a )2
􏽱

/􏽐a∈Avm(n)

a ) � 0. .is
completes the proof.

According to Proposition 6, (vM∗(i), v∗(i)) will be the
solution flow pattern of VI problem (12) if p (i) is the ME
credit price..en, we give the proof that the generated credit
price by the outer iteration can converge to the ME unit
credit price. □

Proposition 7. ;e generated credit price by the iterative
procedure can converge to the ME credit price with i⟶∞,
i.e.,

lim
i⟶∞

p(i) � p
∗
. (56)

Proof. We first show that for any i, it always holds that
pb(i + 1) − pa(i + 1)≤([pb(i) − pa(i)]/2). If p(i)≤p(i), then

pb(i + 1) − pa(i + 1)

� min pb (i), max (p (i), p (i))􏼈 􏼉

− max pa(i), min(p (i), p (i))􏼈 􏼉

� min pb (i), p (i)􏼈 􏼉 − max pa(i), p (i)􏼈 􏼉

≤pb(i) − p(i) �
1
2

pb(i) − pa(i)􏼂 􏼃.

(57)

If p(i)>p(i), then

pb(i + 1) − pa(i + 1)

� min pb(i), max(p(i), p (i))􏼈 􏼉 − max pa(i), min(p(i), p(i))􏼈 􏼉

� min pb(i), p(i)􏼈 􏼉 − max pa(i), p(i)􏼈 􏼉

≤p(i) − pa(i) �
1
2

pb(i) − pa(i)􏼂 􏼃.

(58)

.erefore, we have

pb(i + 1) − pa(i + 1)≤
1
2

pb(i) − pa(i)􏼂 􏼃

≤
1
2i

pb(1) − pa(1)􏼂 􏼃,

(59)

which leads to

lim
i⟶∞

pb(i) − pa(i)􏼂 􏼃 � 0. (60)

Recall that p(i) � ([pa(i) + pb(i)]/2); we learn that p (i)
can always converge to a point, i.e.,

lim
i⟶∞

pa(i) � lim
i⟶∞

pb(i) � lim
i⟶∞

p(i) � p0. (61)

When convergence is achieved, the convergence point
p(i) � p0 and corresponding (vM∗(i), v∗(i)) exactly satisfy
ME conditions and UE conditions..is implies the system is
at equilibrium. Due to the uniqueness of credit price at
equilibrium, it can be referred that the convergence point p0
must be the ME credit price p∗, i.e., limi⟶∞p(i) � p∗. .is
completes the proof. □

5. Numerical Examples and Findings

5.1. ;e Computational Efficiency of the Solution Algorithm.
In this subsection, we adopt two networks shown in Figure 1
to demonstrate the convergence properties of the proposed
algorithm. .e Sioux Falls network is a small network
consisting of 24 nodes, 76 links, and 528 O-D pairs. .e
Anaheim network is a midsize network consisting of 416
nodes, 914 links, and 1406 O-D pairs. .e relevant network
data were taken from the transportation network datasets
maintained by Stabler et al. [43].

To compare the bisection-based trial-and-error method
with traditional one, we solve model (12) for the two net-
works by the gradient projection method (the algorithm is
given in Appendix A) and the proposed method, respec-
tively. Both algorithms terminate based on the difference of
credit prices in successive iterations.

We assume two user classes with β1 � 1 and β2 � 2, and
they are uniformly distributed to all the O-D pairs with the
proportion of 60% and 40%, respectively. .e link travel
times are calculated from the Bureau of Public Road (BPR)
function as below:

ta � t
0
a 1 + 0.15

va

Ca

􏼠 􏼡

4
⎛⎝ ⎞⎠, ∀a ∈ A, (62)

where t0a, a ∈ A is the link free flow travel time and
Ca, a ∈ A is the link capacity. Further, we assume that each
traveler gets 5 credits initially and set the credit charge on
each link as the difference between the marginal social cost
and the marginal private cost at SO status, i.e.,

κa � va

dta va( 􏼁

dva

|va�􏽥va
, ∀a ∈ A, (63)

and set η� 1, ρ� 0.1.
Figure 2 shows the convergence results of the two

methods. From the figure, it is clear that the number of it-
erations needed for termination of the proposed algorithm is
considerably less than that of the gradient projection method.
From Table 1, we can also see that the bisection-based trial-
and-error method can save a half of time for Sioux Falls
network and about 87.5% for Anaheim network, indicating
that the proposedmethod far outperforms the traditional one.

.e computational efficiency of the proposed method
may be explained by higher rate of convergence of the bi-
section-basedmethod as well as the use of equation (36) in the
algorithm. In other words, the calculation of the credit price in
each iteration fully explores the information acquired from
the flow pattern. In contrast, the projection-based method
does not explore any information from equation (36), and
instead, it updates based on the total charged credits, which is
much more general.

5.2. ;e Significance of considering Heterogenous VOT.
.en, a toy network is adopted in the subsequent analysis to
present more detailed findings (according to equation (6),
the trading volume can only be acquired when the path flow
pattern is obtainable; hence, a large-scale network cannot be
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Figure 1: .e two test networks. (a) .e Sioux Falls network. (b) .e Anaheim network.
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Figure 2: Convergence plots on the two example networks. (a) Results on Sioux Falls network. (b) Results on Anaheim network.

Table 1: CPU times for the two methods in solving the VI model on example networks.

Solution method
Example network

Sioux Falls (s) Anaheim (s)
Gradient projection 167.3 5015.3
Bisection-based trial-and-error 82.6 626.8
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applied to investigate the variation in the trading volume;
besides, it is also much easier to capture the travel costs of
different user classes; therefore, a small network is adopted
in the subsequent analysis).

.e example network, as shown in Figure 3, consists of
six nodes, seven links, two O-D pairs: O-D pair 1 (node
1⟶ node 2) and O-D pair 2 (node 3⟶ node 4), and four
paths: path 1 (link 1), path 2 (link 2-5-6), path 3 (link 4-5-7),
and path 4 (link 3). .e information of the network and
credit scheme is given in Table 2.

We assume that there are three user classes with β1� 1,
β2� 2, and β3� 3..e travel demands for the three user classes
are 30, 20, and 10 units for O-D pair 1 and 30, 10, and 10 units
for O-D pair 2, respectively. We set the user-anonymous credit
scheme consistent with that in [28], where the total amount of
distributed credits is 660, and each traveler on the network is
initially distributed 6 credits.

Given the information above, we first examine the
significance of considering heterogenous VOT. With η� 1,
we solve the equilibrium credit price and system travel time
for three cases with homogenous VOT as 1, 1.64 (it is the
weighted average of the proposed VOT profile over travel
demands, which can be calculated as
(1× 60 + 2× 30 + 3× 20) (60 + 50)� 1.64), and 3, respectively,
and compare them with the heterogenous case. .e results
are shown in Figure 4.

From Figure 4(a), it is clear that excluding user het-
erogeneity leads to an underestimation of the system travel
time, and the impact of transaction cost is considerably less
significant in the homogenous cases. Furthermore, it can be
seen from Figure 4(b) that the equilibrium credit price
increases with the marginal transaction cost in homogenous
cases, while the trend in the heterogenous case is the op-
posite. .e diversity between the homogenous and heter-
ogenous cases can be explained by the varying weights on
travel time for different user classes, and such differences
verify the significance of considering user heterogeneity in
the equilibrium problem.

5.3. ;e Impact of Transaction Cost. Next, we move on to
explore the impacts of transaction costs using the same toy
network.

5.3.1. ;e Impact of Transaction Cost on Credit Market.
.e impact on the credit market can be sufficiently reflected
by the total trading volume and the resultant credit price.We
solve the proposed model for the three kinds of markets
discussed in Section 2.1 (i.e., a trading-encouraging market
for η< 1, a trading-controlling for η> 1, and a moderate
market for η� 1). .e results are shown in Figure 5.

From the figure, it can be observed that the increase in ρ
brings a drop in trading volume in all cases. However, the
decrease in the trading-encouraging market is very limited,
which is exactly due to the monotonically decreasing
marginal transaction cost with respect to the trading volume.
In other words, the inhibition of transaction cost on credit
trading is largely compensated by the “discounts” over
quantity in the market.

In terms of the credit price, we can see that there is no
remarkable change in the credit price in the trading-
encouraging market as well. For the other two markets, it is
noted that the changing patterns are roughly consistent,
where the credit price decreases at first and then turns to an
increasing trend halfway at some values of ρ. .is is in-
consistent with the previous work indicating that the in-
crease in transaction cost could suppress trading volumes
and thus reduce credit price considering homogenous
travelers on the network [27]. To figure out the factors at-
tributing to the counterintuitive increase in credit price, we
further investigate the trading volumes of different user
classes, as shown in Figure 6.

Interestingly, we find that the value of ρ after which the
credit price swerves to an increasing trend is exactly the
turning point where the credit demand for user class 3
exceeds that for user class 2 (see the curves η� 1, 2 in
Figures 5(b) and 6). .is implies that when the credit de-
mand for users with the highest VOT becomes dominant,
the credit price can increase with the transaction cost even
though credit trading has been suppressed.

5.3.2. ;e Impact of Transaction Cost on Individual Travel
Costs. To investigate the impact of transaction cost on in-
dividual travel cost, we solve the user-equilibrium travel cost

Origin

1
1

2

4

Origin

Destination

Destination

3 3

5
5 6

6

4

2

7

Figure 3: .e toy network.

Table 2: Input data of the small network.

Link Free flow travel time Capacity Credit charge
1 10 35 9
2 3 30 2
3 12 35 8
4 4 35 1
5 5 35 1
6 3 35 2
7 4 25 1
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excluding the TCS as a benchmark and compare it with the
cases under the scheme.

Figure 7 shows the variations in better-off degree of
individual monetary travel cost in different kinds of markets.
.e main findings are listed as below.

First, we find that user classes 2 and 3 can always benefit
from the TCSwhen η� 0.5, while user class 1 can gain benefits
only when ρ≤ 0.4. In other words, a Pareto-improving can be
achieved given a sufficiently small ρ in the trading-

encouraging market. By comparison, in the trading-con-
trolling market, the travel utility for user class 1 can be de-
teriorated even when ρ is less than 0.1, meaning that it is
practically difficult to achieve a Pareto-improving in such
case.

On the other hand, it is interesting to note that the users
with the highest VOTenjoy the most benefits brought by the
TCS, and these users can always experience a reduction in
travel cost in each of the three markets. Moreover, taking a
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Figure 4: Variations in trading volume and credit price with different types of transaction costs. (a) Trading volume. (b) Credit price.
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Figure 6: Trading volumes of different user classes. (a) η� 1. (b) η� 2.
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close look at the slopes of the three curves, we find that the
marginal contribution of increasing ρ to the reduction in
better-off degree declines with VOT, meaning that users
with the lowest VOT suffer most from a unit change in
transaction cost.

To sum up, the trading volume and equilibrium credit
price are relatively insensitive to parameter ρ in the trading-
encouraging market, while there are remarkable changes in
the other two markets. Besides, users with the higher VOT
are more likely to experience a reduction in travel cost with
the implementation of TCS even though transaction cost is
considered. Meanwhile, those with the lowest VOTsuffer the
most from the increase in transaction cost in all the three
markets, and it is extremely difficult to achieve a Pareto-
improving in the trading-controlling market.

6. Conclusions and Extensions

In this paper, the impacts of transaction cost are investi-
gated under a tradable credit scheme considering user
heterogeneity. We consider a multiclass tradable credit
scheme characterized by user-anonymous O-D-specific
credit distribution and link-specific credit charge and in-
corporate transaction cost which is associated with trading
volume and independent of credit price. .ree different
kinds of credit-trading markets, which are defined based on
the monotonicity of the marginal transaction cost, are
considered. We formulate the UE and ME problems as a VI
problem with existence of solutions guaranteed. A novel
bisection-based trial-and-error method is proposed to
solve the problem. Based on the results from the example
networks, we first demonstrate the convergence efficiency

of the proposed algorithm and the significance of con-
sidering user heterogeneity in the equilibrium problem.
.en, we discuss the impacts of transaction cost on the
functioning of credit market as well as the individual travel
cost. .e main findings are given as follows:

(i) .e trading volume and equilibrium credit price are
relatively insensitive to the change of transaction
cost in the trading-encouraging market.

(ii) In the moderate and the trading-controlling
market, trading volume is observed to be sup-
pressed significantly as the transaction cost in-
creases. Moreover, when the credit demand for
users with the highest VOT becomes dominant,
the credit price can increase with the transaction
cost even though credit trading has been
suppressed.

(iii) Users with the higher VOT are more likely to ex-
perience a reduction in travel cost with the
implementation of TCS, even though transaction
cost is considered. Meanwhile, those with the lowest
VOT always suffer the most from the increase in
transaction cost in all the three markets.

(iv) A Pareto-improving can be achieved given a suffi-
ciently small marginal transaction cost in the
trading-encouraging market. However, it is prac-
tically difficult to achieve a Pareto-improving in the
trading-controlling market.

Unfortunately, although we establish the conditions
for SO credit scheme design in presence of transaction
cost, it is practically difficult in reality. Future research
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Figure 7: Variations in better-off degree with different types of transaction costs. (a) Better-off degree with η� 0.5. (b) Better-off degree with
η� 1.0. (c) Better-off degree with η� 2.0.

Mathematical Problems in Engineering 15



studies can be carried out in designing tradable credit
scheme for other objectives, such as minimizing the ef-
ficiency loss caused by the transaction cost. And the
discrete set of VOT can be generalized to a continuous
distribution, which can relax the assumption in Propo-
sition 3 as well as the conditions for uniqueness of credit
price [2]. Besides, the assumption of fixed demand can be
relaxed to the elastic demand case. In such a situation, the
impacts of transaction cost on travel demand are con-
sidered and a more realistic equilibrium flow pattern is
expected to be acquired.

Appendix

A. The Algorithm of the Gradient
Projection Method

.e gradient projection method for solving the equilibrium
credit price is listed as below.

Step 0. Determine the constant of tolerance εp and the
sequence of move sizes αn given by equations
(46)–(49). Randomly initialize the credit price p(i)> 0.
Set i: � 1.
Step 1. Run an MSA algorithm with p (i) and obtain the
equilibrium flow pattern vM∗(i) and v∗(i) (the pro-
cedure is consistent with that in Section 4).
Step 2. Check the scheme validity. If 􏽐a∈Aκav∗a(i)<K,
set p (i+ 1)� 0. Otherwise, calculate p (i+ 1) by
p(i + 1) � max(0, p(i) + (1/n)(􏽐a∈Aκav∗a(i) − K)).
Step 3. If the convergence criterion

|p(i + 1) − p(i)|≤ εp, (A.1)

is satisfied, stop the algorithm and return p∗ � p (i) and
(vM∗, v∗) � (vM∗(i), v∗(i)). Otherwise, set i≔ i+ 1
and go to Step 1.
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