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To overcome the shortcomings that the early fault characteristics of rolling bearing are not easy to be extracted and the
identification accuracy is not high enough, a novel collaborative diagnosis method is presented combined with VMD and LSSVM
for incipient faults of rolling bearing. First, the basic concept of VMD was introduced in detail, and then, the adaptive selection
principle of parameter K in VMD was constructed by instantaneous frequency mean. Furthermore, we used Lagrangian
polynomial and Euclidean norm to verify the value of K accurately. Secondly, we proposed a classification algorithm based on
PSO-optimized LSSVM. Meanwhile, the flowchart of the classification algorithm of fault modes may be also designed. Third, the
experiment shows that the presented algorithm in this paper is effective by using the existing failure data provided by the
laboratory of Guangdong Petrochemical Research Institute. Finally, some conclusions and application prospects were discussed.

1. Introduction

In recent years, the machinery has become more high-speed,
intelligentized, and complicated with the development of the
modern industrialization. As we all know, the rotating
machinery is the cornerstone of transportation, power
electronics, and manufacturing. So, how to guarantee the
security of whole rotating machinery systems is very im-
portant in the industrial field. In the actual industrial sce-
nario, the engineers and researchers have noticed that the
safety of the bearings is often one of the critical joints, which
ensures the global safety of whole rotating machinery [1].
Therefore, it is essential to detect and assess the performance
of the running state of the bearings. The traditional fault
diagnosis methods that judge and evaluate the running state
of the bearing are operated or implemented by observing the
frequency of the vibration signal. The skeleton of these
methods consists of just three steps: signal processing,
feature extraction, and fault pattern recognition. In most
realistic scenarios, signal processing is often used as the
preparing work for the feature extraction. Of course, the
feature extraction is also used as the prepared work for the

fault pattern recognition because the classification accuracy
of the fault modes is the final objective in fault diagnosis of
the bearing, so the signal processing and feature extraction
are often integrated to analyze the vibration signals of the
bearing. And, how to implement them becomes critical.
For the question raised above, the scholars have pre-
sented and constructed some models such as Empirical
Mode Decomposition (EMD), Wavelet Transform (WT),
Local Mean Value Decomposition (LMVD), and Variational
Mode Decomposition (VMD) in references [2-4]. The ex-
periment results show that these methods may acquire the
most of the valuable information in the specified scenarios.
Unfortunately, almost all these methods have some
shortcomings. For example, the EMD and LMD have the
phenomenon such as modal aliasing and endpoint effect.
The WT needs to select the wavelet base and decomposition
scale because the finite length may cause inaccurate de-
composition of complete components. In the VMD, if the
parameter K is wrongly selected, the phenomenon such as
overdecomposition or underdecomposition will appear. To
overcome these shortcomings, some improved algorithms
have been presented such as Simplistic Geometric Mode
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Decomposition (SGMD), Adaptive Chirped Mode De-
composition (ACMD), and New Spectral Analysis Methods
(NSAM) in [5-7]. Especially, to address the shortcoming of
the EMD, the study in [8] has constructed the EMD en-
velope correction method using B-spline interpolation and
base spline. These methods may alleviate the modal aliasing
problem of high-frequency signals. Meanwhile, to optimally
select the parameter K of VMD, the genetic variation sample
group, kurtosis criterion variational mode decomposition,
and self-organizing mapping (SOM) neural network have
been adopted to adaptively determine the optimal value of
the parameter K in [9-12]. To verify the effectiveness of
these new methods, some experiment examples have been
used to simulate in [13-17]. The simulated results showed
that these improved models may solve the shortcomings to a
certain extent. For practical application, the constant im-
provement of the existing methods is the goal of the en-
gineers and scholars. Thus, we will treat the problem in this
paper.

On the contrary, in the view of fault diagnosis, to get the
accurate classification of fault modes is the other main
objective of the bearing fault diagnosis. In fact, an excellent
pattern recognition method of the fault modes has an
important influence for the final diagnosis accuracy. Based
on this objective, support vector machine (SVM), least-
squares’ support vector machine (LSSVM), BP neural
network (BPNN), fuzzy logic (FM), and other methods
have been successfully applied in [18-23]. And, then, these
fault pattern recognition methods have been widely used in
different industrial environments. Further, some improved
methods of the fault pattern recognition were studied in
[24, 25]. For example, the double support-vector machine
and smooth iterative online-support tensor algorithm are
proposed to improve the performance of the traditional
support vector machine in [26, 27]. The least-squares’
ground projection method of the double support-vector
machine reduces the diagnostic error in [28]. Meanwhile,
to optimize the penalty factor C and kernel parameter of
LSSVM, some new algorithms such as the Moth-flame
Optimization (MFO), the von Neumann Topology Whale
Optimization Algorithm (VNWOA), Quantum Particle
Swarm (QPS), and Chaotic Antlion Algorithm (CAA) were
introduced to implement the optimization operation for
enhancing the precision of fault diagnosis in [29-34]. The
experiments have verified the performance of these pre-
sented algorithms. However, the global searching ability of
these algorithms is weak in the real industrial environment.
So, searching the improved pattern recognition method to
enhance the global searching ability and improve the
classification accuracy of fault modes is another concern in
our paper.

Based on the two points mentioned above, an improved
fault diagnosis of the bearing will be presented combined
with the VMD algorithm based on instantaneous frequency
optimization and particle swarm optimization least-squares’
support vector machine in our paper. The rest of this paper is
arranged as follows. In Section 2, the adaptive selection
principle of K value in the VMD algorithm is given in detail.
In Section 3, the least-squares’ support vector machine

Mathematical Problems in Engineering

classification model for particle swarm optimization (PSO)
is established, and the concrete flowchart of the fault di-
agnosis process is designed and analyzed. In Section 4, some
simulated examples were used to verify the effectiveness of
our algorithm through the existing failure data provided by
the laboratory of Guangdong Petrochemical Research In-
stitute. Finally, some conclusions are summarized in Section
5.

2. Adaptive Selection Principle of Parameter
K in the VMD Algorithm

2.1. The Basic Concept of the VMD Decomposition Principle.
The intrinsic mode function (IMF) is defined as an FM and
AM signal by VMD decomposition and is expressed as
follows:

e () = Ay ()cos[¢y (B)],

where A (t) expresses the instantaneous amplitude, w; =
¢, (t) is the instantaneous frequency, and K represents the
number of signal components after decomposition.

Suppose the original signal f is a multicomponent
signal, which is composed of the K IMF component with
limited bandwidth, and the central frequency of each IMF is
wy. To determine the bandwidth of each mode, the following
steps are used to obtain it:

k=12..,K (1)

(1) Analytic signals of modal functions are obtained, and
Hilbert transformation is performed for each modal
function uy (¢):

[a(t) N ﬂit]uk ). (2)

(2) Mix the estimated center frequency e7*+' of each
modal analytic signal. The spectrum of each modal is
modulated to the corresponding baseband as follows:

Ha(t) N %] x uk(t)]e*fwkf. (3)

(3) Calculate the square L* norm of the gradient of the
above demodulation signal, and estimate the
bandwidth of each modal component. The constraint
variational model is established as follows:

|

where ;. = {uy,u,,...,u;} represents the K IMF compo-
nents obtained by decomposition and wy, = {w,, w,, .. ., w;}
represents the center frequency of each component.

In order to solve the above constraint variational model,
the quadratic penalty factor & and Lagrangian multiplication
operator A(t) are introduced, where the quadratic penalty
factor can guarantee the reconstruction accuracy of the

min {Z atKa(t) +é) x uk(t)]e—iwkt

{”k}’{wk} k
s.t Zuk(t) = f,
k

(4)
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signal in the presence of Gaussian noise and A (t) keeps the
constraint conditions strict. The expanded Lagrangian ex-
pression is as follows:

L(f ) w0} 1) = a Y [0

k

Ka(t) + —) x uk(t)]e jout

2

2
= u(t)
k 2

+A(), £ (1) = ) uy (1))
k
(5)

The multipliers’ alternating direction algorithm is used
to update the IMF and its center frequency, and the saddle
point of formula (4) is the optimal solution of the original
problem. All IMF in the frequency domain can be obtained
by the following formula:

ﬁZ” (w) = f(w) Yizkthi (W) + Xz(w)/z, )
1+ 2a(w— wy)

where uk“ (w) is the current residual quantity and f (w) -
Y i+ kii; (w) is the result of Wiener filtering. The new IMF
power-spectrum centers in the algorithm are as follows:

fgo wlﬁk (w)|2dw
R

~nt+l _
e =

(7)

where w{*! is the power spectrum center.

The above process is the adaptive decomposition process of
VMD. From the decomposition principle, it can be known that
VMD can well avoid the endpoint effect and modal confusion.
But, from the perspective of the actual decomposition process,
the VMD algorithm loses the ability to decompose signals
independently, which needs to preset the value of K. And, the
reasonableness of the K value determines the signal decom-
position accuracy of VMD. If the K value is estimated
according to the existing observation method, that is, observing
the center frequency differentiation of the signal component,
the better the center frequency differentiation is, the better the
selection of the K value is, and there is no overdecomposition
and underdecomposition. However, there is a large error in this
method, which makes it difficult to guarantee the decompo-
sition accuracy of the signal and also affects the final classi-
fication accuracy. Therefore, this paper proposes a method to
optimize the K value of VMD by using instantaneous fre-
quency, which can make use of the difference of instantaneous
frequency between signal components to measure the ad-
vantage of the K value.

2.2. K Value Estimation of the VMD Component Based on
Instantaneous Frequency. If the K value is set too high, the
decomposition number will be too large, and then, the
component will be fragmenting, especially at high frequency,
and the average instantaneous frequency will decrease. If the
K value is set too low, the signal will not be completely
decomposed, and the superiority of the signal component
cannot be reflected. Therefore, the original signal may be
decomposed by VMD once the K value was traversed from 2
to 10. And then, the mean values of instantaneous

frequencies may be calculated under different K values, and
the line graph may be also drawn. Lagrange polynomials
were used to fit the discrete points, and the polynomial
coefficients under different K values were extracted to
construct the coefficient vector, and then, the Euclidean
norm of the vector was calculated. The smaller the norm was,
the smoother the fitting instantaneous frequency curve was
and the better the value was.

The definition of instantaneous frequency is as follows:

1 do(t)
() =— ——, 8
Fi® 2 dt (®)
where ¢ (t) is a single-valued function of time ¢, that is, a
single-component signal on frequency. The analytic signal of
instantaneous frequency is defined as follows:

z(t) = x(t) + jx (t) = a()e/*?, 9)

where x (t) is the Hilbert transform of x(¢), z(¢) is the analytic
signal of x(t), a(t) is the module of the signal
a(t) = x2(t) + %
which is expressed as ¢(t) = arctan (X (¢)/x(¢)). The in-
stantaneous frequency multiplying the integral of the density
function over the entire time axis is the average frequency of
the signal. Through the Fourier transform of the analytic
signal z (¢) in formula (9), we can get the following formula:

Z(f) = J a(t)][“’ H-2nft]dt (10)

(t), and ¢(t) is the phase of the signal,

According to the principle of the stationary phase, the
integral of equation (10) has a maximum value at the fre-
quency f;, which needs to meet the condition d/dt[¢(t) -
2nf;(t)] = 0, namely, f;(t) = (1/2m)(de(¢t)/dt). This con-
clusion indicates that the energy of nonstationary signals is
mainly concentrated at the instantaneous frequency. This
conclusion indicates that the instantaneous frequency plays
a very important role in the recognition, detection, esti-
mation, and modeling of signals, and it can also be used as
the evaluation index of VMD decomposition signals.
Therefore, on the basis of the original VMD, the original
signal is decomposed into different signal components, and
the decomposed number is the K value. Then, the average
instantaneous frequency under different mode numbers of K
from 2 to 10 is calculated to judge the trend of the corre-
sponding line graph. The flatter the trend is, the better the
corresponding K value is, so as to realize the optimization of
the parameters of the VMD algorithm. However, this
method may be misjudged to some extent. In order to
measure the instantaneous frequency change more accu-
rately and select the optimal K value, corresponding
methods should be adopted to obtain numerical results.

2.3. The Superiority Distinction of K Values Based on
Lagrange Polynomials. After calculating the average in-
stantaneous frequency of each component, we need to adopt
an index to measure the variation trend of the instantaneous
average frequency, which can avoid the error caused by
subjective judgment. By fitting the mean instantaneous
frequency, the Lagrangian polynomials can be calculated, the



vector norm of their coefficients can be compared, and the
merits and disadvantages of the K value can be evaluated.

For any point x; (k=0,1,...,n) in the interpolation
node x,,x,,...,x,, make a polynomial [, (x) of degree n,
which satisfies the following formula:
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The basic function of Lagrange interpolation is as I, (x),

and the node is presented as x;(i=0,1,..., k- 1,k k+1,

..»n). So, I (x) is a polynomial with »n null points.
Therefore,

AT (11)
0, i+k.
(x- ) (=) o (x =) (¥ = 30) - (£ %,)
l = >
K00 = H (k= %0) -+ (X = %4 0) (K6 = i) - (35— %) (12

z#k

where [, (x)(k =0,1,...,n) is the n-order basic interpola-
tion polynomial or n-order Lagrangian interpolation basis
function on n+1 interpolation nodes. Using the n-order
basic interpolation polynomial, the n-order Lagrange
polynomial satisfying the interpolation condition P, (x;) =
f(x;)=y;(=0,1,2,...,n) can be written as follows:

Palx;) = L,(x) = Zyklkoc) Yol ()
71k (x)+

(13)
-+ v, (x).

The average instantaneous frequency of different com-
ponents is taken as the discrete point of calculating La-
grangian polynomials. After obtaining the simplest form of
the Lagrangian polynomial by calculation, the coefficients of
the polynomial are extracted and constructed into a vector,
and the Euclidean distance of the vector with different K
values is calculated. For the coefficient vector
v = (v,V,,...,v3), the Euclidean distance of the vector is

vl = X5, vi-

3. Classification Algorithm-Based Least-
Squares’ Support Vector Machine with
Particle Swarm Optimization

3.1. Basic Concept of LSSVM. The LSSVM is an improved
algorithm of the support vector machine; however, as a
binary classifier, its core idea remains unchanged, that is, to
find a hyperplane that optimizes classification and maxi-
mizes the gap between classifications, so as to improve the
credibility of classification. The difference between LSSVM
and SVM is that the construction of the objective function of
LSSVM is through the binomials for the error factor, and at
the same time, constraints are equally constraint, and in
terms of solving the optimization problem, because the
LSSVM is the constraint equation form, the solution is the
system of linear equations; to a certain extent, it reduced the
difficulty of the algorithm and raised the solving speed, and
these advantages make it different from other improvement
on the SVM algorithm. The basic principle of this method is
described as follows.

The sample of training data can be expressed as
{x;» yi}.;, x; € R"is the input vector of the ith sample, y; € R
is the target value of the ith sample, and / is the number of
training samples. In special space, the LSSVM model can be
expressed as

y(x) =w'px)+b, (14)
where ¢(x) is the mapping function of nonlinear trans-
formation, which maps the input sample data to the high-
dimensional feature space. W is the weight vector, and B is
the offset. The objective function of least-squares’ support

vector machines is described as

min](wTE) = (15)

SR

Type & is the error variable, and Y >0 is the penalty
coefficient. For the simplicity of analyzing, the Lagrangian
function is designed as follows

L(w,B,&a) =] (w,§) - Z [wgo )+b+&- yl]

(16)
where a; is the Lagrange multiplier. In the real operation, the
KKT optimal condition is used to calculate JL/0w =0,
OL/0b =0, OL/0& =0, and OL/0da; = 0. So, the following
system of linear equations should be obtained:

0 qT b 0
L)
q pp +y Illa !
p=[e(x) ¥ 0(%2) y2rr 9 (x1) 3],
I=[1,1,...,1]%,
a=[yoyp--nl
T
a=la},a,...,q]
(18)

In equation (17), I is the identity matrix. According to
the Mercer condition, the kernel function can be written as
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k(xi,xj) = go(xi)T(p(xj). (19)

After a and b can be obtained from equations (18) and
(19), the nonlinear function of LSSVM can be obtained as
follows:

1
y(x) = Zaik(xi,xj) +b. (20)
i=1

3.2. PSO Parameter Optimization for LSSVM. LSSVM re-
quires two parameters to be tuned: gam and sig2, where gam
is the regularization parameter, which determines the
minimization and smoothness of the adaptation error, and
sig2 is the parameter of the RBF function. PSO optimizes two
parameters of LSSVM, gam and sig2, to find the optimal
combination of parameters, so as to improve the classifi-
cation accuracy. The general optimization steps are as
follows:

(1) Initializing the various parameters of the PSO al-
gorithm, such as population size, learning factor, the
maximum number of iterations, initial position, and
the velocity of particles.

(2) Respectively, in the LSSVM predictive learning
sample of each particle vector, get the prediction
error of the current position value of the particle,
which is used as the fitness value for each particle.
Then, the current fitness value of each particle is
compared with the best fitness value of the particle
itself. If there are many, the current position of the
particle is taken as the best position of the particle.

(3) The adaptive value of the optimal position of each
particle was compared with the adaptive value of the
optimal position of the population. If it is better, the
optimal position of the particle is regarded as the
optimal position of the population.

(4) Use formulas (21) and (22) to update the particle
velocity and position:

v=wxv+C; xRand X (ppeg — X) 1)
+ C, x Rand X (Gpese — X)»

X=x+, (22)

where Vis the particle speed, X is the position of the
current particle, Rand () is a random number be-
tween (0, 1), and C1 and C2 are the learning factors,
usually C1=C2=1.5.

(5) Check the result of optimization (maximum number
of iterations or expected accuracy) is met or not. If
so, the optimization is completed and the optimal
solution is found. Otherwise, go to Step (2) and
continue the search.

3.3. Rolling Bearing Fault Diagnosis Steps. The acceleration
sensor is used to collect four state signals of the rolling
bearing, which are normal, bearing external crack, bearing
internal crack, and bearing wear. 10 groups of data of each
state signal are collected. Take the normal state as an ex-
ample, they were normal 1, normal 2, .. ., normal 10. Set the
signal period to 1024, which means that, in a file such as
“normal 1” with 10240 pieces of data, it is divided into
1024%10 groups. Based on the above analysis, in order to
ensure the realization of fault diagnosis and classification,
the classification algorithm flow chart can be designed as
follows:

(1) Traverse the K value of VMD (K value is the number
of original signals decomposed into different com-
ponents), input the first group of data of each state of
the original signal collected into the VMD algorithm,
and get K components under different K values
(K=2, 3, ..., 10).

(2) Calculate the average instantaneous frequency cor-
responding to different components of K, draw a line
chart, and estimate the K value through the trend of
the line chart.

(3) In order to further verify the pros and cons of K, the
different components of the average instantaneous
frequency may be used as computing Lagrange
polynomial of discrete points, and then the most
simplified forms of Lagrange polynomial can be
computed. So, the extraction of polynomial coeffi-
cients may be constructed as a vector. In fact, the
vector may be demonstrated and calculated under
different K values, coefficient of Euclidean distance,
and judge norm size to determine the optimal values
of K.

(4) Set the optimal K value as the mode number that
VMD needs to decompose. Decompose the 10
groups of data of each state and extract the time-
domain features to form the feature set.

(5) The parameters of gamand sig2 of the LSSVM al-
gorithm were optimized by the PSO algorithm.

(6) The obtained data set is input into the LSSVM
classification algorithm, which is divided into
training data and test data. The parameters of the
model are updated with the training data, and the
test data is input into the trained model to obtain the
diagnosis results of fault pattern recognition;

The corresponding flowchart is shown in Figure 1.

4. Classification Experiment

To test the validity and rationality of the algorithm, some test
data of the bearing provided by Guangdong Key Laboratory of
Petrochemical Equipment Fault Diagnosis was used to
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FiGure 1: Fault diagnosis flow chart based on optimized VMD.

simulate and experiment. This data set included the acceler-
ation changes with four different states: normal, bearing in-
ternal crack, bearing external crack, and bearing wear. The
bearing damage and data acquisition platform are shown in
Figure 2.

Figures 2(a)-2(c), respectively, represent bearing inter-
nal crack, bearing external crack, and bearing fault data
acquisition platform. The acceleration sensor was used for
data collection, with the collection period T=1024. The
collected fault data was divided into 10 groups according to
the period, and the four different bearing states were divided
into 40 groups.

Since these data are the most original vibration signal
data, it is difficult to extract subsequent features without
processing, so VMD is used to preprocess vibration signals.
In order to select the optimal decomposed mode number K,
first select 1 group from the 10 groups of data of each bearing
state to input VMD, traverse K values from 2 to 10, calculate
the instantaneous frequency mean, and get the corre-
sponding broken line chart, as shown in Figure 3.

From Figure 3, a rough estimate of K may be obtained.
Noticing that four kinds of condition is the most gentle the
most ideal when K =2, there is no high frequency under the
intermittent and suddenly curved because the original signal
only is decomposed into two components. Because the result
do not conform to the actual, K=2 is not as the objects of
choice. Thus, it can be estimated that the optimal value K in
the normal state is 3, the optimal value K in the bearing wear
state is 6, the optimal value K in the bearing internal crack
state is 4, and the optimal value K in the bearing external

crack state is 5. However, such estimation may lead to wrong
choices when the difference between the broken lines is not
large. Therefore, it is necessary to choose an index to ac-
curately judge the advantages and disadvantages of the K
value. In this paper, Lagrange polynomials are proposed to
be established, and instantaneous frequencies under each K
value are used as discrete points to calculate Lagrange
polynomials. After obtaining the simplest polynomials,
coefficients are extracted and corresponding coefficient
vectors are calculated. The smaller the Euclidean norm is, the
better the K value is. The normal state data are selected here
for experimental verification.

Table 1 shows the average instantaneous frequency
corresponding to different K values in the normal state of the
bearing, and Table 2 shows the corresponding Euclidian
norm. From Table 2, it can be seen that the norm is the
smallest when K = 2, but because it is not consistent with the
actual situation, the value of K is excluded as 2. Therefore, it
can be known that when the K value is 3, the corresponding
norm is the smallest, and the optimal modal component
number in the normal state of the bearing is 3, which is also
consistent with the estimated result of the line graph of the K
value above.

Setting the optimal K=3 as the number of modes that
VMD needed to decompose, 10 groups of data in the normal
state were decomposed in a cycle to obtain the spectrum
diagram and time-domain feature set of the modal com-
ponents after VMD decomposition.

Figure 4 represents the spectrum diagram of VMD
decomposition when K = 3 under the normal state. From the
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Bearing inner crack

Bearing outer crack

(b)

FIGURE 2: Bearing damage and fault signal acquisition platform. (a) Internal crack. (b) External crack. (c) Data acquisition platform.
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FIGURE 3: Broken line diagrams of instantaneous frequencies with different K values under various bearing conditions. (a) The changing
curve of the K value under the normal state. (b) The changing curve of the K value with the worn state. (c) The changing curve of the K value
with the internal crack. (d) The changing curve of the K value with the external state.

spectrum diagram obtained, VMD avoids the defects of
modal aliasing and endpoint effect of decomposition methods
such as EMD. Figure 5 shows the characteristic signals
extracted from the signal components under the normal state.
In this paper, 16 time-domain indexes are used to reflect the
features. The three states of wear, internal crack, and external

crack are also obtained through these steps, and then, these
feature data are put into an Excel sheet to form a feature set.
The feature set is divided into training data and test data and
input into the LSSVM toolbox for fault pattern recognition.
This paper made three contrast figures of fault diagnosis
precision. They are, respectively, as follows: VMD was optimized



FiGURE 5: Feature data extracted at K=3 in the normal state.
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TaBLE 1: Mean instantaneous frequency corresponding to different K values under the normal condition of bearing.
K fi f fs fi fs Js fr Js Jfo fio
2 0.1396 0.0656
3 0.2451 0.1391 0.0656
4 0.2450 0.1420 0.0661 0.0440
5 0.2859 0.2396 0.1420 0.0661 0.0440
6 0.4418 0.2859 0.2396 0.1420 0.0661 0.0440
7 0.4418 0.2869 0.2397 0.1455 0.1081 0.0661 0.0430
8 0.4418 0.3611 0.2859 0.2397 0.1455 0.1081 0.0661 0.0430
9 0.4418 0.3670 0.2971 0.2655 0.2377 0.1450 0.1081 0.0661 0.0430
10 0.4418 0.3690 0.2976 0.2684 0.2382 0.1455 0.1110 0.0712 0.0615 0.0430
TaBLE 2: Euclidean norm for different values of K.
K value 2 3 4 5 6 7 8 9 10
Norm 0.3525 0.7622 1.3034 2.7008 2.7934 1.6146 16.5533 3.6468 20.5225
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T - 1000 - .
10
0
500 1
-10
-20 0
0 0.2 0.4 0.6 0.8 1 -4000 -2000 0 2000 4000
10 1000
0 500
-10 0 J ‘.
0 0.2 0.4 0.6 0.8 1 —-4000 -2000 0 2000 4000
600
400 |
200 .
-5 ‘ ‘ 0
0 0.2 0.4 0.6 0.8 1 -4000 -2000 0 2000 4000
FIGURE 4: VMD decomposition spectrum at K=3 in the normal state.
A B [ ¢ D | E F ¢ i I | 1 K L I | o | |
HHANANRE 1.88543 1.341274 1.509889 —1.02457 18,9554 3.554846 2.20633 —2. 39983 4606164 1.178475  1.1702 1.379052 1. 644951 -0.15287 1.5
1.85E-17 0.B0753 0.651561 0. 716668 0.190782 0.637862 0.652105 1.075002 0. 87132 1.946323 1.126784 1.331222 1.5 1. 649888 0. 362294 1.5
3.70E-17 0.835586 0.764699 0.787485 0. 411057 0.731235 0.698205 1.181227 —0. 61948 1. 800711 1.061082 1. 413651 1.5 1.544697 0. 704575 1.5
7.40E-17 3. 334475 2.703836 2. 965486 -13. 8281 185.4391 11.11673 3.579848 —4. 44823 8. 028081 1.124427 1.073587 1.20717 1.323989 -0.37298 1.5
1. 48B-16 2. 874759 2. 397531 2.588275 -10.3923 102. 4465 8.26424 2.098596 -3.88241 6. 868374 1.110685 1. 038682 1. 153649 1.245431 0. 43743 1.5
HuHuAERE 2. 092366 1. BT3741 1. 949671 5. 80732 26, TS0Z8 4. 377996 1.B52689 2. 92451 4. 777196 1.0731B9 0.885452 0.950257 0. 988765 -0. 63396 1.5
#enHunRy 1. 055992 0. 762716 0.900142 0. 203066 1.865236 1.115119 1.350213 -1. 22771 2.577925 1.17314 1.27862 1.5 1. 770268 0.172447 1.5
4.63B-17 0.B98326 0.666452 0.772358 0.15261 0.976847 0.806989 1.158538 -1.03074 2. 189278 1.163004 1. 269663 1.5 1.738366 0. 210514 1.5
9. 25E-18 0. 615115 0.490548 0. 543273 0. 078661 0. 214742 0. 378306 0.514909 0. 67107 1.485977 1.13224 1.324808 1.5 1.661221 0. 337979 1.5
7.40B-17 2. 946018 2. 221058 2. 547458 6. 018305 113. 1262 8, 684324 3.821187 -3.35121  7.1724 1.156807 1.206672 1.5 1.720436 0. 235164 1.5
1.B5E-17 2.562754 1.661417 2.12669 1.035979 64.70221 6.567709 3.190034 —3.08476 6. 274791 1.205044 1. 244768 1.5 1.920069 0.06155 1.5
0 1.925602 1.565912 1.714613 -2, 70786 20.62326 3. 707943 2.081096 -2, 57192 4. 633016 1.123053 1.070364 1.202076 1.316227 —0.37925 1.5
ftEHAE 0. 120137 0. 096728 0. 106525 —0. 00062 0. 000312 0. 014433 0.129896 0. 15979 0. 289684 1.127781 1.081238 1.219399 1. 342899 0. 35761 L5
gusang 0.197003 0.163988  0.17722 0. 00331 0.002259 0.038B1 0.205139 0. 26563 0.470969 1.111633  1.0413 1.157543 1.250941 -0.43286 15
HuHHANEE 0. 254554 0. 200665 0. 223777 0. 00519 0. 006298 0. 064798 0. 280407 0. 33567 0. 616163 1.137534 1.101913 1.253463 1. 397639 0. 31401 1.5
HUEHANEE 2. 661134 2. 039942 2. 314493 4. 96642 75. 22431 7. 081634 2.993931 -3.47174 6.465671 1.14977 1.125058 1.293558 1. 467655 -0. 26354 15
9.250-17 2.2B1643 1.718056 1.971721 ~2.77554  40.652 5.2056894 2.596097 -2. 95758 5.553679 1. 157183 1.137819 1.316666 1.511067 -0.23367 15
w1, 625899 1. 233083 1. 408616 —1. 05461 10. 48251 2. 643547 1.841046 —2.11202 3.95487 1.154253 1.132879 1.307629 1. 493773 -0.24537 1.5
1.BSE-17 0.402741 0. 36874 0.379648 0.046126 0.039463  0.1622 0.569471 -0.29353 0.863002 1.060829 1. 413989 1.5 1.544372 0. 706095 1.5
0 0.324073 0. 295647 0.304307 0. 02362 0.016545 0.105023 0.457361 0. 25418 0. TL1544 1.062856 1.411291 5 1.546983 0. 693993 1.5
1.B5E-17 0.217502 0.198922 0.204911 0.007227 0.003357 0.047307 0.307366 —0.16393 0. 471295 1.061446 1. 413167 1.5 1.545163 0. 702403 1.5
HHEHE 0. 661091 0. 600157 0. 620391 0.195822 0. 286507 0. 437041 0.930586 0. 54319 1. 473779 1.065604 1.407653 1.5 1. 550571 0. 677766 1.5
fER 0. 555364 0. 492108 0.514713 0.10303 0.142693 0.308429 0.772069 0. 51084 1.282905 1.078978 1.390204 1.5 1.568902 0. 601496 1.5
fHEE 0. 377365 0. 277079 0. 323344 0.010493 0. 030418 0. 142404 0. 485016 0. 43532 0. 920334 1.167068 1.285272 1.5 1.750461 0.195265 1.5
HEFHEREE 0. ARROTT O.R74112 0. A109601 0. 14289 0. RRAT04 0. 473RRG 0. 714087 —0. 8284 1. A42465  1.11041 1. 07918 1. 1825811 1. 243R27 —0. 43R7A 1.8
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Optimize VMD not optimize LSSVM diagnostic accuracy
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F1GURE 6: Comparison of diagnosis accuracy of optimized VMD, unoptimized LSSVM, and unoptimized. (a) Result of optimized VMD and

unoptimized LSSVM. (b) Diagnosis accuracy of nonoptimized.

The diagnostic accuracy of VMD unoptimized LSSVM is
optimized accuracy = 91.8333%
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FiGgure 7: Comparison of diagnosis accuracy of optimized LSSVM, unoptimized VMD, and unoptimized. (a) Result of optimized LSSVM

and unoptimized VMD. (b) Diagnosis accuracy of nonoptimized.

and unoptimized, LSSVM was optimized and unoptimized, as
well as the condition of the VMD and LSSVM was optimized
and unoptimized. Figure 6(a) shows that the fault diagnosis
accuracy of optimized VMD is 91.5%. Figure 6(b) shows that the
diagnostic accuracy of unoptimized VMD is 88.3333%, and the
contrast figure from this group that can validate the proposed
VMD optimization method is effective; Figure 7(a) shows that
the fault diagnosis accuracy of optimized LSSVM is 91.8333%.

Compared with the result of 88.3333% without optimization, the
optimization of LSSVM also has the effect of improving the
accuracy. When VMD and LSSVM were optimized, it further
improved the accuracy of fault diagnosis, as shown in
Figure 8(a), as the accuracy was 92%. Let the optimized VMD be
abbreviated as P-VMD, and the optimized LSSVM is abbre-
viated as P-LSSVM. Table 3 lists and illustrates the fault diag-
nosis accuracy of different algorithms and our algorithm.
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Unoptimized VMD unoptimized diagnostic accuracy of
LSSVM accuracy = 88.3333%

35 ¢ 1

4 COE—— *

Category label

B L R

15+ B

Gy i b
50 100 150 200 250 300 350 400 450 500 550 600
Test sample

O Actual category
* Predicted class

(b)

FiGure 8: Comparison of diagnosis accuracy of both PSO and LSSVM optimized and nonoptimized. (a) Result of both PSO and LSSVM

optimized. (b) Diagnosis accuracy of nonoptimized.

TaBLE 3: Comparison results of fault diagnosis accuracy.

Methods VMD +LSSVM

P-VMD + LSSVM

VMD +P-LSSVM P-VMD + P-LSSVM

Accuracy 88.3333% 91.5%

91.833% 92%

From the comparison of three sets of results, we can
clearly see that the proposed method in this paper based on
instantaneous frequency optimization of the VMD fault
diagnosis method is effective.

5. Conclusions

In this paper, the K value optimization problem of the
variational modal decomposition algorithm is studied.
Considering that the mode number K of VMD needs to be
selected according to prior knowledge, improper selection
will lead to overdecomposition or underdecomposition so
that useful characteristic data cannot be extracted, ultimately
leading to the problem of low accuracy of fault diagnosis. In
this paper, the instantaneous frequency is used to find the
optimal K value of VMD decomposition. Finally, the LSSVM
model optimized by particle swarm optimization is com-
bined to carry out fault pattern recognition. The results show
the following:

(1) The advantage of measuring the value of K by the
change of the instantaneous frequency of the signal
component after VMD decomposition is more ac-
curate and simple than the previous observation
method to judge the value of K, which can avoid
overdecomposition and underdecomposition.

(2) The optimized VMD decomposition algorithm can
better reflect the characteristic parameters of vi-
bration signals, which make subsequent feature

extraction easier and helps to improve the diagnostic
accuracy. As shown in the final experimental results,
the accuracy of the optimized VMD is nearly 4%
higher than that of the unoptimized results, indi-
cating the effectiveness of this method.

(3) The use of the PSO-LSSVM classification model for
fault diagnosis can further improve the accuracy of
the final diagnosis. This conclusion can be verified by
Figures 7 and 8 in the final experimental results.

It can be seen that a joint fault diagnosis method based
on optimized VMD and LSSVM proposed in this paper
improves the accuracy of fault diagnosis.
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