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*e polygonal scaled boundary finite element method (PSBFEM) is a novel method integrating the standard scaled
boundary finite element method (SBFEM) and the polygonal mesh technique. *is work discusses developing a PSBFEM
framework within the commercial finite element software Abaqus. *e PSBFEM is implemented by the User Element
Subroutine (UEL) feature of the software. *e details on the main procedures to interact with Abaqus, defining the UEL
element, and solving the stiffness matrix by the eigenvalue decomposition are present. Moreover, we also develop the
preprocessing module and the postprocessing module using the Python script to generate meshes automatically and vi-
sualize results. Several benchmark problems from two-dimensional linear elastostatics are solved to validate the proposed
implementation. *e results show that PSBFEM-UEL has significantly better than FEM convergence and accuracy rate with
mesh refinement. *e implementation of PSBFEM-UEL can conveniently use arbitrary polygon elements by the polygon/
quadtree discretizations in the Abaqus. *e developed UEL and the associated input files can be downloaded from https://
github.com/hhupde/PSBFEM-Abaqus.

1. Introduction

*e finite element method (FEM) is a reliable computational
tool to solve partial differential equations (PDE) in science
and engineering [1–4]. A domain of complex geometry is
partitioned into a finite number of nonoverlapping sub-
domains of simplex shapes by introducing the concept of
discretization [5]. Typically, the shape of the conventional
two-dimensional finite element method is triangles or
quadrilaterals. At present, the conventional FEM also faces
several problems. For example, (a) the accuracy of the so-
lution depends on the quality of the mesh and (b) requires
sophisticated discretization techniques to generate high-
quality meshes and to capture topological changes [6]. *ese

elements used in conventional FEM must conform to the
domain’s boundary, which leads to difficulty in solving many
complex problems.

To overcome the weakness above the conventional FEM,
researchers proposed other alternatives methods, such as the
meshfree method [7–9], the smoothed finite element
method [6, 10], the Isogeometric Analysis (IGA) [11], Deep
Neural Networks (DNNs) [12], and the polygonal finite
element method [10, 13]. Polygonal element with more than
four sides involves more nodes in their interpolation
compared with a conventional FEM. Simultaneously, they
generally exhibit superior solution accuracy [5]. Moreover, it
is more flexible in the discretization of complex geometry.
*erefore, these advantages have further motivated
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polygonal elements as an alternative to conventional FEM
using triangles or quadrilaterals.

*e scaled boundary finite element method (SBFEM) is
an alternative method to construct polygonal elements. Song
and Wolf developed the technique in the 1990s [14]. *e
scaled boundary finite element method is a semianalytical
method that attempts to fuse the advantages and charac-
teristics of FEM and the boundary element method (BEM)
into one new approach. *e SBFEM has been applied to
many physical field problems, such as wave propagation
[15, 16], heat conduction [17, 18], fracture [19, 20], acoustic
[21], seepage [22, 23], elastoplastic [5], and fluid [24]. For
these problems, the SBFEM presents more efficiency com-
pared with the conventional FEM.

*e polygonal scaled boundary finite element method
(PSBFEM) is a novel method integrating the standard
SBFEM and the polygonal mesh technique. *is method is
flexible in meshing complex geometries, and the use of
polygons to discretize the computational domain naturally
complements the SBFEM. Recently, an alternative mesh
technique has been widely used in geometric discretization.
In computational mechanics, the quadtree algorithm is
usually used in large-scale simulations typical in the
modeling of earthquake and ground motions [25], flood
[26], and tsunami [27]. *e quadtree algorithm is fast,
efficient, and capable of achieving rapid and smooth
transitions of element sizes between mesh refinement re-
gions [28]. Mesh generation and adaptive refinement of
quadtree meshes are straightforward [29]. Due to hanging
nodes between two adjacent elements of different sizes, it is
problematic that quadtree meshes are directly used to
simulate within the finite element method’s framework.
However, the SBFEM only discretizes in the boundary of
geometry. Hence, each cell in a quadtree mesh, regardless
of hanging nodes, is treated as a generic polygon. *is
enables the structure of the quadtree to be exploited for
efficient computations. *e ability to assume any number
of sides also enables the SBFEM to discretize curved
boundaries better.

Although the PSBFEM has become quite mature,
these studies only exist as a few stand-alone codes. *e
PSBFEM has not yet formed a part of commercial
software at present. Hence, it is not easy to use the
method in a specific community or laboratory. *e
commercial software Abaqus has powerful linear or
nonlinear, static, or dynamic analysis capabilities. Also,
Abaqus/Standard analysis provides a User Element
Subroutine (UEL) to define an element with a very
available option to interface with the code. Liang et al.
[30] developed a UEL for dynamic analysis of saturated
porous media based FEM. Kumbhar et al. [6] imple-
mented the element based smoothed finite element
method (CSFEM) by the UEL subroutines. Molnar et al.
[31] implemented an implicit, staggered elastoplastic
version of the phase-field approach Abaqus through the
UEL. *erefore, the UEL can be used to extend the
Abaqus to solve new problems conveniently.

Recently, Ya et al. [32] implemented an open-source
polyhedral SBFEM element for three-dimensional and

nonlinear problems in the commercial software Abaqus
through the UEL. *e code can use the polyhedral element
to enhance the performances of ABAQUS for interfacial
problems, and it significantly reduces the meshing burden
encountered in the FEM. At the same time, it also imple-
mented the technique of octree mesh generation, which is
efficient and robust to mesh complex geometries and
promise to integrate geometric models and numerical
analysis in a fully automatic manner.

In engineering designs, to calculate models to be used as
design tools, two-dimensional (2D) models are relatively
easy to set up and have reasonably short computational
times, which would allow sensitivity and optimization an-
alyses [33]. *ere are no available subroutines of SBFEM to
solve 2D problems in the commercial software Abaqus at
present. However, the implementation of two-dimension
can be easily derived from three-dimensional imple-
mentation. Hence, Ya et al. [32] provided a reference for
developing the UEL to solve 2D problems using the po-
lygonal scaled boundary finite element method with the
polygon/quadtree meshes.

In addition, to solve the stiffness matrix, we need to
perform the eigenvalue decomposition in the SBFEM. Ya
et al. [32] used the Linear Algebra Package (LAPACK) [34]
to perform the eigenvalue decomposition by adding the
LAPACK source codes into UEL subroutines. Hence,
LAPACK needs to be compiled every time. It will take extra
time when calling UEL subroutines. Abaqus provides
mathematical libraries (the Intel Math Kernel Library, MKL
[35]) to perform the eigenvalue decomposition.*e user can
directly use MKL only by modifying the Abaqus environ-
ment file, which can avoid taking extra time when calling
UEL subroutines.

In this paper, we implement the PSBFEM technique
with Abaqus and provide the details. For simplicity, we
consider a two-dimensional linear elastostatics problem
using the PSBFEM technique. *is work is organized as
follows: the basic principles of the SBFEM are introduced in
Section 2. Section 3 describes the implementation of
PSBFEM by the Abaqus UEL subroutine. Moreover, we
also develop the preprocessing and postprocessing module
using the Python script. Section 4 presents a detailed
convergence study by comparing the convergence and
accuracy rates with the conventional FEM using several
numerical benchmarks in two-dimensional linear elasto-
statics. Finally, the concluding remarks of this work are
summarized in Section 5.

2. Theory

2.1. -e SBFEM Equations in the 2D Linear Elastostatics.
*e fundamental difference between SBFEM and FEM is
introducing a scaling center O [36]. As shown in Figure 1, a
scaling center can be directly visible from any point on the
whole boundary of the S-element. By a scaling center, we can
transform the scaled boundary coordinates to polar coor-
dinates. Hence, the S-element can be described by a radial
coordinate ξ and a circumferential coordinate η.
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In this section, we consider a two-dimensional isotropic
linear elastostatics problem.*e governing equation and the
boundary conditions can be expressed as

= · σ + b � 0, inΩ,

u � u, on Γu,

σ · n � t, on Γt,

(1)

where = is the differential operator, σ is the Cauchy stress
tensor, b is the body force, Ω is the computational domain. Γu
is the displacement boundary conditions, and Γt is the surface
traction boundary conditions. *e displacement u and the
surface traction t are imposed on the domain boundaries Γu
and Γt with the outward unit normal n.

As illustrated in Figure 2, the SBFEM presents a local
coordinate system (ξ, η). *e coordinates of a point (x, y)

along the radial line and inside the domain can be expressed
as follows [36]:

x � ξ[N(η)] x{ }, (2a)

y � ξ[N(η)] y􏼈 􏼉, (2b)

where ξ,η are the scaled boundary coordinates in two di-
mensions, ξ is a radial coordinate, and η is the circumfer-
ential coordinate.

*e differential operator can be transformed from the
Cartesian coordinate system x, y into the scaled boundary
coordinates system ξ, η as follows:

∇ � b1􏼂 􏼃
z

zξ
+
1
ξ

b2􏼂 􏼃
z

zη
, (3)

with

b1􏼂 􏼃 �
1
Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

yb,η 0

0 −xb,η

−xb,η yb,η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4a)

b2􏼂 􏼃 �
1
Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

−yb 0
0 xb

xb −yb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4b)

where the Jacobian matrix at the boundary (ξ � 1) can be
expressed as

Jb􏼂 􏼃 �
xb yb

xb,η yb,η

⎡⎣ ⎤⎦ � xbyb,η − ybxb,η. (5)

A comma followed by a subscript is used to denote
partial differentiation to the variable in the subscript. *e
displacement field u(ξ, η) at any point in SBFEM coordi-
nates is written as

u(ξ, η)􏼈 􏼉 � Nu(η)􏼂 􏼃 u(ξ){ }, (6)

where u(ξ) is radial displacement functions along a line
connecting the scaling center O and a node at the boundary.
[Nu(η)] is the shape function matrix

Nu(η)􏼂 􏼃 �
N1(η) 0 N2(η) 0 . . . 0 Nm(η) 0

0 N1(η) 0 N2(η) . . . 0 Nm(η)
􏼢 􏼣. (7)
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Figure 1: Concept of scaled boundary finite element method.
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*e strain-displacement transition matrices
[B1] � [B1(η)] and [B2] � [B2(η)] are introduced:

B1􏼂 􏼃 � b1􏼂 􏼃 Nu􏼂 􏼃, (8a)

B2􏼂 􏼃 � b2􏼂 􏼃 Nu􏼂 􏼃.η. (8b)

*e strain field ε{ } is expressed in the scaled boundary
coordinates as

ε{ } � B1􏼂 􏼃 u(ξ){ },ξ +
1
ξ

B2􏼂 􏼃 u(ξ){ }􏼠 􏼡. (9)

*e stress field can be express as

σ{ } � [D] B1􏼂 􏼃 u(ξ){ },ξ +
1
ξ

B2􏼂 􏼃 u(ξ){ }􏼠 􏼡, (10)

where [D] is an elasticity matrix and has the form

[D] �
E

1 − v
2

1 v 0

v 1 0

0 0
1 − v

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

and for plane stress cases, E is Young’s modulus, and v is
Poisson’s ratio.

According to the virtual work principle, the radial dis-
placements function u(ξ) is the solution of the SBFEM
equation in displacement [36]:

E0􏼂 􏼃ξ2 u(ξ){ },ξξ + E0􏼂 􏼃 + E1􏼂 􏼃
T

− E1􏼂 􏼃􏼐 􏼑ξ u(ξ){ },ξ − E2􏼂 􏼃 u(ξ){ } + F(ξ) � 0, (12)

where u(ξ){ },ξξ is the second partial derivative with respect
to the variable ξ, u(ξ){ },ξ is the first partial derivative with
respect to variable ξ, [Ei], i � 0, 1, 2, are the coefficient
matrices, and F(ξ) is a load vector.

In the derivation, the governing equations of linear
elasticity are weakened in the circumferential direction,
while the strong form remains in the radial direction. *e
coefficient matrices [Ei], i � 0, 1, 2, depends only on the
geometry and material properties. *ese coefficient matrices
can be given as follows:

E0􏼂 􏼃 � 􏽚
+1

−1
B1􏼂 􏼃

T
[D] B1􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη, (13a)

E1􏼂 􏼃 � 􏽚
+1

−1
B2􏼂 􏼃

T
[D] B1􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη, (13b)

E2􏼂 􏼃 � 􏽚
+1

−1
B2􏼂 􏼃

T
[D] B2􏼂 􏼃 Jb

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dη. (13c)

When F(ξ) � 0, the solution of equation (12) is second-
order ordinary differential equations that can be obtained by
introducing the variable:

X(ξ){ } �
u(ξ){ }

q(ξ)􏼈 􏼉
􏼨 􏼩, (14)

where q(ξ) is the internal force vector. Equation (12) can be
transformed into a first-order ordinary differential equation
with twice the number of an unknown as

ξ X(ξ){ },ξ − Zp􏽨 􏽩 X(ξ){ } � 0, (15)

where the coefficient matrix [Zp] is a Hamiltonian matrix.*e
solution for a bounded domain is obtained using the positive
eigenvalues of [Zp]. Hence, [Zp] can be expressed as

Zp􏽨 􏽩 �
− E0􏼂 􏼃

− 1
E1􏼂 􏼃

T
E0􏼂 􏼃

− 1

E2􏼂 􏼃 − E1􏼂 􏼃 E0􏼂 􏼃
− 1

E1􏼂 􏼃
T

E1􏼂 􏼃 E0􏼂 􏼃
− 1

⎡⎢⎢⎣ ⎤⎥⎥⎦. (16)

*e solution of the equation (15) can be obtained by the
mathematical theorem and eigenvalue decomposition tech-
nique. *e eigenvalue decomposition of [Zp] is expressed as

Zp􏽨 􏽩
Φ(n)

u􏽨 􏽩 Φ(p)
u􏽨 􏽩

Φ(n)
q􏽨 􏽩 Φ(p)

q􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �
Φ(n)

u􏽨 􏽩 Φ(p)
u􏽨 􏽩

Φ(n)
q􏽨 􏽩 Φ(p)

q􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

λ(n)
􏽨 􏽩 0

0 λ(p)
􏽨 􏽩

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(17)
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Figure 2: *e SBFEM local coordinates.
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*e real parts of eigenvalues [λ(n)] are negative, and that
of [λ(p)] are positive. [Φ(n)

u ] and [Φ(p)
u ] are the transfor-

mation matrices corresponding to the modal displacements
and forces, respectively. *e general solution of equation
(15) can be written as

X(ξ) �
Φ(n)

u􏽨 􏽩 Φ(p)
u􏽨 􏽩

Φ(n)
q􏽨 􏽩 Φ(p)

q􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

ξ− λ(n)[ ] 0

0 ξ− λ(p)[ ]

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
c

(n)
􏽮 􏽯

c
(p)

􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(18)

where c(n)􏼈 􏼉 and c(p)􏼈 􏼉 are the integration constants. For a
super element with 0≤ ξ ≤ 1, the solution of equation (15) is

u(ξ){ } � Φ(n)
u􏽨 􏽩ξ− λ(n)[ ] c

(n)
􏽮 􏽯, (19)

q(ξ)􏼈 􏼉 � Φ(n)
q􏽨 􏽩ξ− λ(n)[ ] c

(n)
􏽮 􏽯, (20)

where the integration constants c(n)􏼈 􏼉 can be extracted from
the nodal displacements on the boundary ub􏼈 􏼉 � u{ }(ξ � 1)

as

c
(n)

􏽮 􏽯 � Φ(n)
u􏽨 􏽩

− 1
ub􏼈 􏼉. (21)

Eliminating the integration constants c(n)􏼈 􏼉 at ξ � 1 is
given

F{ } � q(ξ � 1)􏼈 􏼉 � Φ(n)
q􏽨 􏽩 Φ(n)

u􏽨 􏽩
− 1

ub􏼈 􏼉. (22)

Hence, the stiffness matrix of the S-element can be
written as

[K] � Φ(n)
q􏽨 􏽩 Φ(n)

u􏽨 􏽩
− 1

. (23)

*e displacement field u(ξ, η) inside subdomains by a
line element on the S-element can be given

u(ξ, η)􏼈 􏼉 � Nu(η)􏼂 􏼃 Φ(n)
u􏽨 􏽩ξ− λ(n)[ ] c

(n)
􏽮 􏽯. (24)

2.2. -e Element of PSBFEM. *e PSBFEM is inherently
appropriate for modeling polygons and has other promising
capabilities. Because the PSBFEM is discretized only in the
boundary, and an element of PSBFEM can assume more
complex shapes than a finite element method, the PSBFEM
element is much more flexible than the FEM element. With
such an important advantage, the PSBFEM is more appli-
cable to complex geometries than other methods. Figure 3
shows the supported element type in the PSBFEM-UEL. In
the PSBFEM-UEL, we can use the Abaqus element type,
such as CPS3, CPE3, CPS4, and CPE4. Besides, the PSBFEM-
UEL also provides the complex element type: polygonal
elements and complex quadrilateral element (quadtree
discretization). Hence, it is an effective tool to solve complex
elements in numerical analysis.

2.3. Automatic Meshes Generation. *is section uses a Py-
thon script to automatically generate PSBFEM elements by
the Delaunay triangulation [37]. *is algorithm is robust
and efficient, and it has been integrated into Abaqus CAE.

*e algorithm can be used to triangulate any set of points on
a two-dimensional plane.*e triangulated mesh is then used
to generate the polygon elements. *e detail of the polygon
generation algorithm mainly contains two steps. Firstly, we
automatically generate triangular mesh by the Abaqus CAE.
Secondly, considering each triangle interior node as the
center of the polygon element, a polygonal element can be
generated by connecting the centroids of all the triangular
elements circumventing. More detail of this algorithm is
presented in Figure 4. Finally, the PSBFEM-UEL can be
directly used with a polygon mesh generator to analyze
complex geometry problems.

*e quadtree decomposition is a tree data structure in
which each parent has precisely four children [38]. *e
quadtree meshes are fast, efficient, and capable of achieving
rapid and smooth transitions of element sizes between mesh
refinement regions. *e quadtree mesh can provide vital
support in the preprocessing for the adaptive analysis of the
SBFEM. We developed a quadtree mesh automatic gener-
ation code by a Python script. A simple example of quadtree
discretization with three levels is illustrated in Figure 5. *e
quadtree algorithm is described in more detail in [28, 38].

3. UEL Implementation of SBFEM in Abaqus

*e Abaqus/Standard analysis provides a programming
interface UEL to define the customized elements. In this
section, we present the major implementation details of UEL
for the PSBFEM in Abaqus.*e Abaqus solver can be carried
out with the UEL subroutine by the command:

abaqus job � 〈input file name〉user �〈UEL subroutine file〉.

(25)

Figure 6 shows the framework sketch of implementing
the PSBFEM within Abaqus. *is system contains three
parts: preprocessing module, PSBFEM-UEL module, and
postprocessing module. A Python script is used in pre-
processing to generate polygon SBFEM mesh and define the
loading and boundary conditions. Finally, we can obtain an
Abaqus input file by preprocessing. *e Abaqus CAE does
not support the visualization of the UEL element. *us, a
Python script is provided in the postprocessing to extract the
VTU format results and visualize them in the software
Paraview [39].

3.1. -e Implementation of PSBFEM-UEL. *e most critical
work of UEL is to update the contribution of the element to
the internal force vector RHS and the stiffness matrix
AMATRX according to the information from ABAQUS/
Standard analysis. In this paper, the UEL code for imple-
menting the PSBFEM is written in FORTRAN77. Figure 7
shows an overall implementation of the UEL subroutine.
Based on the input file’s connectivity information, the UEL
computes the scaling centers and transforms the global
coordinate into the local coordinate. Equation (13) computes
the coefficient matrices [E0], [E1], and [E2], which are used
to construct the Hamilton matrix [Zp] by equation (16). *e
two eigenvector matrices ([Φ(n)

q ], [Φ(n)
u ]) are constructed by
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eigenvalue decomposition. Finally, we can obtain the stiff-
ness matrix [K] of the PSBFEM element. Moreover, to avoid
calculating the stiffness matrix [K] at each incremental step
and decrease the calculation cost, we only calculate the
stiffness matrix [K] at the first incremental step and store it
in the state variable. *e stiffness matrix [K] is read directly
at the next incremental step.

To solve the stiffness matrix, we need to employ the
eigenvalue decomposition (see equation (17)). At present,
many mathematical libraries to perform the eigenvalue
decomposition exist. In this work, we use the Intel Math
Kernel Library (MKL) [35] to decompose the eigenvalue. In
the Abaqus/Standard analysis, we can directly use MKL by
modifying the Abaqus environment file.

3.2. Defining the UEL Elements. Abaqus’s input file usually
contains a model information section (such as defining nodes,
elements, the active degrees of freedom, and materials). At
present, this information cannot be set in Abaqus CAE and
must be defined through an input file.*eAbaqus provides the
keyword ∗USERELEMENT to defined a new user element.
*e main contents of defining the user element are as follows:

(1) Assigning an element type key to a user-defined
element and the number of nodes. *e element type
key must be of the form “Un” in Abaqus/Standard

analysis, where ′n′ is a positive integer that identifies
the element type uniquely. In this implementation of
PSBFEM, the integer is equal to the number of nodes
of the element.

(2) Defining the element properties and assigning an
Abaqus material to the user element.

(3) Defining the number of degrees of freedom per node
and the active degrees of freedom at the nodes.

Listing 1: user element definition for the arbitrary
polygons c.f. Figure 8.

(1) ∗USER ELEMENT, NODES� 3, TYPE�U3,
PROPERTIES� 2, COORDINATES� 2

(2) 1, 2
(3) ∗ELEMENT, TYPE�U3, ELSET�E3
(4) 2,1,2,7
(5) 4,5,6,4
(6) ∗UEL PROPERTY, ELEST�E3
(7) 1000, 0.2
(8) ∗USER ELEMENT, NODES� 4, TYPE�U4,

PROPERTIES� 2, COORDINATES� 2
(9) 1,2
(10) ∗ELEMENT, TYPE�U4, ELSET�E4

Quadangle

Hexagon

Pentagon

(a)

Complex quadangle

Conventional
quadangle

(b)

Conventional Element

• CPE3
• CPS3

• CPE4
• CPS4

Complex Element

Polygon

Heptagon

HextagonPentagon

Complex quadangle

FEM PSBFEM FEM PSBFEM

(c)

Figure 3: *e supported element type in the PSBFEM-UEL; (a) a polygon discretization illustrating the mesh generation using PSBFEM-
UEL element; (b) a quadtree discretization illustrating the mesh generation using PSBFEM-UEL element; (c) the PSBFEM-UEL element
library.
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(11) 1,1,7,6,5
(12) ∗UEL PROPERTY, ELEST�E1
(13) 1000,0.2
(14) ∗USER ELEMENT, NODES� 5, TYPE�U5,

PROPERTIES� 2, COORDINATES� 2

(15) 1,2

(16) ∗ELEMENT, TYPE�U5, ELSET�E5
(17) 3,2,3,4,6,7

(18) ∗UEL PROPERTY, ELEST�E1
(19) 1000,0.2

In the case of PSBFEM, we present a simple polygonal
mesh of PSBFEM (see Figure 8). *is mesh consists of
three element types: triangular element (U3), quadrilat-
eral element (U4), and Pentagon element (U5). In the
input file (see listing 1), 1∼19 is the line number; the
actual input file does not contain the line number. Lines
1∼7 are used to define two triangular elements (U3). Line
1 assigns the element type, the number of nodes, the
number of element properties, and the number of freedom
degrees per node. Line 2 sets the active degrees of free-
dom. Lines 3∼5 define the element sets’ E3’. Lines 6∼7 set
the element properties (Young’s modulus and Poisson’s
ratio) of “E3”. Similarly, other types of elements are de-
fined using the same way.

Triangular centers 

Triangular nodes

Boundary midpoints

(a) (d)

(b) (c)

Figure 4: Generation of a polygon element from a triangular element: (a) arbitrary geometric model; (b) generating triangular meshes by
Abaqus CAE; (c) construction of polygon meshes; and (d) final SBFEM polygon meshes.

0 level

0 level

1 level

1 level

2 level

2 level

Figure 5: A quadtree discretization with three levels.
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Pre-processing PSBFEM-UEL Post-processing

1. Automatic mesh generation
• Polygonal mesh
• Quadtree mesh

2. Define loading and boundary
conditions

3. Output Inp and VTU file

PSBFEM-Abaqus

1. Extract the results from ODB

2. Output VTU file

Inp Odb

UEL

Abaqus/Standard

U

ΔU
COORDS

AMATRX

RHS

FORTRAN 77 PythonPython

• Displacement field
• Stress field

Figure 6: Framework sketch of implementing the PSBFEM within Abaqus.
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End UEL subroutine

Computer the coefficient matrices
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Compute the stiffness matrix of SBFEM
element [K] and storage [K]

User Element Subroutine (UEL)

Begin analysis

Define initial conditions

Begin User Element Subroutine
(UEL) 

Write output

Start of step

Start of increment

Start of iteration

Converged?

End of step?

Abaqus/Standard analysis Start UEL subroutine

YES
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NO

First increment ?
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Compute scaling centers and transform
the global coordinate to local coordinate 

Reading the stiffness
matrix [K] 

Solve the SBFEM equation
by eigenvalue decomposition

Figure 7: Framework sketch of implementing the UEL.
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4. Numerical Examples

In this section, we validate the convergence and accuracy of
the implementation by solving a few benchmark problems.
Moreover, the results of the PSBFEM are compared with the
FEM. *e FEM analysis uses the commercial finite element
software Abaqus. For validation, the relative error L2 norms
in the displacement are computed as follows:

eu � ‖u − u‖
h
L2(Ω) �

��������������������

􏽒Ω u − uh
􏼐 􏼑

T
u − uh

􏼐 􏼑dΩ
􏽲

���������

􏽒Ωu
TudΩ

􏽱 , (26)

where uh is the numerical solution and u is the analytical or
reference solution.

*e relative error in the energy as given by

eenery � ‖ε − ε‖h
L2(Ω) �

���������������������

􏽒Ω ε − εh
􏼐 􏼑

T
D ε − εh

􏼐 􏼑dΩ
􏽲

����������

􏽒Ωε
T
DεdΩ

􏽱 , (27)

where εh is the numerical solution and ε is the analytical or
reference solution.

4.1. A Two-Dimensional Cantilever Beam. A two-dimen-
sional cantilever beam of height H � 1.0m and length
L � 5.0m subjected to a uniform loading P � 10 kPa is
considered, as shown in Figure 9(a). *e material prop-
erties are given by Young’s modulus E � 2GPa and
Poisson’s ratio v � 0. *e right boundaries are constrained
without displacement (ΔX � 0,ΔY � 0). *e domain is
discretized with the quadrangle and arbitrary polygonal
elements. A convergence study is performed by mesh re-
finement. *e meshes are refined successively following the
sequence n � 2, 4, 8, 16, 32. *e element size is chosen as
(h � H/n). A representative mesh is presented in

Figures 9(b) and 9(c). In this work, the Abaqus uses the
CPS4 element. *e analytical solution of the stress fields
can be expressed as [40–42]

σx � q
y

h
4

y
2

h
2 −

3
5

− 6
x
2

h
2􏼠 􏼡, (28a)

σy � −
q

2
1 − 3

y

h
+ 4

y
3

h
3􏼠 􏼡, (28b)

τxy � −
3q

2
x

h
1 − 4

y
2

h
2􏼠 􏼡. (28c)

*e results of the relative error in the vertical dis-
placement uy for the point O are given in Table 1. It can be
observed that the errors decrease as the mesh refinement.
*e errors of PSBFEM are less than the FEM at the same
element size. Moreover, the polygonal element shows higher
accuracy than the quadrilateral element in the PSBFEM be-
cause the polygonal element has more nodes for the same
element size. Figure 10 shows that the results of mesh size
sensitivity for three element types. It is clear that these elements
would obtain more accurate results when mesh sizeis less than
1/8m. *e convergence of the relative error in the displace-
ment and the energy normwithmesh refinement are presented
in Figures 11 and 12. It is observed that the PSBFEM converges
to an exact solution with an optimal convergence rate.

Moreover, Figure 13 shows the contours of the vertical
displacement uy of Abaqus CPS4, PSBFEM-Quad, and
PSBFEM polygon. It is clearly shown that the results are
virtually the same for the FEM and PSBFEM. In addition,
Figure 14 presents the computational cost comparison of the
developed UEL and Abaqus standard elements. Due to the
increment size setting affecting the solving time, we use the
automatic incrementation type.*e comparison is evaluated
with an Intel Core i7-4710MQ CPU running at 2.50GHz
and 4.0GB of RAM. *e total CPU time is normalized. It is
noted that computation costs for the PSBFEM-UEL and
Abaqus standard elements are comparable and of the same
trend. Moreover, the computational cost of PSBFEM-UEL is
slightly higher than the Abaqus standard element. It is due to
the semianalytical method of SBFEM being bound to gen-
erate relatively more computations in its concept than FEM
[43].

4.2. Infinite Plate with a Circular Hole. In this example, an
infinite plate with a circular hole of radius a under remote
uniaxial tension σx is considered as shown in Figure 15(a).
Considering the symmetry of geometry, we only analyze a
quarter of the infinite plate, as shown in Figure 15(b). *e
analytical solution of stress fields in the polar coordinates
(r, θ) is expressed as [36]

5

1 2 3

4

6

7

① ③

②

④

Figure 8: A simple example of the SBFEM polygonal mesh.
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σx �
p

2
2 −

a
2

r
2 3cos2θ + 2 − 3

a
2

r
2􏼠 􏼡cos4θ􏼠 􏼡􏼠 􏼡, (29a)

σy � −
pa

2

2r
2 cos2θ − 2 − 3

a
2

r
2􏼠 􏼡cos4θ􏼠 􏼡, (29b)

τxy � −
pa

2

2r
2 sin2θ + 2 − 3

a
2

r
2􏼠 􏼡sin4θ􏼠 􏼡, (29c)

and the displacement fields can be expressed as
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Figure 10: Sensitivity analysis of mesh sizes (Uanaly denotes the
analytical solution of displacement; Unum denotes the numerical
solution of displacement).
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Figure 11: Convergence of the relative error in the displacements
of a cantilever beam is subjected to uniform loading.
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Figure 9: A cantilever beam subjected to a uniform loading: (a) geometry and boundary conditions; (b) the quadrilateral mesh; (c) the
polygonal mesh; the discretization of the domain by a Python script, and visualization mesh by the software Paraview.

Table 1: *e relative error in the vertical displacement uy of a cantilever beam subjected to a uniform loading with mesh refinement.

Element size (m)
FEM PSBFEM-Quad PSBFEM-Polygon

DOFs eu(%) DOFs eu(%) DOFs eu(%)

0.5 66 1.13×10−1 66 8.75×10−2 82 8.20×10−2

0.25 210 3.11× 10−2 210 2.37×10−2 322 1.86×10−2

0.125 738 8.01× 10−3 738 6.08×10−3 1282 3.30×10−3

0.0625 2754 2.02×10−3 2754 1.53×10−3 5124 7.73×10−4

0.03125 10626 5.07×10−4 10626 3.83×10−4 20480 1.96×10−4
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Figure 13: Contour plots of displacements uy in a cantilever beam: (a) Abaqus CPS4; (b) PSBFEM Quad; (c) PSBFEM Polygon.
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Figure 15: Infinite plate with a circular hole: geometry and boundary conditions: (a) a circular hole; (b) a quarter of the circular hole; (c) the
quadrilateral mesh; and (d) the polygonal mesh.
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ux �
Pa

8G

r

a
(1 + κ)cos θ +

2a

r
((1 + κ)cos θ + cos 3 θ) −

2a
3

r
3 cos 3 θ􏼠 􏼡, (30a)

uy �
Pa

8G

r

a
(κ − 3)sin θ +

2a

r
((1 − κ)sin θ + sin 3 θ) − 2

a
3

r
3 sin 3 θ􏼠 􏼡. (30b)

*e shear modulus G and Kolosov’s constant κ can be
expressed as

G �
2E

2(1 + v)
,

k �
3 − v

1 + v
,

(31)

where a is the radius of the hole. *e circular hole radius is
0.4m, the length of the quarter of the circle hole is 1.0m, and
remote tension σx � 1 kPa. *e domain is discretized using
quadrilateral and polygonal meshes, respectively. *e
problem is also modeled by the plane stress, and the material
properties are given by Young’s modulus E � 1 × 105 Pa and
Poisson’s ratio v � 0.25.*e vertical displacement of bottom
boundaries (ΔY � 0) and the horizontal displacement of left
boundaries (ΔX � 0) are constrained without displacement.

*e results of PSBFEM and FEM in terms of conver-
gence behavior and accuracy are compared and demon-
strated. Figures 16 and 17 show the convergence of the
relative error norms decrease in displacement and the energy
norm with increasing elements. It is observed that the
PSBFEM element is significantly more accurate than the
FEM element. Besides, PSBFEM Polygon has a more slightly
fast convergence rate.

From the results, it is clear that all the methods as-
ymptotically converge to the analytical solution with mesh
refinement. It is noted that the PSBFEM requires fewer
DOFs when compared to conventional FEM. Besides,
Figure 18(a) provides that the contours of the vertical dis-
placement uy of Abaqus CPS4, PSBFEM-Quad, and
PSBFEM polygon in an infinite plate with a circular hole.
*e results show a good agreement for the FEM and
PSBFEM. Moreover, Figures 18(b) and 18(c) also show that
the distribution of stress component σy and strain com-
ponent εyobtained from the PSBFEM and the FEM by
Abaqus. Similarly, good agreement between the three sets of
results is observed.

4.3. Pressurized -ick Cylinder Modeled by a Quarter-
Annulus Model. In this example, we consider a benchmark
problem of a quarter-thick cylinder subjected to internal
pressure at the inner circular edge. *e analytical solution of
stress fields in the polar coordinates is [44]

σrr �
R
2
aP

R
2
a − R

2
b

1 −
R
2
a

r
2􏼠 􏼡, (32a)

σθθ �
R
2
aP

R
2
a − R

2
b

1 +
R
2
a

r
2􏼠 􏼡, (32b)

σrθ � 0 , (32c)

and the displacement fields can be expressed as

urad �
R
2
aPr

E R
2
b − R

2
a􏼐 􏼑

1 − ] +
Rb

r
􏼒 􏼓

2
(1 + ])􏼠 􏼡, (33a)

ux � urad cos θ, (33b)

uy � urad sin θ. (33c)

where Ra and Rb are the inner and the outer radius of the
cylinder, respectively, with Ra � 1m and Rb � 2m. P is the
pressure exerted along the inner circular edge,
withP � 1000 Pa. *e material properties are given by
Young’s modulus E � 1 × 105 Pa and Poisson’s ratio
v � 0.30. *e geometry and boundary conditions are pre-
sented in Figure 19(a). *e domain is discretized with the
quadrilateral and polygonal elements, as shown in
Figures 19(b) and 19(c).

Figures 20 and 21 show the convergence of the rel-
ative error in both the displacement and the energy norm
with mesh refinement. Results show that all the tech-
niques asymptotically converge to analytical solutions
with reducing element size, and the PSBFEM Polygon
shows slightly accurate results. Moreover, a good
agreement between PSFEM and FEM is observed in
Figure 22.

4.4. Square Body with Multiple Holes. To highlight the
flexibility of the PSBFEM element and quadtree algorithm in
handling mesh, a unit square body (L � 1.0m) with four
circular holes is considered, as shown in Figure 23(a). *e
material properties are Young’s modulus E � 10GPa and
Poisson’s ratio v � 0.25. *e bottom edge is constrained
without displacement (ΔX � 0,ΔY � 0), and a uniform
tension P � 1MPa is applied on the top edge of the square.
*e four circular holes locate (X � 0.5m, Y �

0.75m, r � 0.05m), (X � 0.25m, Y � 0.5m, r � 0.15m),
(X � 0.5m, Y � 0.25m, r � 0.05m), and (X � 0.75m,

Y � 0.5m, r � 0.15m), respectively, to form a hole cluster.
For the error estimation, the relative error L2 norms in the
displacement are computed as equation (26). Moreover, a
simple regression is investigated to compare the results of
FEM and PSBFEM.

*e quadtree mesh is generated by setting the same
number of mesh seeds on every hole, as shown in
Figure 23(c). It is clearly present that the mesh transition
between the holes of different sizes is effectively handled.
*e square body with multiple holes is modeled with 1632
quadtree elements, and the total nodes are 2478.
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Moreover, this problem is also analyzed with a similar
number of nodes (2532 nodes) using the Abaqus CPS4
element. Due to the symmetry of geometry, only the
results on the right side of the top edge are provided for
comparison. Results in Figure 24 show the comparison
between quadtree PSBFEM and Abaqus CPS4 in the
vertical displacement uy. A simple regression on the
Abaqus CPS4 and quadtree PSBFEM had presented R2

� 0.99, and the error in the L2 norm is 0.0097. *e strain
energy of FEM is 85.934 kJ, and the strain energy of
PSBFEM is 86.5917 kJ. *e relative error of strain energy is
0.76%. Hence, these results indicate PSBFEM accuracy

and reliability for the quadtree mesh. Also, the contour
plots of the vertical displacement uy obtained from the
PSBFEM analysis and the FEM analysis by Abaqus are
shown in Figure 25. It is noted that the contour plots
present a good agreement.

4.5. A Square Plate for theComplexGeometry. A square body
with a rabbit shape cavity, as shown in Figure 26. *e size of
the square plate is L � 4m. *e material properties are
Young’s modulus E � 1MPa and Poisson’s ratio v � 0.25.
*e left edge is constrained without displacement
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Figure 16: Convergence of the relative error in the displacement for an infinite plate with a circular hole.
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Figure 18: Contour plots of results in an infinite plate with a circular hole: (a) vertical displacement uy; (b) stress component σy; and
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Figure 19: A quarter-thick cylinder subjected to internal pressure at the inner circular edge: (a) the geometry and boundary conditions for a
quarter-annulus model; (b) the quadrilateral mesh; and (c) the polygonal mesh.
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(ΔX � 0,ΔY � 0), and the right edge is applied a horizontal
displacement U � 0.1m, as shown in Figure 26. We chose
four nodes, A, B, C, D, to compare results, as shown in
Figure 26. *e square body with a rabbit shape cavity is
modeled with 3147 quadtree elements. Moreover, this
problem is also analyzed with a similar number of elements
using the Abaqus CPS4 element, and the total elements are
3358, as shown in Figure 27.

Table 2 shows the relative error in the horizontal dis-
placement for the PSBFEM and FEM.*e relative errors are
less than 0.5%. Moreover, the strain energy of FEM is
4.304 kJ, and the strain energy of PSBFEM is 4.299 kJ. *e
relative error of strain energy is 0.12%. Figure 28 presents
that the contour plots present a good agreement for FEM
and PSBFEM. *erefore, the quadtree mesh of PSBFEM has
sufficient accuracy and reliability.
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Figure 22: Contour plots of resultant displacements in a quarter-thick cylinder: (a) Abaqus CPS4; (b) PSBFEM Quad; and (c) PSBFEM
Polygon.
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(c)

Figure 23: Schematic diagram of the square body with multiple holes under uniaxial tension: (a) the geometry and boundary conditions; (b)
Abaqus mesh; and (c) Quadtree mesh.
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Figure 25: Contour plots of displacements uy in a square body with multiple holes: (a) Abaqus CPS4 and (b) Quadtree PSBFEM.
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Figure 26: *e geometry and boundary conditions of the square body with a rabbit shape cavity.

(a) (b)

Figure 27: *e meshes of a square plate with a rabbit shape cavity: (a) Abaqus mesh and (b) Quadtree mesh.

Table 2: *e relative error for the PSBFEM and FEM in the horizontal displacement.

Point
Horizontal displacement ux

FEM (m) PSBFEM (m) eu(%)

A 0.05042 0.05032 0.20
B 0.01270 0.01264 0.47
C 0.04959 0.04956 0.06
D 0.08600 0.08616 0.19
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5. Conclusions

*is paper implements the PSBFEM of two-dimensional linear
elastostatic problems within the Abaqus/Standard analysis by
the UEL subroutine. *is work mainly focuses on the main
procedures to interact withAbaqus, defining theUEL element in
the input file, and solving the stiffness matrix by the eigenvalue
decomposition in the UEL implementation procedure. Also, we
discuss the automatic mesh generation of polygon/quadtree and
the visualization of results by the Paraview.

*e implementation of PSBFEM is validated against the
FEM by solving a few benchmark problems. *e results
demonstrate that PSBFEM-UEL has a significantly better
than FEM convergence rate. Moreover, the polygon mesh
has a higher accuracy rate than the quadrangle mesh in the
PSBFEM-UEL. Notably, the implementation of PSBFEM
can conveniently use arbitrary polygon elements by the
polygon/quadtree discretizations in the commercial finite
element software Abaqus. In the future, the scope of this
approach developed here can be extended to higher-order
elements. *e source code of the implementation can be
downloaded from https://github.com/hhupde/PSBFEM-
Abaqus with input files of numerical examples presented
in this work.

Abbreviation

FEM: *e finite element method
PDE: Partial differential equations
IGA: Isogeometric analysis
DNNs: Deep neural networks
SBFEM: *e scaled boundary finite element method
PSBFEM: *e polygonal scaled boundary finite element

method
UEL: User element subroutine
MKL: Intel math kernel library
CPS3: 3-node linear plane stress elements

CPE3: 3-node linear plane strain elements
CPS4: 4-node bilinear plane stress elements
CPE4: 4-node bilinear plane strain elements
RAM: Random-access memory
CPU: Central processing unit.
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