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Reliable fault diagnosis of the rolling element bearings highly relies on the correct extraction of fault-related features from
vibration signals in time-frequency analysis. However, considering the nonlinear, nonstationary characteristics of vibration
signals, the extraction of fault features hidden in the heavy noise has become a challenging task. Variable mode decomposition
(VMD) is an adaptive, completely nonrecursive method of mode variation and signal processing. +is paper analyzes the
advantages of VMD compared with EMD in robustness of against noise, overcoming the end effect and mode aliasing. +e signal
decomposition performance of VMD algorithm largely depends on the selection of mode number k and bandwidth control
parameter α. To realize the adaptability of influence parameters and the improvement of decomposition accuracy, a parameter-
optimized VMD method is presented. +e random frog leaping algorithm (SFLA) is used to search the optimal combination of
influence parameters, and the mode number and bandwidth control parameters are set according to the search results. A
multiobjective evaluation function is constructed to select the optimal mode component.+e envelope spectrum technique is used
to analyze the optimal mode component. +e proposed method is evaluated by simulation and practical bearing vibration signals
under different conditions. +e results show that the proposed method can improve the decomposition accuracy of the signal and
the adaptability of the influence parameters and realize the effective extraction of the bearing vibration signal.

1. Introduction

Rolling element bearings, as a very important component of
rotating machinery, has been widely used in modern in-
dustry such as engineering machinery and aerospace [1, 2].
+e working state of rolling element bearings is directly
related to the safety of the rotating machinery. Rolling el-
ement bearings are easily damaged under the long-term
operation of harsh environment with high speed, heavy load,
strong impact, and high temperature. +e developed me-
chanical faults may cause the deterioration of machine
operating conditions, resulting in serious economic losses
and casualties [3–5]. +e vibration signal detected by the

sensor is always related to the important physical infor-
mation that a series of shock pulses will occur when the
rolling element bearing is subjected to a local fault [6, 7].
However, the defect-induced impulses in practice are too
weak to distinguish well from vibration signal corrupted by a
large amount of background noise. +erefore, it is critical to
remove noise and extract intrinsic fault features from the
measured original signal for the fault diagnosis of rolling
element bearing.

Many vibration analysis methods have been proposed in
the literature for bearing fault detection in the time domain,
the frequency domain, and the time-frequency domain,
respectively [8, 9]. However, the vibration signal of rolling
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element bearings is the nonstationary and nonlinearity
signal. It is very difficult to identify the fault characteristics of
the rolling element bearing only in the analysis of time
domain or the frequency domain. To effectively analyze the
fault features from the vibration signals, some traditional
time-frequency analysis methods have been widely used,
such as short-time Fourier transform (STFT) [10],
Wigner–Ville distribution (WVD) [11], and wavelet trans-
form (WT) [12]. However, due to the limitation of Hei-
senberg’s uncertainty principle, STFT method cannot get
high resolution in the time domain and frequency domain
simultaneously when dealing with the nonstationary signals.
+e disadvantage of the WVD method is that it cannot
guarantee nonnegativity and produce serious cross-term
interference for multicomponent signals or signals with
complex modulation laws. +e WTmethod decomposes the
signal by performing scaling and translation operations on
the wavelet basis and can effectively obtain time-frequency
information from the measured signal. It has good locali-
zation properties in the time domain and frequency domain
and has multiresolution analysis features [13, 14]. However,
the WT cannot accurately split the high-frequency band
where the modulation information of machine fault always
exists.

Compared with the traditional analysis methods, em-
pirical mode decomposition (EMD) offers a different
analysis approach to signal processing in the time-frequency
domain. +e EMD provides more realistic signal repre-
sentations without artifacts imposed by the nonadaptive
limitations of both Fourier and wavelet transform-based
time-frequency analysis methods and is suitable for the
analysis of the nonlinear and nonstationary signals [15–17].
It is based on the local characteristic time scales of a signal
and can self-adaptively decompose the complicated signal
into a limited number of intrinsic mode functions (IMFs)
through automatically performing a series of recursive
calculations.+e IMFs represent the fundamental oscillatory
modes embedded in the signal, from which the instanta-
neous time-frequency features of interest are deemed to be
observed. +is enables the EMD-based methods to have
potential as promising tools for dealing with the engineering
problems associated with the analysis of nonstationary
signals [18]. +erefore, the EMD and its extension forms
(such as Ensemble Empirical Mode Decomposition
(EEMD)) have attracted the attention of many researchers
and are widely applied in the fault diagnosis and recognition
of rolling element bearings [19–23]. In practical applications,
although the EMD and its improved method have advan-
tages in the processing of the nonstationary signals, the
method itself still has the following inherent defects:

Weak Robustness of against Noise. +e EMD-based
methods are sensitive to the complex noise in the vi-
bration signal. A little change in the signal-to-noise
ratio (SNR) can lead to the different signal decom-
position results [18].
Mode Aliasing. +e local mean is defined by the upper
and lower envelopes of the signal in the EMD. Based on
this definition, different modal components can be

distinguished through the characteristic scale of the
signal. +e IMF is no longer limited to the narrowband
signal, and it can also show amplitude modulation and
frequency modulation at the same time. However,
when there is a jump change in the time scale of the
signal, the direct screening process will produce mode
aliasing issues. Intuitively, it is impossible to effectively
separate the different modal components according to
the characteristic scale, which makes the existing IMFs
contain the different time-scale components and can-
not clearly reflect the intrinsic properties of the signal.
End Effect.+e upper and lower envelopes of the signal
are interpolated by the cubic spline interpolation in the
EMD. +e cubic spline interpolation needs two adja-
cent points. As a result, the divergence occurs at both
ends of the data, and the divergent results gradually
“pollute” the whole data sequence during the data
decomposition process, which leads to the serious
distortion and energy leakage.

Variational mode decomposition (VMD) method has
been proposed and developed recently, which is an alter-
native nonrecursive signal decomposition method that can
adaptively determine the relevant frequency bands and the
corresponding mode simultaneously [24–26]. +e VMD
method decomposes a signal into a series of band-limited
modes. +ese modes can be continuously updated with
Wiener filtering, and the central frequency of each mode can
be gradually demodulated to the corresponding baseband.
+e nonrecursive signal decomposition of VMD is more
efficient than the EMD and its extension forms in com-
putation. At the same time, the application of Wiener fil-
tering makes the VMD method robust to the background
noise. Due to the application of Wiener filters, the narrow-
banded function of VMD resultant modes not only reduces
the mode mixing issues existing in the EMD but also helps to
accurately extract the fault characteristics of the signal
through the Hilbert transform. However, the decomposition
accuracy of the VMD method is usually affected by the
number of modes k and the bandwidth control parameter α.
+e original VMD method used the default values to im-
plement the signal analysis, which largely limits its de-
composition precision and the capability of feature
extraction to a certain extent.

In this paper, we firstly analyze the advantages of VMD
compared with EMD in robustness of against noise, over-
coming the end effect and mode aliasing. To realize the
adaptability of influence parameters and the improvement of
decomposition accuracy, a parameter-optimized VMD
method is presented. +e random frog leaping algorithm
(SFLA) is used to search the optimal combination of in-
fluence parameters, and the mode number and bandwidth
control parameters are set according to the search results. A
multiobjective evaluation function is constructed to select
the optimal mode component. +e envelope spectrum
technique is used to analyze the optimal mode component.
+e proposed method is evaluated by simulation and
practical bearing vibration signals under different condi-
tions. +e remaining section of the paper is organized as
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follows: Section 2 introduces the fundamental theory of the
VMD. +e superiorities of the VMD over the EMD are
analyzed in Section 3. +e parameter-optimized VMD al-
gorithm is presented in Section 4. +e fault feature ex-
traction based on the parameter-optimized VMD is given in
Section 5. Section 6 will present the experimental results and
analysis. Finally, the conclusion is drawn in Section 7.

2. Brief Introduction to VMD

+e VMD algorithm is an adaptive, quasiorthogonal, and
completely nonrecursive signal processing method. It de-
composes the input signals composed of multicomponents
into several inherent modes with limited bandwidth, and
most of these modes are closely around their corresponding
central frequencies [24]. By solving the optimal solution of
constrained variational problem, the central frequency and
band limit of each mode can be decided. An input signal
f(t) can be expressed as follows:

f(t) � 􏽘
K

k�1
uk(t), (1)

where the number of modes k is defined in advance and
uk(t)is the narrowband mode function. It can be written as

uk(t) � Ak(t)cos ϕk(t)( 􏼁, (2)

where Ak(t) is the instantaneous amplitude of uk(t), ϕk(t) is
the instantaneous phase, and ϕk(t) is the reduction function
that instantaneous frequency ωk(t) � dϕk(t)/dt≥ 0. Com-
pared to ϕk(t), the variation in Ak(t) and ωk(t) is more
gradual that can be regarded as a harmonic signal of constant
amplitude and frequency in a smaller time horizon.

+e VMD decomposes the input signal into a certain
number of modes, and the decomposed modes have specific
sparsity property while reproducing the input signal. It is
assumed each mode is closely integrated around the center
frequency. To assess the bandwidth of a mode, the following
scheme is needed: the VMD method decomposes the input
signal into a certain number of modes, which make them
reappear the input signal and have specific sparsity prop-
erties. It is assumed each mode is closely integrated around
the center frequency. To assess the bandwidth of a mode, the
following scheme is needed: (1) compute the analyzed signal
by means of the Hilbert transform to get a one-sided fre-
quency spectrum for the mode; (2) transform the frequency
spectrum of each mode to the baseband by mixing with an
exponential tuned to the estimated center frequency; (3)
estimate the bandwidth through the H1 Gaussian
smoothness of the demodulated signal, that is, the squared
L2-norm of the gradient. +e constrained variational
problem would be expressed as follows:

min
uk{ }, ωk{ }

􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jωkt22
⎧⎨

⎩

⎫⎬

⎭,

s.t. 􏽘
k

uk(t) � f(t),

(3)

where uk􏼈 􏼉(k � 0, 1, 2, . . . , K) represents the k-th mode
component obtained by decomposition and ωk􏼈 􏼉 represents
the corresponding central frequencies of the k-th mode
component.

To solve the constrained variational problem, the aug-
mented Lagrange is introduced and the unconstrained
variational problem is gotten by

L uk􏼈 􏼉, ωk􏼈 􏼉, λ( 􏼁 � α􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓uk(t)􏼔 􏼕e

− jωkt

�������

�������

2

2

+ f(t) − 􏽘
k

uk(t)

���������

���������

2

2

+ 〈λ(t), f(t) − 􏽘
k

uk(t)〉, (4)

where α represents the quadratic penalty factor, which can
guarantee the accuracy of signal reconstruction in the
presence of Gauss noise, and λ represents the Lagrange
operator, which can be used to maintain the strictness of
constraints.+e saddle point of the augmented Lagrange L is
the optimal solution of original minimization problem,
which can be solved using alternate direction method of
multipliers (ADMM). All the modes can be obtained from
(5) in the frequency domain through updating each mode:

􏽢u
n+1
k (ω) �

􏽢f(ω) − 􏽐i≠k􏽢ui(ω) + 􏽢λ(ω)/2
1 + 2α ω − ωk( 􏼁

2 , (5)

where 􏽢un+1
k (ω) can be equivalent to the Wiener filter of the

current residual signal and the full spectrum of the real mode
can be obtained by conjugate symmetry. +us, the real part
uk(t)􏼈 􏼉 can be achieved through utilizing the inverse Fourier
transform of 􏽢un+1

k (ω)􏼈 􏼉.

Similarly, to obtain the minimum value of ωn+1
k , the

central frequency updating problem can be transformed into
the corresponding frequency domain, and the solutions of
the central frequencies can be given as follows:

ωn+1
k �

􏽒
∞
0 ω 􏽢uk(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dω

􏽒
∞
0 􏽢uk(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dω

. (6)

+erefore, the new value of ωk can be set to the center of
gravity of the corresponding modal power spectrum.

To update the Lagrange operator λ, the following ex-
pression is given:

􏽢λ
n+1

(ω) � 􏽢λ
n
(ω) + τ 􏽢f(ω) − 􏽘

k

􏽢u
n+1
k (ω)⎛⎝ ⎞⎠. (7)

According to the above theoretical description, the de-
tailed procedures of VMD algorithm are given as follows:
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(1) Define the number of modes k;
(2) Initialize: 􏽢u1

k􏼈 􏼉 􏽢ω1
k􏼈 􏼉, 􏽢λ

1
and n � 0;

(3) Update uk andωk according to Equations (5) and (6);
(4) Update λ according to Equation (7);
(5) Set the error ε> 0, if the inequality (􏽐k‖􏽢un+1

k −

􏽢un2

k2‖/‖􏽢un2

k2 < ε‖) holds, then the iteration stops, or else
go back to step 2.

3. Superiorities of VMD over EMD

+e VMD algorithm transfers the signal decomposition pro-
cess to the variational framework and achieves adaptive signal
decomposition by searching the optimal solution of the con-
strained variational model. Compared with the EMD method,
theVMDmethod hasmore advantages in the noise robustness,
the mode aliasing, and the end effect. +e superiorities of the
VMD over the EMD will be investigated in this section.

3.1. Noise Robustness and Elimination of Mode Aliasing.
To verify the advantages of VMD in the noise robustness, the
mode aliasing, and the end effect, a simulated signal x(t) is
designed in Figure 1, which is the sum of a harmonic signal
and white noise η. +e signal is modulated by 30Hz and
56Hz. +e purpose of this simulation is to simulate the
phenomenon that fault vibration signal is a multicomponent
modulation signal. +e noise existing in the original signal
often appears as white noise in the practical applications,
which covers the entire frequency domain. White noise with
a signal-to-noise ratio of 2 db is added to the signal. +e
simulated signal is expressed as follows:

x(t) � sin(2π × 30t)) +
1
4
sin(2π × 56t) + η. (8)

+e time waveform of the simulated signal collected by
using a sampling frequency of 1000Hz is shown in Figure 1.
It can be clearly seen from Figure 1 that the harmonic signal
has been seriously distorted by noise. +en, the EMD
method is applied to process the simulated signal, and the
corresponding results are shown in Figure 2.

From the spectrum diagram of the EMD decomposition
shown in Figure 2, it can be seen that the extracted IMF4
mainly includes 30Hz frequency components, but not 56Hz
frequency components. For the multicomponent simulation
signal, the decomposed results also show that the decom-
position effect of the EMD algorithm is not ideal, and there is
mode aliasing the first three-order intrinsic modal function
(IMFs). +is is because some useful weak signals are sub-
merged in the decomposed signal. +e cubic spline fitting in
the decomposition process of the EMD method leads to the
deviation of decomposition. In addition, the first three-order
IMFs also contain other components of the mode function,
and the decomposition of EMD has pseudocomponents.

+e VMD method is more effective for the decompo-
sition of simulation signal; not only it can effectively remove
pseudocomponents but also each IMF component shows a
certain scale of modalities, and there is no mode aliasing
between each other. VMD can realize the multiscale

representation of the simulated signal. Compared with
Figures 2 and 3, the VMDmethod has stronger ability in the
noise filtering than EMD method. +is method successfully
suppresses the noise distributed in different frequency
bands, and its decomposition effect is better than the EMD
decomposition method. EMD cannot effectively remove the
noise, especially in the high frequency band.+is means that
noise still exists in the IMFs generated by EMD.

3.2. Suppression of End Effect. +e decomposition results of
EMD and VMD are orthogonal to the signal. +at is, the
energy sum of the decomposed mode functions is equal to
the signal energy before the decomposition. However, if the
decomposition result has an end effect, it will affect the
decomposition accuracy of the signal and produce false
components, which will result in a change in the energy sum
of the modal function after decomposition. By analyzing the
changes in the energy value before and after decomposition,
we can understand the inhibitory effect on the signal end
effect when the two methods are used for the signal analysis.

+e energy expression of the mode function generated
after the signal decomposition by the EMD and VMD can be
expressed as follows:

E �

��������

􏽐
n
i�1 x

2
(i)

n

􏽳

, (9)

where E is the energy of the original signal or the energy of the
mode functions after the decomposition, x(i) is the signal
sequence, and n is the number of sample points for the signal.

Comparing the deviation between the energy of all mode
functions and the energy of the original signal, the evalu-
ation index ξ can be defined as

ξ �

����������

􏽐
m
k�1 E

2
k − Ei

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

Ei

, (10)

where Ei is the energy of the original signal, Ek is the energy
of the k-th modal function, and m is the total number of
modal functions.

From the definition of the evaluation index depicted
above, it can be seen that when ξ is the larger, the energy of
the decomposed mode functions will be smaller. +at is, the
energy leakage after the signal decomposition becomes
larger, and the end effect will become stronger. +e simu-
lated signals X2(t) and X3(t) are constructed as follows:

X2(t) � sin(2π × 3t) + 0.8 sin(2π × 15t)

+ 0.4 sin(2π × 45t))0.6 sin(2π × 63t) + sin(2π × 90t),

(11)

X3(t) � [1 + 0.5 sin(2π × 3t)]

× sin[2π × 5t + sin(2π × 50t)]

+[1 + sin(2π × 6t)]

× sin[2π × 8t +(0.6 × sin(2π × 5t))].

(12)

+e equations (8), (11), and (12) of the simulated signal are
used to calculate the energy Ei, respectively. +e energy Ek of
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each modal function and the evaluation parameter ξ of energy
deviation after the decomposition of EMD and VMD are also
calculated.+e calculation results of the evaluation parameter ξ
are shown in Table 1. It can be seen fromTable 1 that the values
of the evaluation parameter calculated after VMD decompo-
sition are small, which indicates that compared with the EMD
method, the energy leakage calculated by the VMD decom-
position is smaller and the end effect is not obvious.

4. The Proposed Parameter-Optimized
VMD Algorithm

+e number of modes k and bandwidth control parameter α
affect the accuracy of decomposition in the VMD algorithm.
A large number of modes will lead to the redundant in-
formation in the result of signal decomposition, while a
small number of modes will result in the phenomenon of

mode mixing. On the contrary, a wider filter bandwidth will
introduce more noise and interference items into the de-
composition result. +e narrow filter bandwidth will cause
important information missing in the signal decomposition.
+erefore, how to choose the optimal parameter combi-
nation is the key to eliminate the noise and mode aliasing
and extract the feature information accurately in the VMD
algorithm. In this section, shuffled frog leaping algorithm
(SFLA) is introduced into the algorithm to achieve the
combination of optimal influence parameters [27–30]. A
multiobjective evaluation function is constructed to select
the optimal mode component in the VMD algorithm.

4.1. ShuffledFrogLeapingAlgorithm. +e SFLA simulates the
thought transfer process of frogs in searching for the food
according to their population. It combines global
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Figure 1: +e time domain plot of the simulated signal.
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Figure 2: +e decomposition results and corresponding frequency spectrum of IMFs with EMD.
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information exchange and local deep search. Local search
enables thoughts to be transmitted between local individ-
uals, and hybrid strategies enable the exchange of local
thoughts. +rough this global information exchange and
local depth exploration, the algorithm can jump out of the
local extreme points and move towards the global optimum.

An initial population of P frogs is randomly generated
within the S-dimensional space. +e i-th frog is represented
by S variables as Xi � (xi1, xi2, . . . , xiS). In each evolutionary
iteration process, all frogs are arranged in a descending order
according to the fitness value of the frogs. +e population is
divided into m subsets. +e subset is referred to as mem-
eplexes, and each contains n frogs. +e method of allocation
is the first frog enters the first memeplex, the second frog
goes to the second memeplex, the m frog goes to the m-th
memeplex, and the m + 1 frog goes back to the first
memeplex and so forth. Assuming that Mk is a set of frogs
for the k-th memeplex, the allocation process can be de-
scribed as follows:

M
k

� Xk+m(l−1)∈P|1≤ l≤ n􏽮 􏽯, 1≤ l≤m. (13)

Within each memeplex, the frogs with the best and the worst
fitness are identified as Xb and Xω, respectively. Also, the
frog with the global best fitness is identified as Xg. +en, an
evolution process is applied to improve only the frog with
the worst fitness (i.e., not all frogs) in each cycle. Accord-
ingly, the position of the frog with the worst fitness is ad-
justed as follows:

Di � Rand × Xb − Xω( 􏼁, (14)

Xω′ � Xω + Di, D≤Dmax, (15)

where Dmax is the maximum allowed change for the position
of the frog.

If the evolution process produces a better frog (solution),
it replaces the worst frog. Otherwise, the calculations in
equations (14) and (15) are repeated with respect to the
global best frog (i.e., Xg replaces Xb). +ere is no im-
provement in this situation, and a new solution will be
randomly generated, that is, to replace the worst frog with
another frog with any fitness. +e calculation will continue
for a specific number of evolutionary iterations in each
memeplex. +erefore, SFLA uses a process similar to the
PSO algorithm to simultaneously perform independent local
searches in each memeplex.

A predetermined number of memetic evolution steps are
performed in each memeplex, and the solution of the
evolvedmemeplexes X1, X2, . . . , XP􏼈 􏼉 is replaced with a new
population, which is called the shuffling process. +e
shuffling process facilitated the global exchange of infor-
mation among frogs. +en, the population is sorted in the
descending order of fitness value, the position Xg of the best
frog of the population is updated, and the frog group is
redivided into the memeplexes and evolved in each mem-
eplex until the conversion criterion is met. Generally, the
convergence criterion can be defined as follows:
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Figure 3: +e decomposition results and corresponding frequency spectrum of modes with VMD.

Table 1: Energy leakage evaluation parameter.

Simulated signal ξ
EMD VMD

X1(t) 0.2964 0.1620
X2(t) 0.3648 0.0618
X3(t) 0.3643 0.0425
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+e relative change in the fitness of the global frog
within a number of consecutive shuffling iterations is
less than a prespecified tolerance.
+e maximum predefined number of shuffling itera-
tions has been obtained.

4.2. Parameter Optimization by Using SFLA. +e SFLA is a
metaheuristic intelligent optimization algorithm that has
good capabilities of global optimization and fast convergence
speed. +e SFLA combines the advantages of gene-based
memetic algorithm (MA) and the social behavior-based
particle swarm optimization (PSO) algorithm. +erefore, the
SFLA is used to optimize the influencing parameters of VMD,
can avoid the intervention of subjective factors, and auto-
matically screen out the best combination of influencing
parameters.

Suppose that the population composed of Npop frogs isX

in D dimension space, and Npop frogs are divided into Nm

subgroups through the descending order. +e best indi-
vidual pb and the worst individual pw in the subgroup can be
calculated. Group optimal solution s1 in the maximum
number of iterations M can be expressed as follows:

s1 � A × pb − pw( 􏼁. (16)

When using SFLA to optimize the mode number k and
bandwidth control parameter α, the fitness function needs to
be determined. Each update of the frog is achieved by
comparing the fitness values.

Shannon entropy is a good indicator for evaluating
signal sparsity. +e size of entropy reflects the uniformity of
probability distribution. +e most uncertain probability
distribution (equal probability distribution) has the largest
entropy value. In order to reflect the sparseness of the
measured signal, the concept of envelope entropy is pro-
posed. +e demodulated envelope signal is processed into a
probability distribution sequence. +e calculated entropy
value reflects the sparsity of the original measurement signal
[31]. +e envelope entropy of the signal can be expressed as
follows:

Ep � − 􏽘
N

i�1
pilgpi

pi � a(i)/􏽘
N

i�1
a(i)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (17)

In order to search the global optimal component, that is,
to extract the mode component with the most abundant
feature information from the bearing fault signal, the
multiobjective evaluation function is constructed for the
selection of the optimal mode component and the calcu-
lation of fitness value, which is based on the envelope en-
tropy, the kurtosis, and the correlation coefficients. When
the i-th frog is located in the position j (corresponding to a
set of parameters αj and kj), the kurtosis, the correlation
coefficient, and the envelope entropies of all mode com-
ponents obtained by VMD processing are all calculated. +e
components with the largest kurtosis value, the highest

correlation, and the smallest envelope entropy are selected
and reconstructed as the fitness value in the optimization
processing. +e optimization method of influencing pa-
rameters is briefly described below:

(1) Initialize the parameters: total number of frogs Npop,
number of subgroups Nm, number of each group
frogs Nf, maximal number of iterations M, random
initialization of frog individuals, and initialize the
population.

(2) Implement VMD and obtain a set of IMFs.
(3) Construct the global fitness function based on the

envelope entropy, the kurtosis, and the correlation
coefficients.

(4) Calculate the fitness value of each frog.
(5) Rank the frogs according to their fitness values.
(6) Divided the sorted frogs Npop into Nm subgroups

according to the descending order of the objective
function. +e first frog goes to the first memeplex,
the second frog goes to the second memeplex, frogm
goes to the m-th memeplex, and frog m + 1goes to
the first memeplex.

(7) Determine the best individual of the subgroup pb,
the worst individual pw, and the optimal solutions in
the population S1; the worst solution is improved by
equation (16) in evolutional iteration M.

(8) Update the worst individual and descend the order to
the individual to form a new group.

(9) Judge whether the algorithm satisfies the terminating
condition and outputs the optimum solution when
the algorithm satisfies the termination condition and
otherwise moves on to step 6.

5. The Fault Feature Extraction by Parameter-
Optimized VMD

+e periodic impact energy caused by the failure of the
rolling element bearing is weak, and it is relatively difficult to
extract fault features due to the effects of noise and signal
attenuation. When there is a fault for the rolling bearing, the
useful characteristic components usually have very little
energy, and it is submerged by the background noise. It is
difficult to extract useful fault features. In order to extract the
fault feature effectively and realize the fault diagnosis, the
parameter-optimized VMD is presented to extract the useful
fault features for the fault diagnosis of the rolling element
bearing. +e vibration signal is decomposed into a series of
intrinsic mode functions by the parameter-optimized VMD
algorithm. +e envelope spectrum technique is utilized to
analyze the best signal component. +e fault features of the
rolling bearing would be easily detected and extracted. +e
fault features extraction procedure of the parameter-opti-
mized VMD method is briefly described as follows:

(1) Initialize population and parameters: the numbers of
subgroup Nm, the numbers of each group frogs Nf,
the numbers of iteration within a group Ne, and the
numbers of evolutional iteration M.
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(2) Optimize VMD parameters by applying SFLA and
obtain global optimal parameters k and α.

(3) Decompose the original vibration signal into a set of
the IMFs by the improved VMD.

(4) Calculate the envelope entropy, kurtosis, and cor-
relation coefficients of all IMF components.

(5) Select the reconstructed IMF component with the
largest kurtosis value, the highest correlation, and the
smallest envelope entropy as the optimal component.

(6) Implement the spectrum analysis and compare the
fault feature frequency in the envelope spectrum
with the theoretical value of the bearing fault and
determine the fault.

6. Experimental Results and Analysis

6.1. Simulation Analysis Using the Parameter-Optimized
VMD. To quantitatively evaluate the effectiveness of the
parameters-optimized VMD method, the simulation signal
of rolling element bearings is constructed because the faults
of rolling element bearings produce a series of shocks.
+erefore, the simulation signal is mainly composed of the
impact signal and noise signal generated by a bearing fault.
+e signal is sampled at 12 kHz. +e simulated fault fre-
quency fi is set to 80Hz. +e resonance frequency fn is set
to 3 kHz. +e rotating frequency fr is 20Hz. +e simulated
signal is expressed as follows:

x(t) � s(t) + n(t) � 􏽘
i

Aih t − iT − τi( 􏼁 + n(t)

Ai � 1 + A0 sin 2πfrt( 􏼁

h(t) � e
− Ct sin 2πfnt( 􏼁

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (18)

where h(t) is the generated waveform of a single impact; Ai

is the amplitude of the i-th impact force and considers
possible periodic modulations, and n(t) is the white
Gaussian white noise; signal-to-noise ratio RSNR is -1 dB; T is
the mean spacing among impacts; the attenuation coefficient
C is 700; and τi is an independent and identically distributed
random variable.

+e time domain plot and the envelope spectrum of the
simulated signal are shown in Figure 4. It can be seen form
Figure 4 that the impact signal is submerged in the strong
background noise. +e resonance frequency band in the
spectrum is also not obvious. +e frequency and period of
the signal cannot be found, and the characteristic frequency
of the fault signal cannot be accurately found from the
envelope spectrum.

+e simulated signal is decomposed by EEMD, and the
corresponding frequency spectrum is shown in Figure 5.
Obviously, the useful frequency components could not be
distinguished from the decomposed IMFs, and they are
contaminated with noise. Many parts of IMF 1 are replaced
by the intermittent pulse signal. +e replaced parts of IMF 1
are shifted to IMF 2 resulting in the phenomenon of mode
mixing in the second and the following IMFs. In addition, as
noted in Figure 4, the first three IMFs provided more in-
formation than the other IMFs, and the rest of the IMFs

contain many redundant low-frequency components. In
other words, the first three IMFs could be regarded as valid
components of the signal, while the other IMFs were the
low-frequency pseudocomponents that can mislead the
analysis of the signal. +e optimal mode component cor-
responding to the EEMD is IMF1. +e envelope spectrum of
the optimal mode component decomposed by the EEMD
method is shown in Figure 6. It can be seen from Figure 6
that the impact characteristics associated with faults could
not be identified, and the feature frequency of fault signals
could not be extracted.

+e VMD method is used to decompose the simulated
signal, and the decomposed simulated signal has 5 mode
components. +e waveform and the corresponding fre-
quency spectrum are shown in Figure 7. From the de-
composition results, the VMD method can realize the
adaptive segmentation of each component in the frequency
domain, effectively overcome the mode aliasing phenome-
non in EEMD, and has stronger noise robustness and weaker
end effect than EEMD.+emode component corresponding
to the minimum envelope entropy is mode 4, which is se-
lected as the best component, and the envelope analysis is
further done. +e envelope spectrum of the signal is shown
in Figure 8. It can be seen that the characteristic frequency of
the fault signal cannot be accurately extracted by the original
VMD method.

+e parameter-optimized VMDmethod is implemented
to analyze the simulation signal. +e decomposition results
and corresponding frequency spectrum of modes are shown
in Figure 9. According to the decomposition results, the
mode component corresponding to the smallest envelope
entropy is IMF2, the mode component corresponding to the
largest kurtosis is IMF5, and the mode component corre-
sponding to the largest correlation is IMF5. +e three mode
components are reconstructed and used as the optimal
component. +e envelope spectrum of the reconstructed
signal is shown in Figure 10. It can be seen that the spectral
amplitude is prominent at the characteristic frequency
80Hz, and the corresponding frequency doubling can also
be obtained, which means that the parameter-optimized
VMD can effectively decompose the fault signal and accu-
rately extract the characteristic frequency of the fault signal.

6.2. Actual Vibration Signal Analysis. To further verify the
effectiveness of the proposed parameter-optimized VMD
method, the fault feature extraction of the actual experiment
is implemented. +e vibration data of rolling bearings are
provided by Case Western Reserve University bearing data
center [32]. +e test stand consists of a 2 hp, three-phase
induction motor, a torque transducer/encoder, and a dy-
namometer. +e test bearings support the motor shaft at the
drive end. Single point faults were introduced to the test
bearings.+e deep groove ball bearing with the type of 6205-
2RS JEM SKF was used in the test. +e locations of fault
cover inner raceway, outer raceway, and rolling element.+e
tests are carried out under the four different motor loads
with the motor speed. +e vibration data were acquired at
the sampling frequency of 12 kHz by using the
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accelerometers, which are mounted at the drive end of the
motor. +e vibration signals of outer race defect with the
motor load 0 hp and the fault diameters 7 mills are chosen to
extract the fault feature. +e characteristic frequency of the
outer race defect signal is calculated to be at 107.37Hz.

+e time domain plot of the fault signal with outer race is
shown in Figure 11, and Figure 12 shows the decomposition
results of EEMD and corresponding the demodulated
spectrum of IMFs. +e first IMF component decomposed by
EEMD contains abundant fault feature information and is
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Figure 4: +e time domain plot of the simulated signal and envelope spectrum.
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Figure 5: +e decomposition results and corresponding frequency spectrum of IMFs with EEMD.
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selected as the optimal feature component. +e envelope
spectrum of optimal component is shown in Figure 13. It can
be seen from Figure 13 that the fault-rated impact features
can be perceived from the time-frequency maps of the
signals, and the characteristic frequency of the fault signal
can be extracted. However, there are still many redundant
components, and considerable background noise is also
present in the figures, which smears the fault features and
consequently leads to the risk of either false alarm or the
failure of fault detection.

+e VMD method is used to decompose the outer ring
defect signal. +e decomposition results and the corre-
sponding frequency spectrum of IMFs are shown in
Figure 14. According to the calculation results of de-
composition, the mode component corresponding to the
smallest envelope entropy is IMF6, the mode component
corresponding to the largest kurtosis is IMF6, and the
mode component corresponding to the largest correlation
is IMF3. +e three mode components are reconstructed

and used as the optimal component. +e envelope spec-
trum of the signal is shown in Figure 15. It can be seen
from Figure 15 that when the default values of the mode
number and bandwidth control parameter were adopted,
the fault-rated impact features can be perceived from the
time-frequency maps of the signals, and the characteristic
frequency of the fault signal can be extracted. Compared
with the EEMD method, the traditional VMD method has
more superiorities than the EEMD method in the noise
robustness and the elimination of mode aliasing. However,
compared with EEMD, the fault feature extracted from the
optimal mode component reconstructed by decomposing
the signal with the default value of the influencing pa-
rameters is not good.

+e proposed parameter-optimized VMD method is
utilized to analyze the practical bearing vibration signal.
+e decomposition results and corresponding frequency
spectrum of modes are shown in Figure 16. According to
the calculation results of decomposition, the mode
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component corresponding to the smallest envelope en-
tropy is IMF4, the mode component corresponding to the
largest kurtosis is IMF5, and the mode component cor-
responding to the largest correlation is IMF3. +e en-
velope spectrum of the reconstruction signal is shown in
Figure 17. It can be seen that the spectral amplitude is
prominent at the characteristic frequency 107.37 Hz,

which means that the parameter-optimized VMD can
correctly decompose the fault signal and accurately ex-
tract the characteristic frequency of the fault signal.
Compared with the VMD method without the optimi-
zation and the EEMD method, the fault frequency
extracted by the proposed method is more prominent and
the noise is also suppressed.
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Figure 9: +e decomposition results of parameter-optimized VMD and corresponding frequency spectrum of modes.
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Figure 12: +e decomposition results of EEMD and corresponding frequency spectrum of IMFs for outer ring defect.
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7. Conclusion

+e completely nonrecursive signal modal variational nature
of the VMDmethod makes it more advantageous than EMD
in terms of robustness against noise, overcoming end effects,
and mode aliasing. +is paper analyzes these three aspects.
+e decomposition accuracy of VMD method is affected by
the choice of mode number k and bandwidth control pa-
rameter α. +e parameter-optimized variational mode de-
composition is developed to achieve the accurate
decomposition of fault signal and adaptive control of in-
fluence parameters. Shuffled frog leaping algorithm is used
to implement the optimization the influence parameters.
+e multiobjective evaluation function is constructed to
select the optimal mode component. +e envelope spectrum
technique is used to analyze the optimal mode component.
According to the characteristics of the vibration signal, we

build the simulation signal to verify the feasibility and ef-
fectiveness of the signal and also use the vibration data of
Western Reserve University to verify the proposed method.
+e experimental results show that the proposed parameter-
optimized VMD method can correctly decompose the fault
signal and accurately extract the characteristic frequency of
the fault signal. Compared with the VMD method without
the optimization and the EEMDmethod, the fault frequency
extracted by the proposed method is more prominent and
the noise is also suppressed. +e proposed method also
provides a new way to solve the problem for the analysis of
vibration signal.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.
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Figure 16: +e decomposition results and corresponding frequency spectrum of modes by using the parameter-optimized VMD.
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