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Teleoperated robotic systems are those in which human operators control remote robots through a communication network. *e
deployment and integration of teleoperated robot’s systems in the medical operation have been hampered by many issues, such as
safety concerns. Elliptic curve cryptography (ECC), an asymmetric cryptographic algorithm, is widely applied to practical
applications because its far significantly reduced key length has the same level of security as RSA. *e efficiency of ECC on GF (p)
is dictated by two critical factors, namely, modular multiplication (MM) and point multiplication (PM) scheduling. In this paper,
the high-performance ECC architecture of SM2 is presented. MM is composed of multiplication and modular reduction (MR) in
the prime field. A two-stagemodular reduction (TSMR) algorithm in the SCA-256 prime field is introduced to achieve low latency,
which avoids more iterative subtraction operations than traditional algorithms. To cut down the run time, a schedule is put
forward when exploiting the parallelism of multiplication and MR inside PM. Synthesized with a 0.13 um CMOS standard cell
library, the proposed processor consumes 341.98k gate areas, and each PM takes 0.092ms.

1. Introduction

In teleoperated robotic systems, human operators, often
geographically distant, interact with and control robots
through a communication network. Teleoperated robotic
systems have many applications such as bomb disposal,
search and rescue, robotic surgery, and medical operation.
Teleoperated robotic surgery is a particularly important
application of medical operation. Expert surgery is able to be
performed remotely and without direct human presence. It
is expected to have a significant impact on the quality of
medical services in isolated regions, battlefields, or disaster
areas. With the development of teleoperated systems and
robots, the deployment and integration of teleoperated
robots in the medical operation have encountered many
problems such as safety concerns [1], time delay [2], and
bilateral control [3]. Security is one of the biggest issues that
hamper the deployment and integration of teleoperated
robots and there are some works on it [4].

Telerobotic surgery is expected to be employed in ex-
treme conditions, where teleoperated robots may have to

operate in harsh and low-power conditions, connecting to
the Internet with potential loss. As depicted in Figure 1, the
last communication link may even be a wireless link to a
drone or a satellite, providing the connection to a trusted
facility (possibly a large hospital with an established infra-
structure) [5].

In such operating conditions, the security of the long-
range control is significant, since if the teleoperated robotics
are attacked by hackers, potential damage might be caused
due to loss of proper control. Besides, verifying that these
requirements are established and maintained during a
teleoperated procedure is necessary [6].

In harsh conditions, low-power and time delay are
significant. Hence, the security process, like digital signa-
ture/verification and encryption/decryption, should be
implemented by hardware acceleration. Compared with
software implementation, hardware implementation has
many advantages, such as high efficiency, low power con-
sumption, and safety. ECC is a kind of public key cryp-
tography algorithm that can provide these security
processes, proposed in 1986 by Miller [7] and Koblitz [8]. It
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has been demonstrated to be used as an alternative to the
classical RSA [9] thanks to its significantly reduced key
lengths [10]. ECC when using 160–256 bits provides similar
security compared with RSA or discrete logarithm schemes
over finite fields (1024–4096 bits) [11]. SM2, as an ECC
algorithm, was included in ISO/IEC14888-3/AMD1 in
November 2017.

Considerable efforts have been made to implement the
ECC with hardware as can be noticed in [12–22], during
which MM operation is widely used for PM in ECC. In
order to accelerate the MM, the proposed designs should
be considered into three categories [23]: (1) the recom-
mended prime modular multiplication algorithm, (2)
Montgomery multiplication algorithm, and (3) the in-
terleaved modular multiplication algorithm. Among those
three categories, the first category is the fastest and it is
limited by the specific prime field, such as NIST and SCA-
256. *e architecture in [12] equips Montgomery mul-
tiplier among 8-bit × 8-bit to 64-bit × 64-bit aiming to
improve area efficiency and reduce delay at the cost of
retarding speed. *e designs in [9, 20] are based on the
recommended prime modular multiplication algorithm.
However, those MR algorithms only contain one stage,
which will generate an intermediate result Z, such as
Z[ 0, 14p ) in [9] and Z[ −4p, 5p ) in [20]. Besides, an extra
calculation is required to get the final result Z[ 0, p ).
Notably, the architecture in [9] adopts a full-word 256-bit
× 256-bit multiplier, and all the calculations are executed
in the SCA-256 prime field. In MR operation of design [9],
13 subtractions are taken to transfer the intermediate
value Z (0≤Z< 14p) to the final value in the most needed
situation, following with large latency.

Traditional software methods to implement cryptogra-
phy algorithms will bring larger time delay and power
consumption. However, hardware implementation can re-
solve these issues. Motived to provide highly efficient safety
assurance for teleoperated systems, we realize ECC by
hardware implementation. *e main contributions of this
paper include the following:

We propose a high-performance hardware processor,
which adopts a half-word multiplier to improve per-
formance while reducing hardware consumption.

Compared with most of the other works, it has a better
trade-off between performance and hardware
overhead.
*e TSMR algorithm in SCA-256 is proposed to im-
plement low latency. *e algorithm obtains the in-
termediate result Z [0, 2p), which requires one
subtraction to get the final result Z [0, p). Compared
with the traditional method [9] which obtains inter-
mediate result Z [0, 14p), our method avoids lots of
subtractions to get the final result.
TSMR algorithm is implemented by a carry-save adder
architecture to reduce latency and hardware overhead.
Combined with Karatsuba-Ofman (KO) multiplication
algorithm and pipeline design, MM requires an average
of five clock cycles, even though one clock cycle for
modular reduction and five clock cycles for multipli-
cation are required.

*e arrangement of this paper is as follows. In Section 2,
the elliptic curve and PM are introduced. In Section 3, high-
performance architecture is illustrated. *en, the proposed
method is implemented and validated in Section 4. Finally,
in Section 5, the conclusion of this work is provided.

2. Mathematical Background

2.1. Elliptic Curve. A nonsupersingular elliptic curve (EC)
over GF (p) is defined as a set of points (x, y) that conform to
equation (1), also known as theWeierstrass equation, and an
infinity point additionally:

y
2

� x
3

+ ax + b, (1)

where a and b are parameters, identifying the EC which
satisfied 4a3 + 27b2 ≠ 0(modp).

2.2. Point Multiplication. PM describes a transformation
that k identical EC points add up to one, denoted as a scalar
times an EC point “kP,” where k � (kl−1 · · · k0), and l rep-
resents the binary length of k. In this work, the width NAF
addition-subtraction method [24], given in Algorithm 1, is
applied to point multiplication.

Figure 1: Visualization of a typical telerobotic surgery setup.
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PM operation is the elemental operation of ECC and is
performed as a sequence of elliptic curve addition (ECADD)
and elliptic curve doubling (ECDBL). Let EC point
Pi � (Xi, Yi, Zi); the ECADD is defined as P3 � P1 + P2 and
ECDBL is defined as P3 � 2P1. To avoid time-consuming
modular inversion/division operation, ECADD reaches the
fastest efficiency in mixed affine-Jacobian coordinates, while
there is ECDBL in Jacobian coordinates [25].

ECADD in mixed affine-Jacobian coordinates and
ECDBL in Jacobian coordinates are given in the two fol-
lowing equations:

X3 � Y2Z
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3. High-Performance Architecture of SM2

*e PM architecture based on full-word multipliers is de-
scribed below. TSMR and full-word multiplication consti-
tute MM, while the binary modular inversion algorithm in
[26] was applied to execute modular inversion (MI)
operation.

3.1.Modular Reduction. SCA-256 has the characteristic that
it can be denoted as p � 2256 − 2224 − 296 + 264 − 1. *e
traditional MR for SCA-256 [9] is given in Algorithm 2.
After the fast reduction operation, the intermediate value
can be represented as

Z � s1 + s2 + 2s3 + 2s4 + 2s5 + s6 + s7 + s8 + s9 + 2s10

− s11 − s12 − s13 − s14,
(4)

where Z∈[0, 14p). It will cost at most 13 subtractions to get
the final result Z ∈ [0, p). Since the modular reduction would

be computed in a single clock cycle, the repetitive sub-
tractions have a significant influence on the latency and
bring about a lot of hardware resources consumption.

A TSMR algorithm on SCA-256 is proposed in this paper
to address this problem (Algorithm 3). *e first state takes
sixteen addition/subtraction operations to calculate Z1,
while the second one just costs two to calculate Z2. *e
intermediate value after two state fast reduction operations is
Z2 � s1 + s16 − s17, where Z2 ∈ [ 0, 2p ), and it only needs
one subtraction at most to obtain the final value Z ∈ [0, p).

In ECADD or ECDBL operation, modular addition
(MA) or modular subtraction (MS) operations are always
required by the following MM operation. One cycle can be
reduced when MA/MS was carried out. *e max delay of
carry-save addition only cares about the final carry.
*erefore, adding one value to the other twenty values will
not have a huge impact on latency. As shown in Algorithm 3,
operand a in previous MA/MS is added to (c + a )modp. In
Algorithm 5 proposed below, such an operation appears
twice in ECADD (Step 9: T2T2-T4, Step 11: T1T2-T4) and in
ECDBL (Step 6: T2T2-T1, Step 8: T1T2-T5), respectively.
*e clock cycles, m/(w + 1)∗ 2 + m∗ 2 � 256/(4 + 1)∗
2 + 26∗ 2 � 614, are reduced.

3.2. Carry-Save Adder Architecture. In TSFR algorithm, there
are five subtraction operations in Z1 and one in Z2. In order to
reduce the area consumption and clock latency, a kind of new
carry-save adder (CSA) architecture is presented for Algo-
rithm 3, and the main advantage of CSA is that it can deal with
subtraction operation. *e subtraction operation becomes an
addition operation by using the subtrahend’s complement.

*e first stage reduction result Z1, 0≤Z1 < 16p, was
designed as 261-bit data, and it contains 21 operands and
20 256-bit CSAs. Due to one extended sign bit for five
subtrahends’ complement, as shown in Figure 2, it is noted
that the 20 most significant bits (MSBs) of CSA cannot be
cumulated. *e CSA of 261 or more bits is not met. As
shown in Figure 2, the MSB of Z1[261] could not be got
from the sum of sc14[260] to sc21[260]. However, the 256-
th to 260-th bits of subtrahend’s complement are set to 1,
while the 257-th to 261-th bits of addend are set to 0. *e
sum of the 256-th to 260-th bits of the subtrahend can be
precalculated, getting 5∗ 5’b11111 � 7’b1011011. Only the
low 5 bits (5’b11011) are needed, and it can be placed in
row 1 of 1-bit CSA. In this case, the proposed CSA is
completed with the function of settling the subtraction
operations.

*e first stage reduction operation architecture can be
divided into two parts: the left part is a 1-bit CSA and the
right part is a 32-bit CSA, as shown in Figure 3. To simplify
the analysis, 1-bit CSA (1 full adder) is presented by a thin
rectangle on the left, while a 32-bit CSA composed of 321-bit
CSAs is presented by a wider rectangle on the right. For
example, the subtraction operation in row 15 of the 32-bit
CSA, s12 � (0, 0, 0, 0, 0, c9, 0, c8), is represented by
−s12 � ∼ s12 + 1 � (0, 0, 0, 0, 0, c9, 0, c8) + 1, where
0 � 32’hFFFFFFFF, c8 � ∼ c8, and 1 � 32’h1. *e 32-bit
CSA consists of 20 rows and 8 columns, which compute the
result Z1[255: 0]. *e 1-bit CSA is featured with 5 columns,

Input: width w, scalar k, EC point p
Output: EC point Q � kP

(1) Precomputation: i ∈ 1, 3, . . . , 2w− 1 − 1 , P[i] � iP

(2) Compute NAFw(k) � 
l−1
i�0ki2i

(3) Q �∞
(4) for i from l − 1 downto 0 do

Q � 2Q

if ki ≠ 0 then
if ki > 0 then Q � Q + P[ki]

else Q � Q − P[−ki]

(5) Return Q

ALGORITHM 1: Width NAF addition-subtraction method.
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and each of the columns has 10, 5, 2, 1, and 1 rows, re-
spectively, which compute the result Z1[261: 256].

*e second stage reduction operation is designed to
compute the result of Z2, and it has 4 operands at most and
needs 4 257-bit CSAs. Two 257-bit CSAs compute
Z2 � s15 + s16 − s17, one of which computes
(ss2 1, sc2 1) � s15 + s16 + ∼ s17, while the other
computes Z2 � ss2 1 + sc2 1 + 1. Besides, the remaining two
257-bit CSAs compute Z3 � ss2 1 + sc2 1 − p, one of which

computes (ss2 2, sc2 2) � ss2 1 + (sc2 2, 1’b1) + ∼ p,
while the other computes Z3 � ss2 2 + sc2 2 + 1’b1.

3.3. Integer Multiplication. Most of the traditional high-
performance architectures are based on multipliers. Due to
the disadvantages of full-word multipliers, long multipli-
cation should be split into small bits and more operation
cycles. Even though the one-cycle 256-bit multiplier in [20]
possesses the best speed, it also consumes the most hardware
area and the worst latency. To balance hardware con-
sumption and performance, the KO multiplication algo-
rithm based on divide-and-conquer is adopted in this paper,
as shown in Algorithm 4:

A∗B � a12
128

+ a0 ∗ b12
128

+ b0 

� a1b12
256

+ a0 + a1(  b0 + b1(  − a1b1 − a0b0( 2128 + a0b0,

(5)

where A, BGF(p), a0, a1, b0, b1 ∈ [0, 2128 − 1]. Compared
with the cascading 128-bit× 128-bit unsigned multipliers in
[16] which use four amounts of half-word multiplication, the
KO algorithm just uses three at the cost of one extra full-word

Input: Integer c� (c15, c14,. . ., c0) in base 232; c ∈ [0, p2 − 1].
Output: c mod p

(1) s1� (c7, c6, c5, c4, c3, c2, c1, c0), s2� (c15, c14, c13, c12, c11, 0, c9, c8),
s3� (c14, 0, c15, c14, c13, 0, c14, c13), s4� (c13, 0, 0, 0, 0, 0, c15, c14),
s5� (c12, 0, 0, 0, 0, 0, 0, c15), s6� (c11, c11, c10, c15, c14, 0, c13, c12),
s7� (c10, c15, c14, c13, c12, 0, c11, c10), s8� (c9, 0, 0, c9, c8, 0, c10, c9),
s9� (c8, 0, 0, 0, c15, 0, c12, c11), s10� (c15, 0, 0, 0, 0, 0, 0, 0),
s11 � (0, 0, 0, 0, 0, c14, 0, 0), s12 � (0, 0, 0, 0, 0, c13, 0, 0),
s13 � (0, 0, 0, 0, 0, c9, 0, 0), s14 � (0, 0, 0, 0, 0, c8, 0, 0)
Z � s1 + s2 + s3 + 2s4 + 2s5 + s6 + s7 + s8 + s9 + s10 −

s11 − s12 − s13 − s14
(2) Return Z mod p

ALGORITHM 2: Traditional modular reduction algorithm in SCA-256.

Input: integera a and c� (c15, c14, . . ., c0) in base 232; a ∈ [0, p − 1], c ∈ [0, p2 − 1].
Output: (c+a) mod p

(1) s1� (c7, c6, c5, c4, c3, c2, c1, c0); s2� (c15, 0, 0, 0, 0, 0, 0, c8);
s3� (c14, 0, 0, c14, c14, 0, c14, c14); s4� (c13, 0, 0, 0, c13, 0, c13, c13);
s5� (c12, 0, c15, 0, 0, 0, c15, c15); s6� (c11, c11, c13, c13, c11, 0, c11, c11);
s7� (c10, c15, c10, 0, 0, 0, c10, c10); s8� (c9, c14, c14, c15, c15, 0, c9, c9);
s9� (c8, 0, 0, c9, c8, 0, 0, 0); s10� (0, 0, 0, c12, c12, 0, c12, c12);
s11� (0, 0, 0, 0, c14, c14, 0, 0); s12� (0, 0, 0, 0, 0, c9, 0, c8);
s13� (0, 0, 0, 0, 0, c13, c13, 0); s14� (0, 0, 0, 0, 0, c8, 0, c8);

Z1� s1+ 3s2 + 2s3 + 2s4 + 2s5 + s6 + s7 + s8 + s9 +s10– s11– s12– s13 – s14 – a + p� (r8, r7, r6, r5, r4, r3, r2, r1, r0)
(2) s15� (r7, r6, r5, r4, r3, r2, r1, r0); s16� (r8, 0, 0, 0, r8, 0, 0, r8); s17� (0, 0, 0, 0, 0, r8, 0, 0);

Z2� s15 – s16 – s17;
Z3�Z2 – p;
If Z3≥0, return Z3
else return Z2

ALGORITHM 3: Two-stage modular reduction algorithm in SCA-256 (TSMR).

Input: A: 256-bit integer, satisfy A� a1 × 2128 + a0
B: 256 bit integer, satisfy B� b1 × 2128 + b0.

Output: C: 512 bit product, satisfy C�A×B.
(1) P00 � a0 × b0; asum � a0 + a1;
(2) P11 � a1 × b1; bsum � b0 + b1;
(3) Pss � asum × bsum, C� (P11, P00) – P00 × 2128;
(4) C�C – P11 × 2128;
(5) C�C+Pss × 2128;
(6) return C

ALGORITHM 4: Karatsuba–Ofman multiplication algorithm.
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subtraction and two extra half-word additions. While the KO
algorithm presented in [11] requires six cycles, the KO al-
gorithm presented in [27] requires only five cycles, shown in
Algorithm 4.

3.4. Point Addition and Point Doubling. A series of ECADD
and ECDBL operationsmake up PM. For no-idle cycles, a good

ECADD and ECDBL algorithm proposed in [27] is chosen for
this architecture, given as Algorithm 5 below. *e algorithm
has three advantages. To be specific, firstly, the multiplication
and MR are performing in parallel except for one case. It is
noted that the secondmultiplication of the point additionmust
wait until the first modular multiplication finishes, because the
one input of the second multiplication, multiplier T1, is the
output of the first modular multiplication. Secondly,

ss20[260] ss20[259] ss20[258] ss20[257] ss20[256] ss20[255] … ss20[0]
sc20[260] sc20[259] sc20[258] sc20[257] sc20[256] sc20[255] sc20[254] … 0
sc21[260] sc21[259] sc21[258] sc21[257] sc21[256] sc21[255] sc21[254] … 0

ss14[260] ss14[259] ss14[258] ss14[257] ss14[256] ss14[255] … ss14[0]
sc14[260] sc14[259] sc14[258] sc14[257] sc14[256] sc14[255] sc14[254] … 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

s12[255] … s12[0]
ss15[260] ss15[259] ss15[258] ss15[257] ss15[256] ss15[255] … ss15[0]

sc15[260] sc15[259] sc15[258] sc15[257] sc15[256] sc15[255] sc15[254] … 1
s13[255] … s13[0]

ss16[260] ss16[259] ss16[258] ss16[257] ss16[256] ss16[255] … ss16[0]
sc16[260] sc16[259] sc16[258] sc16[257] sc16[256] sc16[255] sc16[254] … 1

s14[255]

1 1 1 1 1

… s14[0]
ss17[260] ss17[259] ss17[258] ss17[257] ss17[256] ss17[255] … ss17[0]

sc17[260] sc17[259] sc17[258] sc17[257] sc17[256] sc17[255] sc17[254] … 1
s15[255]

1 1 1 1 1

… s15[0]
ss18[260] ss18[259] ss18[258] ss18[257] ss18[256] ss18[255] … ss18[0]

sc18[260] sc18[259] sc18[258] sc18[257] sc18[256] sc18[255] sc18[254] … 1
d[255] … d[0]

ss19[260] ss19[259] ss19[258] ss19[257] ss19[256] ss19[255] … ss19[0]
sc19[260] sc19[259] sc19[258] sc19[257] sc19[256] sc19[255] sc19[254] … 0

p[255] … p[0]

Z1[261] Z1[260] Z1[259] Z1[258] Z1[257] Z1[256] Z1[255] … Z1[0]

0 0 0 0 0

Figure 2: *e carry-save addition in the first reduction.
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multiplication operation is constantly running, no matter
whether shifting from ECDBL to ECDBL or switching between
ECADD and ECDBL. *irdly, hardware consumption is
minimized by using only one modular multiplication unit and
two modular addition/subtraction units. *e proposed high-
performance architecture is displayed in Figure 4.*eMA/MS
unit is designed to performmultiple functions, such as T1−X1,
X1+T1, 3T1, and Y3/2.

4. Implementation and Validation

*e architecture described above is implemented with the
Verilog-HDL language. It is synthesized using Design
Compilers with the SMIC 130 nm CMOS standard cell li-
brary and is evaluated based on the 2-way NAND gate. Apart
from that, for comparison with other designs on FPGA
platform, it is also implemented on Xilinx Virtex-6
xc6vlx760, using Xilinx ISE 14.7. *e performance is ob-
tained by ModelSim simulation. *e testing data meet the
ECC cryptography protocol and are randomly generated.
For a hardware design, the performance and hardware
consumption are two main evaluation metrics. Besides, the
time-area product is a metric to validate the trade-off be-
tween performance and hardware consumption.

With the window NAF recoding method, the time ex-
ecuting point multiplication is denoted as

m

w + 1
A + mD, (6)

where m � log2p; w refers to the width of NAF; A is the cycle
that ECADD required, while D is ECDBL’s cycle

consumption. In this work, w is set to 4. *e calculations of
1P, 3P, 5P, and 7P are precalculated.

Table 1 shows the clocks that are required by each op-
eration. In the fixed point, MM operation uses NAF4
recoding of scalar k and takes an average of 14242 cycles by
testing 1000 times. After PM operation, two MI operations
are required for coordinates conversion from Jacobian co-
ordinates to affine coordinates.

Table 2 shows the comparison among other designs over
256-field-order GF (p). *e architecture in [9] is using 256-
bit multipliers. In this case, its area is large and there are
659K gates. As it consumes many large hardware resources,
it is not suitable for teleoperated robots. *e architecture in
[18] relies on two multiplier units using interleaved modular
multiplication algorithms. Hence, it is featured with a
smaller area but worse computation efficiency.*e proposed
design is 32.7 times faster in [18]. *e architecture in [22]
adopts a systolic arithmetic unit and obtains smaller areas
but takes more clock cycles. *e AT (area-time products) of
our architecture are smaller than those of [18, 22].

*e design in [28] adopts projective coordinates to avoid
MI and employs a radix-2 modular multiplication algorithm
for MM. In [29], Shah et al. presented a high-speed processor
on the basis of redundant signed digit (RSD) arithmetic to
prevent lengthy carry propagation delay. It is able to run at a
high frequency of 327MHz and requires 0.47ms to perform a
single PM operation. *e architecture in [11] uses half-word
multipliers based on the Barrett modular multiplication al-
gorithm. In [19], a unified architecture of computingMA,MS,
andMM is proposed.*e designs in [30, 31] only apply adder
results in a worse performance than ours. *e radix-4 booth
encoding interleaved modular multiplication algorithm is
adopted in [30, 31]. Besides, the NAF point multiplication
algorithm is applied in [31], while the double-and-always-add
point multiplication algorithm is employed in [30]. As NAF2
has the merits of decreasing PM complexity from
(m/2∗A + m D) to (m/3∗A + m D), the design in [30] takes
more LUTs to get the comparable clock cycle consumption in
the same platform compared with the design in [31]. *e
architecture proposed here needs fewer clock cycles and is
faster when concerning performing point multiplication than
those architectures in [11, 18, 19, 21, 30, 31].

*e security concern is one of the most important issues
in teleoperated robotics systems. In a harsh condition, time

Input: P1� (X1, Y1, Z1), P2� (x2, y2)
Output: P3� P1 + P2

(1) T1�Z1Z1
(2) T2�T1Z1
(3) T1�T1x2
(4) T2�T2y2, T1�T1−X1
(5) T3�T1T1, T2�T2−Y1
(6) Z3�Z1T1
(7) T4�T3T1
(8) T3�T3X1
(9) T5�T2T2−T4, T1� 3T3
(10) T4�T4Y1, T1�T1−T5
(11) Y3�T1T2−T4, X3�T3−T1
(12) return (X3, Y3, Z3)

Input: P1� (X1, Y1, Z1)
Output: P3� 2P1

(1) T1�Z1Z1, Y3� 2Y1
(2) T4�Y3Y3, T2�X1−T1, T1�X1+T1
(3) T2�T2T1
(4) T3�T4X1, T2� 3T2
(5) Z3�Y3Z1, T1� 2T3
(6) X3�T2T2−T1
(7) T3�T4T4, T1�T3−X3
(8) T3�T3/2, Y3�T1T2−T3
(9) return (X3, Y3, Z3)

ALGORITHM 5: Point addition and point doubling algorithm.

Control unit

MA/MS unit

NAF unit

Reduction unit

full-word Mul
Mult. Unit

Reg (2n-bit)

Reg (n-bit)
all dataMA/MS unit

Inv unit

Inv unit

ECC

Figure 4: ECC architecture.
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delay and power consumption are important, so using
hardware to realize cryptographic algorithms has become an
imperative tendency. *e ECC processor we proposed here
is implemented in hardware and can provide a high per-
formance. *e most complicated operations, such as PM,
PA, and modular operations, are implemented by the
hardware proposed here and this hardware module can be
called by software to realize digital signature/verification and
encryption/decryption to resolve the safety issue of tele-
operated systems.

5. Conclusion

In a teleoperated system, robots interact with and are
controlled by human operators through a communication
network. *erefore, security becomes an import issue and
ECC is the well choice among different cryptographic al-
gorithms due to its lower key length. In this work, a high-
performance ECC architecture of SM2 is proposed, which is
suitable for the teleoperated robot’s security. To reduce la-
tency owing iterated subtractions, a TSMR algorithm on
SCA-256 is presented. *us, the intermediate result
Z ∈ [ 0, 2p ) is improved when compared with Z ∈ [ 0, 14p )

of traditional algorithms. To avoid iterated subtractions, a
TSMR algorithm in SCA-256 is shown and implemented
with a carry-save adder architecture with the subtraction. To
the area/performance trade-off, the half-word multiplier is
adopted, equipped with pipeline design fully enhancing the
calculation parallelism. *e experimental results show that
the proposed design takes 0.092ms to perform 256-bit PM
with 153.8MHz frequency and consumes 341.98 k gate areas.
Furthermore, the implementation result indicates that the
proposed architecture has better performance and smaller
AT than previous works.

In the future, the optimization of modular multiplication
will be studied to further reduce the hardware overhead.*e

portability of the hardware modules and the software-
hardware codesign will be further studied to extend the
application fields. Antiattack technology is another inter-
esting piece of work worth studying.
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