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We establish double Heston model with approximative fractional stochastic volatility in this article. Since approximative
fractional Brownian motion is a better choice compared with Brownian motion in financial studies, we introduce it to double
Heston model by modeling the dynamics of the stock price and one factor of the variance with approximative fractional process
and it is our contribution to the article. We use the technique of Radon–Nikodym derivative to obtain the semianalytical pricing
formula for the call options and derive the characteristic functions. We do the calibration to estimate the parameters. -e
calibration demonstrates that the model provides the best performance among the three models. -e numerical result dem-
onstrates that the model has better performance than the double Heston model in fitting with the market implied volatilities for
different maturities.-emodel has a better fit to the market implied volatilities for long-term options than for short-term options.
We also examine the impact of the positive approximation factor and the long-memory parameter on the call option prices.

1. Introduction

We propose a double Heston model with approximative
fractional stochastic volatility in this article. -ough the Black
and Scholes [1] model has been a benchmark in European
option pricing studies, the existence of the volatility smile
made the stochastic volatility model more proper for appli-
cation.-eHull andWhite [2] model, the Scott [3] model, the
Wiggins [4] model, the Stein and Stein [5] model, and the
Lewis [6] model are developed, but most of these stochastic
volatility models are not proper for application. -e Heston
[7] model which is determined by a Cox–Ingersoll–Ross
(CIR) [8] process displays the property of mean reversion
effect and the character of stationarity. It is the pioneering
work in the history of stochastic volatility model studies since
Heston technically derived the closed-form formula for the
option prices by using characteristic functions. Bakshi et al.
[9] empirically showed that stochastic volatility model has
better performance than the Black–Scholes [1] model.
However, the one-factor stochastic volatility model has some
restrictions on exploring the correlation between the volatility

and the smile. For instance, one-factor stochastic volatility
model cannot explain some specific phenomena that the
figure of the smile is unconnected with the volatility.
Christoffersen et al. [10] developed a double Hestonmodel for
exploring the correlation between the volatility and the smile.
-eir study showed that a two-factor model can explain the
correlation between the volatility and the figure of the smile
and has more flexibleness to present the volatility term
structure. One factor having greater mean-reverting level
explains the correlation between short-period returns and the
square of volatility. -e other one having smaller mean-
reverting level explains the correlation between long-period
returns and the square of volatility.

-e financial market owns the properties of self-similarity
and long-range dependence. One should consider it in financial
studies. Fractional Brownian motion is centered Gaussian
process and it also owns the two properties. -erefore, com-
pared with Brownian motion, it is a better financial tool. Hu
and Øksendal [11] developed Wick products to analyze it
because it is not a Markov process, or semimartingale, and
therefore, the traditional Itô theory is not appropriate for the
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application of it. Its biggest disadvantage is that it cannot be
economically explained very well [12]. If some specific con-
ditions hold, Brownian motion can be expressed equivalently
by using the mixed fractional Brownian motion [13], and
therefore, one can use the latter for financial application
[14–16]. Approximative fractional Brownian motion can also
be used to replace fractional Brownianmotion [17]. Two terms
multiplied by a function can be used to express fractional
Brownian motion; one can only concern the second term
since it has long-range dependence and the first term has
continuous trajectories [17]. Approximative fractional
Brownian motion is the approximation of the second
term and it is a semimartingale [17]. -ao [17] has proved
that when the dynamics of the stock price is driven by
approximative fractional Brownian motion, it has no
arbitrage opportunity. Several papers have used it as an
efficient tool in financial modeling [18, 19]. Several papers
presented empirical studies on option pricing models
with approximative fractional Brownian motion. Mrázek
et al. [20] developed an approximative fractional sto-
chastic volatility model for option pricing application.
-ey applied the Lewis formula [6] for obtaining the
semi-closed-form pricing formula and the fundamental
transform and used the optimization approach for cali-
bration. -ey considered two errors and five weights for
calibration. Pospı́šil and Sobotka [21] also developed an
approximative fractional stochastic volatility model. -ey
used the Heston approach [7] for obtaining the semi-
closed-form pricing formula and the characteristic
functions and used the optimization approach for cali-
bration. -ey considered three errors and three weights
for calibration. Several authors also developed an option
pricing model with approximative fractional Brownian
motion from a different point of view. Kang et al. [22]
developed an approximative fractional stochastic vola-
tility model to study foreign exchange (FX) options. -ey
derived the pricing formula and used some numerical
approach to examine the impact of the long-memory
parameter and the positive approximation factor on the
option prices.

-ere are two typical approaches to derive the for-
mulae for the characteristic functions. -e first approach
is developed by Duffie et al. [23]. -ey expended the
Heston [7] model on the multifactor models which are
called the affine jump-diffusion (AJD) models. Using the
Feynman–Kac theorem, the closed form of characteristic
functions can be derived. It is generally used to derive the
characteristic functions for obtaining the pricing formula
for the options. -e advantage of the approach is that the
solutions for the characteristic functions can be obtained
when some specific conditions are met. -e second one is
introduced by Schöbel and Zhu [24] and developed by
Zhu [25]. Schöbel and Zhu [24] used the expectation
approach to derive the characteristic functions, and Zhu
[25] extended it on the multifactor models and used the
modular approach to derive the characteristic functions.

Specifically, the formulae for the characteristic functions
can be expressed as a structure consisting of several
modules, and the formulae for the modules are derived by
the expectation approach. -e advantage of this approach
is that when the option pricing models are determined by
several stochastic factors, one can obtain the characteristic
functions by integrating the corresponding parts of the
formulae for the characteristic functions to be a unified
structure. Ahlip et al. [26] proposed a double Heston
hybrid model with jumps. -ey used expectation ap-
proach and martingale approach to obtain the pricing
formula for the options. Meanwhile, another approach
can also be used in several papers. For instance, He and
Zhu [27] developed an option pricing model; they
expressed the pricing formula for the options with the
forward characteristic function. To obtain the formula for
the options and corresponding characteristic function,
they changed the dynamics of their model to the forward
measure.

-e loss function approach is generally used for the
estimation of the parameters and there are two classes of
the loss functions [28]. -e first class is minimizing the
error between the quoted and model prices. -ere are two
approaches generally used in the first class. -e first one is
to minimize the absolute value of the mean-squared error
(MSE) between the quoted and model prices. Since this
approach puts too much weight on long-term and in-the-
money options, some authors prefer the second approach
for estimating parameters [29]. -e second one is to
minimize the relative value of the mean-squared error
(RVMSE) between the quoted and model prices. -e
second class is minimizing the error between the quoted
and model implied volatilities. If one considers the de-
nominator to be the weight attached to the loss function,
there are several choices one can decide to be the weight.
Christoffersen et al. [10] developed a loss function that
they used the Black–Scholes sensitivity as the weight. -e
difference between the market prices of the bid and ask
also can be taken as the weight [21]. -ough there is no
concern that which approach is better, the approach used
for estimation and evaluation should be the same [29].

We develop double Heston model with approximative
fractional stochastic volatility in this article. It is an extensive
study based on the study of Ahlip et al. [26] and Kang et al.
[22]. Our contribution is that we introduce approximative
fractional Brownian motion to double Heston model by
modeling the dynamics of the stock price and one factor of
the variance with approximative fractional process and es-
timate the parameters under this model. We do some
pioneering work to study this innovative model. We derive
the semianalytical pricing formula. We do calibration to
estimate the parameters and examine the impact of the long-
memory parameter and the positive approximation factor
on the call option prices.

We form the article as follows. We develop the model
and then derive the semianalytical pricing formula in
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Section 2. We derive the characteristic functions in Section
3. We estimate the parameters and give some numerical
study in Section 4. -e conclusion is presented in Section 5.

2. The Double Heston Model with
Approximative Fractional
Stochastic Volatility

Let (Ω,F,P) be a probability space; F � (Ft)t∈[0,T] is the
filtration and P is the risk-neutral probability measure. -e
stock price process S � (St)t∈[0,T] and the variance processes
v � (vt)t∈[0,T] and v � (vt)t∈[0,T] are given by the following
dynamic system:

dSt

St

� rdt + σsdW
S
t + ξ

��
vt

√
dB

ε,H
t +

��
vt



d W
S

t ,

dvt � θ − κvt( dt + σv

��
vt

√
dB

ε,H
t ,

dvt � θ − tκnvt dt + σv

��
vt



d W
v

t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

First, we give some preliminaries about fractional
Brownianmotion (BH

t )t≥0 and the approximation of it. It is a
Gaussian process including Hurst index H ∈ (0, 1). It has
zero mean and the covariance equation
E[BH

t BH
s ] � (1/2)(|t|2H + |s|2H − |t − s|2H). For H � (1/2),

it is a standard Brownian motion. We usually assume
H ∈ ((1/2), 1) for financial application since it displays long-
range dependence in that case [19]. It can be decomposed as

B
H
t �

1
Γ(H +(1/2))

Zt + 
t

0
(t − s)

H− (1/2)dWs , (2)

where Zt � 
0
− ∞((t − s)H− (1/2) − (− s)H− (1/2))dWs, Wt de-

notes a standard Brownian motion, and Γ denotes the
gamma function. Since Zt has continuous trajectories, we
can just consider the second term in the bracket which is
Bt � 

t

0 (t − s)H− (1/2)dWs and it has long-range dependence
property [17, 19–21]. Bt can be approximated by approxi-
mative fractional Brownian motion B

ε,H
t which is given by

[17]

B
ε,H
t � 

t

0
(t − s + ε)H− (1/2)dWs. (3)

B
ε,H
t ⟶L2

(Ω) Bt as ε⟶ 0+. B
ε,H
t is semimartingale

[17]. -e dynamics of it can be given by [17]

dB
ε,H
t � H −

1
2

 ψtdt + εH− (1/2)dW
v
t , (4)

where H represents a long-memory parameter, we consider
H ∈ ((1/2), 1) since we only concern the long-range de-
pendence property [20, 21], ε is an approximation factor, and
ψt is a stochastic process given by

ψt � 
t

0
(t − s + ε)H− (3/2)dW

ψ
s . (5)

Some assumptions are given by the following statements:

(1) W
S

� ( W
S

t )t∈[0,T] and W
v

� ( W
v

t )t∈[0,T] are corre-
lated Brownian motions that d[ W

S
, W

v
]t � ρdt,

ρ ∈ [− 1, 1]

(2) WS � (WS
t )t∈[0,T], Wv � (Wv

t )t∈[0,T], and
Wψ � (W

ψ
t )t∈[0,T] are mutually independent Brow-

nian motions

-e call option price formula at time t ∈ [0, T] with
strike K under P is given by

Ct(T, K) � E
P
t e

− r(T− t)
CT(T, K)  � E

P
t e

− r(T− t)
ST − K( 

+
 

� e
− r(T− t)

E
P
t ST1 ST≻K{ }  − Ke

− r(T− t)
E
P
t 1 ST≻K{ } .

(6)

-e forward price for the stock F(t, T) at time t can be
defined by F(t, T): � (St/e− r(T− t)), and then, we can have
that ST � F(T, T), and Ct(T, K) can be expressed as

Ct(T, K) � e
− r(T− t)

E
P
t F(T, T)1 ST≻K{ }  − Ke

− r(T− t)
E
P
t 1 ST≻K{ } .

(7)

Lemma 1. -e dynamics of F(t, T) under P can be given by
the following equation:

F(T, T) � F(t, T)exp 
T

t
〈σF(u, T)d Wu〉 −

1
2


T

t

σF(u, T)
����

����
2du , (8)

where (σF(u, T))t∈[0,T] and W � ( Wt)t∈[0,T] are R3-valued
processes given by

σF(u, T) � σS, ξεH− (1/2) ��
vt

√
,

��
vt



 ,

d Wt � dW
S
t +

1
σS

ξ H −
1
2

 ψt

��
vt

√
dt, dW

v
t , d W

S

t 

∗

.

(9)

Proof. We can obtain the following equation using Itô’s
lemma:

dF(t, T) � F(t, T) σSdW
S
t + ξ H −

1
2

 ψt

��
vt

√
dt + ξεH− (1/2) ��

vt

√
dW

v
t +

��
vt



d W
S

t . (10)
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We can obtain the expression for the dynamics of F(t, T)

by applying Itô’s lemma, and the proof is complete.
-erefore, we can obtain the following equation:

e
− r(T− t)

E
P
t F(T, T)1 sT≻K[ ]  � StE

P
t exp 

T

t
〈σF(u, T)d Wu〉 −

1
2


T

t

σF(u, T)
����

����
2du 1 sT≻K[ ] . (11)

□
Definition 1. We define the forward measure PT which is
equivalent to P on (Ω,FT):

ηt �
dPT

dP
|Ft

� exp 
t

0
〈σF(u, T), d Wu〉 −

1
2


t

0
σF(u, T)

����
����
2du .

(12)

-erefore, the formula for the call option price can be
expressed as follows:

Ct(T, K) � StE
PT

t 1 ST≻K{ }  − Ke
− r(T− t)

E
P
t 1 ST≻K{ } 

� St
PT ST≻K|St, vt, vt(  − Ke

− r(T− t)
P ST≻K|St, vt, vt( 

� St
PT xT≻ ln K|St, vt, vt(  − Ke

− r(T− t)
P xT≻ ln K|St, vt, vt( 

� StP1 t, St, vt, vt, K(  − Ke
− r(T− t)

P2 t, St, vt, vt, K( ,

(13)

where xt � ln F(t, T).

P1 t, St, vt, vt, K(  � PT xT≻ ln K|St, vt, vt( 

�
1
2

+
1
π


∞

0
Re

e
− iϕ ln K

f1(ϕ)

iϕ
 dϕ,

P2 t, St, vt, vt, K(  � P xT≻ ln K|St, vt, vt( 

�
1
2

+
1
π


∞

0
Re

e
− iϕ ln K

f2(ϕ)

iϕ
 dϕ,

(14)

where f1(ϕ): f1(ϕ, t, St, vt, vt) � E
PT

t (exp(iϕxT)) and
f2(ϕ): f2(ϕ, t, St, vt, vt) � EP

t (exp(iϕxT)), and f1(ϕ) and
f1(ϕ) are the characteristic functions.

-erefore, we only need to derive the formulae for the
two characteristic functions for obtaining the formula for the
call option price.

3. The Derivation of the
Characteristic Functions

We derive the formulae for the characteristic functions in
this section.

Theorem 1. Suppose that the stock price has the dynamics
given by the model, then the formulae for the characteristic
functions f1(ϕ) and f2(ϕ) can be expressed as follows:

f1(ϕ) � ct exp
αβσ2Sτ
2

−
αξ
σv

vt + θτ(  −
αρ
σv

vt + θτ  

× E
P
t exp − s1vT − s2 

T

t
vudu − s3vT − s4 

T

t
vudu  ,

(15)

f2(ϕ) � ct exp −
βcσ2Sτ
2

−
βξ
σv

vt + θτ(  −
βρ
σv

vt + θτ  

× E
P
t exp − q1vT − q2

T

t
vudu − q3vT − q4

T

t
vudu  ,

(16)

where τ � T − t, ct � exp(iϕxt), α � 1 + iϕ, β � iϕ, and
c � 1 − iϕ. s1, s2, s3, and s4 are given by s1 � − (αξ/σv),
s2 � − αξ((κ/σv) − (ξε2H− 1/2)), s3 � − (αρ/σv), and
s4 � − ((α2(1 − ρ2)/2) + (ακρ/σv) − (α/2)). q1, q2, q3, and q4
are given by q1 � − (βξ/σv), q2 � − βξ((κ/σv) − (ξε2H− 1/2)),
q3 � − (βρ/σv), and q4 � − ((β2(1 − ρ2)/2) + (βκρ/σv)

− (β/2)).

Proof. We can obtain the following equation:

f1(ϕ) � E
PT

t exp iϕxT(  

� E
P
t exp iϕxT( exp 

T

t
σSdW

S
u + 

T

t
ξ H −

1
2

 ψu

��
vu

√
du + 

T

t
ξεH− (1/2) ��

vu

√
dW

v
u

+ 
T

t

��
vu



d W
S

u −
1
2


T

t
σ2S + ξ2ε2H− 1

vu + vu du.

(17)
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-erefore, we can obtain that

f1(ϕ) � E
P
t exp iϕ xt + 

T

t
σSdW

S
u + 

T

t
ξ H −

1
2

 ψu

��
vu

√
du + 

T

t
ξεH− (1/2) ��

vu

√
dW

v
u + 

T

t

��
vu



d W
S

u  

× exp −
iϕ
2


T

t
σ2S + ξ2ε2H− 1

vu + vu du 

× exp 
T

t
σSdW

S
u + 

T

t
ξ H −

1
2

 ψu

��
vu

√
du + 

T

t
ξεH− (1/2) ��

vu

√
dW

v
u + 

T

t

��
vu



d W
S

u 

×exp −
1
2


T

t
σ2S + ξ2ε2H− 1

vu + vu du .

(18)

We insert ct � exp(iϕxt), α � 1 + iϕ, and β � iϕ into the
above equation, and then we can obtain that

f1(ϕ) � ctE
P
t exp α 

T

t
σSdW

S
u + 

T

t
ξ H −

1
2

 ψu

��
vu

√
du + 

T

t
ξεH− (1/2) ��

vu

√
dW

v
u + 

T

t

��
vu



d W
S

u  

×exp −
α
2


T

t
σ2S + ξ2ε2H− 1

vu + vu du .

(19)

We decompose W
S into two parts:

W
S

t � ρ W
v

t +

�����

1 − ρ2


Wt, (20)

where W � ( Wt)t∈[0,T] is a Brownian motion under P and
not correlated with WS, W

S, Wv, W
v, and Wψ . Conse-

quently, we can obtain that

f1(ϕ) � ctE
P
t exp α 

T

t
σSdW

S
u + 

T

t
ξ H −

1
2

 ψu

��
vu

√
du + 

T

t
ξεH− (1/2) ��

vu

√
dW

v
u + ρ

T

t

��
vu



d W
v

u +

�����

1 − ρ2



T

t

��
vu



d Wu  

×exp −
α
2


T

t
σ2S + ξ2ε2H− 1

vu + vu du .

(21)

We denote τ � T − t and we can obtain the following
equations according to the dynamics of the model:


T

t

��
vu

√
dW

v
u �

ε(1/2)− H

σv

vT − vt − θτ + κ
T

t
vudu − 

T

t
H −

1
2

 σvψu

��
vu

√
du ,


T

t

��
vu



d W
v

u �
1
σv

vT − vt − θτ + κ
T

t
vudu .

(22)
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We insert the above equations into the above expression
for f1(ϕ) and rearrange it, and then we can obtain that

f1(ϕ) � ctE
P
t exp

αβσ2Sτ
2

−
αξ
σv

vt + θτ(  −
αρ
σv

vt + θτ  

×exp
αξ
σv

vT + αξ
κ
σv

−
ξε2H− 1

2
  

T

t
vudu +

αρ
σv

vT +
α2 1 − ρ2 

2
+
ακρ
σv

−
α
2

⎛⎝ ⎞⎠ 
T

t
vudu⎛⎝ ⎞⎠⎤⎥⎥⎦.

(23)

We can rearrange it to obtain that

f1(ϕ) � ct exp
αβσ2Sτ
2

−
αξ
σv

vt + θτ(  −
αρ
σv

vt + θτ  

× E
P
t exp

αξ
σv

vT + αξ
κ
σv

−
ξε2H− 1

2
  

T

t
vudu +

αρ
σv

vT +
α2 1 − ρ2 

2
+
ακρ
σv

−
α
2

⎛⎝ ⎞⎠ 
T

t
vudu⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(24)

-erefore, we can obtain the following equation:

f1(ϕ) � ct exp
αβσ2Sτ
2

−
αξ
σv

vt + θτ(  −
αρ
σv

vt + θτ  

× E
P
t exp − s1vT − s2 

T

t
vudu − s3vT − s4 

T

t
vudu  ,

(25)

where s1, s2, s3, and s4 are given by equation (15). We can obtain the formula for f2(ϕ) by applying the
same method used for deriving the formula for f1(ϕ):

f2(ϕ) � E
P
t exp iϕxT(  

� E
P
t exp iϕ xt + 

T

t
σSdW

S
u + 

T

t
ξ H −

1
2

 ψu

��
vu

√
du + 

T

t
ξεH− (1/2) ��

vu

√
dW

v
u + 

T

t

��
vu



d W
S

u  

×exp −
iϕ
2


T

t
σ2S + ξ2ε2H− 1

vu + vu du .

(26)
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Inserting β � iϕ and decomposition of W
S into the above

equation, then we can obtain that

f2(ϕ) � ctE
P
t exp β 

T

t
σSdW

S
u +

T

t
ξ H −

1
2

 ψu

��
vu

√
du +

T

t
ξεH− (1/2) ��

vu

√
dW

v
u + ρ

T

t

��
vu



d W
v

u +

�����

1 − ρ2



T

t

��
vu



d Wu  

×exp −
β
2


T

t
σ2S + ξ2ε2H− 1

vu + vu du .

(27)

We denote c � 1 − iϕ and rearrange it to obtain that

f2(ϕ) � ctE
P
t exp −

βcσ2Sτ
2

−
βξ
σv

vt + θτ(  −
βρ
σv

vt + θτ  

×exp
βξ
σv

vT + βξ
κ
σv

−
ξε2H− 1

2
  

T

t
vudu +

βρ
σv

vT +
β2 1 − ρ2 

2
+
βκρ
σv

−
β
2

⎛⎝ ⎞⎠ 
T

t
vudu⎛⎝ ⎞⎠⎤⎥⎥⎦.

(28)

Moreover,

f2(ϕ) � ct exp −
βcσ2Sτ
2

−
βξ
σv

vt + θτ(  −
βρ
σv

vt + θτ  

× E
P
t

βξ
σv

vT + βξ
κ
σv

−
ξε2H− 1

2
  

T

t
vudu +

βρ
σv

vT +
β2 1 − ρ2 

2
+
βκρ
σv

−
β
2

⎛⎝ ⎞⎠ 
T

t
vudu⎡⎢⎢⎣ ⎤⎥⎥⎦.

(29)

-erefore, we can obtain the following equation:

f2(ϕ) � ct exp −
βcσ2Sτ
2

−
βξ
σv

vt + θτ(  −
βρ
σv

vt + θτ  

× E
P
t exp − q1vT − q2 

T

t
vudu − q3vT − q4 

T

t
vudu  .

(30)

where q1, q2, q3, and q4 are given by equation (16).
To complete the formulae for f1(ϕ) and f2(ϕ), we

present the calculation of the expectations in the formulae
for f1(ϕ) and f2(ϕ). □

Lemma 2. If the processes v and v follow the dynamics in the
model with independent Brownian motions Wv and W

v, if

F τ, vt, vt(  � E
P
t exp − λ1vT − μ1 

T

t
vudu − λ2vT − μ2 

T

t
vudu  ,

(31)

then the formula for it is given by

F τ, vt, vt(  � exp − G1 τ, λ1, μ1( vt − G2 τ, λ2, μ2( vt − θH1 τ, λ1, μ1(  − θH2 τ, λ2, μ2(  , (32)
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where

G1 τ, λ1, μ1(  �
λ1 c1 + κ(  + e

c1τ c1 − κ(   + 2μ1 e
c1τ − 1( 

ε2H− 1σ2vλ1 e
c1τ − 1(  + c1 − κ + e

c1τ c1 + κ( 
,

G2 τ, λ2, μ2(  �
λ2 c2 + κ(  + e

c2τ c2 − κ(   + 2μ2 e
c2τ − 1( 

σ2vλ2 e
c2τ − 1(  + c2 − κ + e

c2τ c2 + κ( 
,

H1 τ, λ1, μ1(  � −
2

ε2H− 1σ2v
ln

2c1e
κ+c1( )τ/2( )

ε2H− 1σ2vλ1 e
c1τ − 1(  + c1 − κ + e

c1τ c1 + κ( 
⎛⎝ ⎞⎠,

H2 τ, λ2, μ2(  � −
2
σ2v

ln
2c2e

κ+tc2( )τ/2( )

σ2vλ2 e
c2τ − 1(  + c2 − κ + e

c2τ c2 + κ( 
⎛⎝ ⎞⎠,

c1 �

�������������

κ2 + 2ε2H− 1σ2vμ1


,

c2 �

���������

κ2 + 2σ2vμ2


.

(33)

Proof. For t ∈ [0, T], we denote

Mt � F τ, vt, vt( exp − μ1 
t

0
vudu − μ2 

t

0
vudu . (34)

It can also be expressed as

Mt � E
P
t exp − λ1vT − μ1 

T

0
vudu − λ2vt − μ2 

T

0
vudu  .

(35)

Mt is an F-martingale under P [26, 30]. F(τ, v, v) sat-
isfies the following PIDE by applying Feynman–Kac
theorem:

−
zF

zτ
+(θ − κv)

zF

zv
+(θ − κv)

zF

zv
+
1
2
ε2H− 1σ2vv

z
2
F

zv
2

+
1
2
σ2vv

z
2
F

zv
2 − μ1v + μ2v( F � 0,

(36)

with the boundary condition F(0, v, v) � exp(− λ1v − λ2v);
we recall that ψt is a martingale and ψ0 � EP(ψt) � 0 is used
in the above equation.

We conjecture that the solution is

F(τ, v, v) � exp − G1 τ, λ1, μ1( v − G2 τ, λ2, μ2( v − θH1 τ, λ1, μ1(  − θH2 τ, λ2, μ2(  , (37)

with the boundary condition G1(0, λ1, μ1) � λ1,
G2(0, λ2, μ2) � λ2, andH1(0, λ1, μ1) � H2(0, λ2, μ2) � 0.

We rearrange equation (36) by instituting the above
expression for conjecture into it

0 �
zG1

zτ
v +

zG2

zτ
v + θ

zH1

zτ
+ θ

zH2

zτ
− (θ − κv)G1 − (θ − κv)G2

+
1
2
ε2H− 1σ2vvG

2
1 +

1
2
σ2vvG

2
2 − μ1v + μ2v( .

(38)
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We can obtain the following ODEs:

zG1

zτ
� −

1
2
ε2H− 1σ2vG

2
1 − κG1 + μ1,

zH1

zτ
� G1,

zG2

zτ
� −

1
2
σ2vG

2
2 − κG2 + μ2,

zH2

zτ
� G2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

We can obtain the formulae for G1(τ, λ1, μ1),
G2(τ, λ2, μ2), H1(τ, λ1, μ1), and H2(τ, λ2, μ2) by solving the
above ODEs. -erefore, the proof is complete. □

4. Calibration

In this section, we use the loss function to estimate the
parameters in the Heston model, double Heston model, and
the model we developed and compare the performance
among the three models.-emarket data offered onMay 10,
2012, we use are the implied volatilities of the put options on
Dow Jones Industrial Average ETF [28]. Since there are four
maturities, we consider 0.001 as the risk-free interest rate.
We set ε �1e − 5. We need to estimate the following
parameters:

Θ � κ, θ, σv, v0, κ, θ, σv, v0, ρ, ε, H, σs . (40)

As we mentioned before, there are two approaches
generally used for calibration, to minimize the absolute value
of the mean-squared error (MSE) and the relative value of
the mean-squared error (RVMSE) between the quoted and
model prices. We consider the first approach for calibration.

To be specific, first, we choose to use the bisection algorithm
[28] to obtain the market prices since we only have the
quoted implied volatilities data. Second, we use the market
prices and the first approach to estimate the parameters.
Suppose that the total number of the quotes is N, for a set
number of NT maturities τt (t � 1, . . . , NT), there are a set
number of NK strikes Kk(k � 1, . . . , NK). For each (τt, Kk),
the corresponding market price is Ct,k and the model price is
CΘt,k. We consider the following loss function:

MSE �
1
N


t,k

Ct,k − C
Θ
t,k 

2
. (41)

Table 1 shows the calibration results. It demonstrates
that the model provides the smallest MSE and IVMSE. -e
estimation of the parameters also accords with the study
based on Christoffersen et al. [10]. For both double Heston
model and the model, one factor of the variance offers a
higher mean-reverting level and the other factor of the
variance offers a lower mean-reverting level. Since double
Heston model offers better performance on MSE and
IVMSE compared with the Heston model under the loss
function we use, we plot the implied volatilities based on the
former and the model using the estimated parameters, and
the market implied volatilities for different maturities.
Figure 1 shows the result. It demonstrates the model gives
better performance than double Heston model on fitting
with the market implied volatilities for different maturities.
Compared with short-term options, the model has a better
fit to the market implied volatilities on long-term options.

We also give some numerical results to examine the
impact of the approximation factor ε and the long-memory
parameter H on the call option prices. We set the values of
parameters as follows: S� 100, K� 100, r � 0.005, and
ξ � 0.5. -e values of the other parameters are set in Table 2.

Table 3 shows the result. It demonstrates the impact of
the parameters ε and H on the prices of the call options.

Table 1: Calibration of the parameters.

Heston κH θH σH vH0 ρH MSE IVMSE
8.9814 0.0409 0.2970 0.0244 − 0.9621 0.02395 5.266e − 5

Double Heston

κD1 θD1 σD1 vD10 ρD1
10.7526 0.0330 0.3613 0.0252 − 0.8916 0.01743 4.928e − 5
κD2 θD2 σD2 vD20 ρD2

0.9491 0.0257 0.0517 0.0003 0.7009

-e model

κ θ σv v0 σs

11.6490 1.0898 0.5346 0.5344 0.0037 0.00277 1.316e − 5
κ θ σv v0 ρ

0.1673 0.1068 0.9906 0.0316 − 0.4422
ξ H

0.4316 0.7976
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Table 3: -e prices of the call options.

T
1M 2M 3M 6M 9M 1Y

ε H

1e − 5

0.5 7.7304 11.5134 14.7379 23.0400 30.2008 36.5632
0.6 6.5633 9.8007 12.5793 19.8259 26.1925 31.9473
0.7 6.4345 9.6118 12.3414 19.4736 25.7555 31.4459
0.8 6.4215 9.5927 12.3174 19.4380 25.7113 31.3953

1e − 6

0.5 7.7304 11.5134 14.7379 23.0400 30.2008 36.5632
0.6 6.5108 9.7237 12.4823 19.6823 26.0143 31.7427
0.7 6.4258 9.5990 12.3254 19.4498 25.7259 31.4120
0.8 6.4204 9.5911 12.3154 19.4350 25.7076 31.3910

1e − 7

0.5 7.7304 11.5134 14.7379 23.0400 30.2008 36.5632
0.6 6.4775 9.6748 12.4208 19.5911 25.9011 31.6129
0.7 6.4223 9.5939 12.3189 19.4403 25.7142 31.3985
0.8 6.4201 9.5907 12.3149 19.4343 25.7067 31.3900

Table 2: -e values of the parameters.

Parameters Values Parameters Values Parameters Values Parameters Values
θ 2.2 κ 1.5 σv 0.5 v0 0.5
θ 1.2 κ 0.5 σv 0.9 v0 0.25
ρ − 0.5 σs 0.15

Maturity 37days

Market IV
The model IV
Double Heston IV

0.15

0.16

0.17

0.18

0.19

0.2

126 128 130 132 134 136124

(a)

Market IV
The model IV
Double heston IV

Maturity 72days

0.16
0.165

0.17
0.175

0.18
0.185

0.19
0.195

0.2

126 128 130 132 134 136124

(b)

Market IV
The model IV
Double Heston IV

Maturity 135days

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

126 128 130 132 134 136124

(c)

Market IV
The model IV
Double Heston IV

Maturity 226days

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

126 128 130 132 134 136124

(d)

Figure 1: Market and model implied volatilities for different maturities.
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When the value of ε is fixed, the call option price decreases as
H increases. When the value of H is fixed, the call option
price decreases as ε decreases.

5. Conclusion

We developed a double Heston model with approximative
fractional stochastic volatility in this article. It is an extensive
study based on the study of Ahlip et al. [26] and Kang et al.
[22]. Since approximative fractional Brownian motion can
replace fractional Brownian motion, we introduced it to
double Heston model by modeling the dynamics of the stock
price and one factor of the variance with approximative
fractional process and it is our contribution to this article.
We did some pioneering work to study this innovative
model. We derived the pricing formula for the options and
used the expectation approach to derive the characteristic
functions. We did the calibration to estimate the parameters
using the market data. -e calibration demonstrates that the
model we developed provides the smallest MSE and IVMSE.
In both double Heston model and the model, one factor of
the variance has a higher mean-reverting level and the other
factor of the variance has a lower mean-reverting level. -e
result accords with the study of Christoffersen et al. [10].
Since double Heston model offers better performance on
MSE and IVMSE compared with the Heston model under
the loss function we use, we plotted the implied volatilities
based on the former and the model using the estimated
parameters, and the market implied volatilities for different
maturities. It demonstrates the model gives better perfor-
mance than double Heston model on fitting with the market
implied volatilities for different maturities. Compared with
short-term options, the model has a better fit to the market
implied volatilities on long-term options. We also examined
the impact of the positive approximation factor and the
long-memory parameter on the call option prices. -e result
demonstrates that when the value of the positive approxi-
mation factor is fixed, the call option price decreases as the
long-memory parameter increases. When the value of the
long-memory parameter is fixed, the call option price de-
creases as the positive approximation factor decreases.
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