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In order to obtain the relatively appropriate importance density function and alleviate the problem of particle degradation, a new
improved auxiliary particle filter algorithm is proposed. After calculating the auxiliary variable, the adaptive regulator is employed
to obtain the state estimation. So, the latest measurement information is efficiently utilized to establish a better importance density
function in the importance sampling process. *en, the process of particle weights’ adaptive adjustment and random-weighted
calculation can keep the diversity of particles and improve the filter precision; thus, it can better solve the filter problem of
nonlinear system model error and noise interference. *e simulation and analysis result show that the proposed algorithm can
optimize the filter performance and improve the calculation precision in the positioning of the SINS/SAR integrated navigation
system, compared with the other two existing filters.

1. Introduction

*e particle filter (PF) algorithm can use a series of weighted
random sample sets in the state space to approximate the
posterior probability density function of the system state,
which is applicable to any nonlinear non-Gaussian system
that can be represented by the state space models [1, 2]. *e
importance sampling process of the particle filter is simple
and easy to calculate. However, the change of measurement
information at the current moment is not considered when
the prior distribution is selected as the important density
function. *is sampling process only extracts particle
samples according to the particle motion and previous state,
so it can make them too sensitive to outliers and lose a large
number of low weight particles [3, 4]. At the same time, the
increase in the variance of particle weight will cause serious
particle degradation. *ere are two key techniques to mit-
igate the particle degradation that are selection of impor-
tance density function and resampling process [5, 6].

Since the 1990s, the scholar Gordon proposed the
particle filter algorithm [7]; this method has attracted great
attention from many scholars around the world, which has
also promoted the particle filter to improve continuously.
Although it can generate many new developed algorithms

based on particle filter, such as central difference particle
filter (CDPF), unscented particle filter (UPF), marginalized
particle filter (MPF), Gaussian particle filter (GPF), and
auxiliary particle filter (APF). Inevitably, there are still many
shortcomings and limitations in the sampling theory,
method, and application of the particle filter. In different
development particle filter algorithms, it is important to
complete effectively importance sampling and alleviate
weight degradation and sample depletion in the filter pro-
cess. *ere is a general problem that needs to be solved
urgently to obtain better filter performance under different
model noises’ conditions. *e CDPF method based on
CDKF can approximate the posterior mean value and
variance by numerical integration or polynomial interpo-
lation. *e UPF method based unscented transformation is
proposed as an improvement to PF. It has been demon-
strated in many literature that the UPF is generally superior
to the PF in terms of accuracy. *e unscented transfor-
mation can obtain a set of deterministic weighted sampling
points by means of the state posterior probability distri-
bution at the last moment, the mean and variance proba-
bility distribution of the process, and the observation noise
at the current moment [8, 9]. *ere is no need to the lin-
earization of the nonlinear function, and the calculation
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accuracy can reach at least the second order of the Taylor
series expansion. However, in many application cases,
CDPF, UPF, and so on are required to obey the Gaussian
distribution and cause particle degradation [10].

In 1999, Pitt et al. had proposed an auxiliary particle filter
(APF) [11]. *is method designs the sampling distribution by
introducing an auxiliary variable and shows better perfor-
mance compared with PF. But its improvement is limited,
especially when these two kinds of problems occur: the state
transfer density is very dispersed and the likelihood density
changes significantly relative to the state transfer density [12].
If the prior probability density function is used for particle
importance sampling and the current measurement is not
taken into account, the APF could not significantly improve
estimation accuracy in many engineering applications cases.
*e sampled particles will seriously deviate from the actual
target position, thus reducing the accuracy of the state pre-
diction mean value and covariance.

In order to enhance the filter capability of particle filter
algorithm for nonlinear environmental measurement data, the
influence of measurement information, model error, and noise
interference should also be fully considered in the design of
importance density function during APF sampling and
resampling process. So, this paper proposes a new improved
auxiliary particle filter (IAPF), and it is applied to the navigation
position system. *is filter algorithm designs an appropriate
importance density function to carry out importance sampling,
which could take the latest measurement information into
account and adjust adaptively the particle weight distribution.
*en, these obtained state estimation and variance will perform
randomweighted calculation to improve the filter performance.

With the rapid development of navigation technology,
the demand for the reliability and high precision of the
navigation system is getting much higher. *e single nav-
igation system can no longer meet the increased demand. So
the integrated navigation system can getmuch attention.*e
strap-down inertial navigation system (SINS) has many
advantages, especially high autonomy, strong concealment,
continuousmeasurement carrier, and not easily disturbed by
the outside interference. So, it occupies the core position in
the navigation system application. Synthetic aperture radar
(SAR) has the advantages of high resolution, long time
operation, remote imaging, and detection of relatively
hidden targets. However, it can easily be affected by coherent
lights and so on. So, the SINS/SAR integrated navigation
system is adopted in this paper. *e proposed algorithm was
applied to the SINS/SAR integrated navigation system and
compared with the other filters.

2. Auxiliary Particle Filter Analysis

2.1. Nonlinear System Model and Particle Filter Algorithm.
In practical engineering applications, many filter conditions
are nonlinear environment, so the high-efficiency filters
method suitable for nonlinear systems is very important. For
the linear systems, the most commonly used solution of the
optimal filter is the famous Kalman filter (KF). But for the
nonlinear systems, it is difficult or even impossible to obtain
the optimal filter solution, because it needs to deal with

infinite-dimensional integral calculation. *e PF can use
sample sets’ form to describe prior information and pos-
terior information, rather than function forms, which can
deal with the problem of solving nonlinear filter. Consider
the following nonlinear system:

xk � f xk−1,wk−1( ,

yk � h xk, vk( ,
 (1)

where xk ∈ Rn is the state vector at epoch k, yk ∈ Rn is the
system observation, wk−1 ∈ Rn is the system state noise with
varianceQk, vk ∈ Rn is the measurement noise with variance
Rk, f(·) and h(·) are nonlinear functions, and k � 0, 1, . . . ,

N is the sampling time. *e initial state obeying any dis-
tribution is E(x0) � x0 denoting the initial mean and
cov(x0) � P0 denotes the initial covariance matrix.

*e PF approximates the probability density function
p(xk|yk) through a set of random samples and replaces the
integral operation with the sample mean in the state space.
*en, it can adjust continuously weights and positions of
particles according to the observation information, to obtain
the minimum variance of states estimation [13, 14]. *e
particle importance weight can be updated recursively by

wk �
p y1: k|x0:k( p x0:k( 

q xk|x0:k−1, y1: k( q x0:k−1|y1: k−1( 

� wk−1
p yk|xk( p xk|xk−1( 

q xk|x0:k−1, yk( 
,

(2)

where p(yk|xk) denotes the likelihood density and
p(xk|xk−1) denotes the transition density of the state. When
the importance density function only depends on the pre-
vious moment state, it can be expressed as q(xk|x0:k−1,

y1: k) � q(xk|xk−1, yk). At time k, the weighted posterior
probability density can be expressed as

p xk|y1: k(  ≈ 
N

i�1
w

i
kδ xk − xi

k , (3)

where 
n
i�1 wi

k � 1, wi
k is normalization, and δ(.) is the Dirac

function [1].
In the importance sampling process, the traditional PF

algorithm selects the prior density as the importance density
function and uses the transfer probability to obtain the new
importance density function. However, it does not consider the
influence of the latest measurement value and cannot ap-
proximate the real distribution function very well, so the filter
accuracy is affected. In addition, when the likelihood distri-
bution is located at the tail of the transfer prior distribution or
the observation model has a high precision, many samples will
become invalid samples due to the small normalized weight.
*en, PF could show degeneration phenomenon and the
sample diversity will decrease. *e effective method is to in-
crease the number of particles, but this method is unrealistic.

2.2. )e Main Steps of Auxiliary Particle Filter Algorithm.
*e APF algorithm is approximated by the empirical dis-
tribution made by recursive computation of N weighted
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particles. In this algorithm, sampled particles are obtained
from the joint density function p(xk, i|y1: k), where i is the
auxiliary variable and represents the sampled particles
xik−1⟶ xk that are available for xk. By Bayesian theory, the
joint density function can be expressed as

p xk, i|y1: k( ∝p yk|xk, i, y1: k−1( p xk, i|y1: k−1( p i|y1: k−1( 

� p yk|xk( p xk|xi
k−1 wi

k−1.

(4)

When this algorithm is to select the importance function,
the following proportions should be satisfied:

q xk, i|y1: k( ∝p yk|λi
k p xk|xi

k−1 wi
k−1, (5)

where λi
k is the representation of certain features of xk, xi

k−1 is
known by conditions, and λi

k could be the conditional mean
calculated by λi

k � E[xk|xi
k−1]. After the importance density

function performs decomposition calculation, it can be seen
that the sample and auxiliary variables (xi

k, ij) can be
generated by the following two steps [15–17]:

(1) Sampling from previous indicators, ij ∼ p(yk|

λi
k)wi

k−1

(2) Sampling from prior density under ijgiven condi-
tions, xi

k ∼ p(xk|xij

k−1)

*e main steps of APF are as follows:

(1) Initialization: for k � 0, draw N sampling points
according to the initial prior information, xi

0 ∼ p(xo),
where i � 1,2, . . . ,N.

(2) For k � 1, 2, 3, . . . , N, calculate the particle sample
λi

k ∼ p(xk|xi
k−1).

(3) Calculate the corresponding weights of auxiliary
variable and normalize it as

wi∗
k � p yk|λi

k wi∗
k−1,

w
i∗
k �

wi∗
k


Np

j�1 w
j∗
k

.
(6)

(4) Use the resampling procedure in the PF filter al-
gorithm to obtain news state estimation and particle
index sets ij .

(5) *e basic PF step is used to calculate the predicted
state values’ sampling xi

k ∼ p(xk|xij

k−1) and update
the weights as

wi∗
k � wi

k−1
p yk|xi

k p xi
k|xi

k−1 

q xi
k, λi

k|, y1: k 
, ∝

p yk|xi
k 

p yk|λi
k 

. (7)

According to the particle filter step, calculate the state
estimation and return to Step (2).

*e APF differs from PF in that the resampling process is
calculated before the state prediction and weight update

steps. So, the particles to be sampled are intuitively pushed to
the high likelihood region. *eoretically, it can obtain better
filter performance when the process noise is reduced.
However, when the conditional likelihood is not insensitive
to the state, this filter slightly alleviates the lack of particle
diversity. In addition to that, the auxiliary variables sampling
process cannot fully consider the influence of the latest
measurement, and it will easily cause the system model
error. To solve the above problems, a new improved algo-
rithm is proposed based on APF for nonlinear systems.

3. A New Improved Auxiliary Particle
Filter Algorithm

Because the APF algorithm is widely applied and it is crucial
to design an appropriate importance density function,
therefore, the latest measurement information, model error,
and noise interference should be fully taken into account
when the importance sampling and resampling process of
the APF will be improvement and optimization. *is paper
proposes the IAPF algorithm that can adaptively adjust the
state estimation and consider the measurement information
change after calculating auxiliary variables; then, the im-
portance density function will be close to the true distri-
bution obtained by importance sampling. *e particles’
weights are selected and adjusted adaptively, and, finally, the
state estimation and variance are calculated by random
weighted, so that the filter accuracy can be improved. *e
IAPF algorithm includes the following steps:

Step 1 (initialization): for k � 0, xi
0 ∼ p(x0), where

i � 1, 2, . . . , N, assume the initial values xi
0 � E(xi

0) and
Pi
0 � E[(xi

0 − xi
0)(x

i
0 − xi

0)
T].

Step 2: calculate particle index sets ij , j � 1, 2, . . . , N,
and λi

k ∼ p(xk|xi
k−1).

Step 3: calculate the corresponding particle weights of
xi

k, ij 
N

j�1 and normalized weights.
*en, a new particle set is obtained by auxiliary
resampling, (xi

k, 1/N) ∼ (xi
k, wi∗

k ).
Step 4: if the distribution of these weighted particle sets
is used to approximate the importance density func-
tion, i.e.,

q xk, i|y1: k(  � q i|y1: k( q xk|i, y1: k( , (8)

q xk|i, y1: k( ≜p xk|xi
k−1 , (9)

the traditional auxiliary variable is only to be sampled
from the transition density distribution. When the
process noise is small, the performance of APF is
usually better than that of the PF method; however,
when there appears large variation of measurement
information and noise changes in the systemmodel, the
sampled particle does not provide sufficient informa-
tion and will seriously deviate from the actual target
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position, thus reducing the accuracy of the state pre-
dicted value and covariance. *erefore, the IAPF
should not only fully consider the influence of the latest
measurement information but also adaptively adjust
parameters to adapt to model errors and noise
interference.

(1) When the interval of observation time increases,
the system model error will also increase. If the
target state is not updated for a long time, it is
difficult to accurately estimate the system motion
model with limited observation information.
*erefore, for i � 1, 2, . . . , N,

xi
k � x

i
k + αi

k yi
k − h x

i
k  , (10)

where the adaptive regulator αi
k can be expressed as

αi
k �

T2
· v2 · σ2v(k) 

μ · σ2m(k) + T2
· v2 · σ2v(k) 

, (11)

where μ is a constant, T denotes the time interval,
vdenotes the position target velocity, σ2v(k) denotes
the standard deviation of measurement residual,
σ2m(k) denotes the standard deviation of mea-
surement error, σ2m(k), and xi

k is generated based
on the prior particle and the measurement infor-
mation at time k, which is closer to the real state
value [18, 19].
*is step can use many iterative computations and
adaptive regulator to update the state estimation
that will be to approximate the nonlinear obser-
vation, which further reduces the state estimation
error and thus optimizes the filter estimation to
obtain the importance density function, so (xi

k,Pi
k)

is close to N(xi
k,Pi

k).
(2) Importance sampling (xi

k ∼ N(xi
k,Pi

k)): calculate
the particle weights:

Step5: residual resampling.
All particle weights are evaluated separately to generate
new samples with similar weights. *is process
sometimes reduces the diversity of particles, which can
be selected according to the specific situation. *e
weight is improved by Euclidean distance [20, 21], such
as

Lmax � yi
k−min − yi

k−max 
T

· yi
k−min − yi

k−max , (12)

Li
� yi

k − yi
k−max 

T
· yi

k − yi
k−max , (13)

where Lmaxand Li denote the Euclidean distance of the
measurement residual yi

k−max and yi
k−min:

wi∗

k � wi∗

k +
wi∗

k−max
N

  · sin
Li

Lmax · (π/2)
  · β, (14)

where wi∗

k−max denotes the maximum weight value, β �

K/α∗ is the adaptive coefficient, K is the proportion
constant value, and α∗ is determined by the statistical

characteristics of the measurement noise. *en, nor-
malized weights

w
i
k �

wi
k


n
i�1 w

i∗

k

. (15)

In the resampling process, we can get M particle again.
Step 6: random-weighted calculation.

*e particles carried out a random weighted calculation,
and the random weighted vectors (η1, η2, . . . , ηN) all follow
the Dirichlet distribution D(1, . . . , 1) [22] and satisfy


N
n�1 ηn � 1. Calculate the state estimation and variance such

as

xk � 
N

n�1
ηnx

n
k, (16)

Pk � 

N

n�1
ηn

P
n

k. (17)

Return to Step (2) to recursively calculate the state es-
timation and variance based on the new measurement
information.

*is algorithm can recursively calculate the sample
particles through the adaptive regulator. It has a better
adaptive ability to deal with measurement information and
other system interference factors, and the residual resam-
pling and random weighted calculation process makes the
filter algorithm have better adaptability and robustness.

4. Simulation Results and Analysis

4.1. SINS/SAR IntegratedNavigation System. *e simulation
experiment has been conducted to comprehensively eval-
uate and analyze the performance of the proposed algo-
rithm for SINS/SAR integrated navigation system, and the
comparison with the other two existing filters APF and PF
is also discussed in this section. *e SINS/SAR integrated
navigation system makes use of the complementary
characteristics of the SINS and SAR to improve the per-
formance of the whole system [23, 24]. *e schematic
diagram of the SINS/SAR integrated navigation system is as
in Figure 1.

*e local navigation frame (n-frame) is selected as the
east-north-up (e-n-u) geography frame. Denote the inertial
frame by i, the Earth frame by e, and the body frame by b.
*e dynamic model of the SINS/SAR integration navigation
system can be expressed as

_x � f(x, t) + w(t),

z(t) � hx(t) + v(t),
(18)

where f(x, t) is the system nonlinear state function, w(t)

is the system process noise vector, h is the measurement
matrix, v(t) is the measurement of white noise, and
the mean value is zero. We define the system state vector
as
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x(t) � ϕe, ϕn,ϕu, δve, δvn, δvu, δL, δλ, δh, εb
x, εb

y, εb
z,∇b

x,∇b
y,∇b

z 
T
,

(19)

where ϕe, ϕn, andϕu denote attitude error quaternion of
SINS, δve, δvn, and δvu denote velocity error in three di-
rections of SINS, δL, δλ, and δh denote the errors of lati-
tude, longitude, and height, εb

x, εb
y, and εb

z denote random
drift of the gyro, ∇b

x, ∇b
y, and∇b

z denote constant bias of the
accelerometer, and w(t) is such as

w(t) � −C−1
ω Cn′

b ω
b
a 

T

, Cn
bω

b
g 

T
, 01×9 

T

, (20)

where C−1
w , Cn′

b , andCn
b represent different rotation ma-

trices. *e attitude, velocity, and position error equations of
SINS are given by [25, 26]. *e system state equation in
discrete-time form can be expressed as

xk � f xk−1(  + wk, (21)

where f(·) is a discrete-time nonlinear function describing
the dynamics of system state and w(k) is the discrete-time
process noise [27].

In this integrated system, the horizontal direction mea-
surement is composed of the difference of heading angle,
longitude, and latitude between SINS and SAR. *e altitude
direction measurement is composed of the difference of height
between the SINS and the barometric altimeter. *e system
measurement equation in discrete-time form canbe expressed as

zk � Hkxk + vk, (22)

and take the measurement vector as

zk � ψI − ψS, LI − LS, λI − λS, hI − he 
T
, (23)

where ψI, LI, λI, and hI are, respectively, the heading angle
and the position information for SINS; ψS, LS, and λS are the
heading angle, latitude, and longitude position information
for SAR. Due to the instability of the SINS system altitude

measurement and the fact that the barometric altimeter is
introduced to measure height information with he, δ denotes
the corresponding error. zk can be rewritten as

zk �

ψI − ψS

LI − LS

λI − λS

hI − he

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

(ψ + δψ) − ψ + δψS( 

(L + δL) − L + δLS( 

(λ + δλ) − λ + δλS( 

(h + δh) − h + δhe( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

δψ

δL

δλ

δh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

δψS

δLS

δλS

δhe

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

4.2. Simulation Analysis. Assume the initial position of the
aircraft is 34.2∘N, 108.9∘E, altitude is 1500m, and the level
flight speed is 400m/s. In SINS, the error characteristics of the
three gyros and accelerometers are, respectively, consistent,
the constant drift of the gyro is 0.01∘/ h and the random walk
is 0.001∘/

��
h

√
, the constant error of the accelerometer is 10− 4 g

and the random walk is 10− 5 g ·
�
s

√
, the initial alignment

error is 0, the initial velocity error is 0.5m/s, and the initial
position error is 15m. In SAR, the imagematching calculation
time is 2 s, the antenna attitude angle error is (60″, 60″, 60″),
distance measurement white noise is 40m, distance rate
measurement white noise is 0.1m/s, horizontal positioning
accuracy is 30m, the barometric altimeter error is 20m, and
the simulation time is 1600 s. *e flight trajectory simulation
of the aircraft is shown in Figure 2.

*is paper uses root mean squared errors (RMSE) of the
estimation error to show the integrated navigation system
filter performance of the comparison methods from a sta-
tistical perspective. *e RMSE is defined as

RMSE �

��������������

1
M



M

i�1
xi − xtrue( 




, (25)

where M is the Monte Carlo runs. Take the estimated
heading angle, velocity, and position error as an example,
and the simulation results are shown in Figures 3–9, ob-
tained by the proposed IAPF, APF, and PF algorithms.

Barometric
altimeter

SAR

SAR image
matching

Airborne digital
map

SINS

SINS/SAR
filter

Attitude, velocity, and position
information

Height information

Real-time
image

Heading angle
positional

information

Antenna stabilization, alignment
and motion compensation

Figure 1: *e schematic diagram of the SINS/SAR integrated navigation system.
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It can be seen from the heading angle estimation errors
simulation figures that the three-filter algorithms error es-
timation curve fluctuates significantly at the beginning of the
simulation. After stabilization, the error estimation curve
converges best by the IAPF algorithm and the RMSE of
heading angle error is 6.218. *en, the RMSE by APF is
8.512, and the RMSE by PF is 13.570.

It can be seen from the three directions of velocity error
simulation figures and Table 1 that the initial velocity errors
of the three filters are relatively large, and the error curve
basically tends to be stable after 100 s. *e RMSE of velocity
error obtained by the proposed IAPF is the smallest, and the
value is 0.288, 0.218, and 0.307, respectively. APF is second,

and the RMSE of velocity error value is 0.347, 0.328, and
0.357, respectively. *e east velocity error curve is the most
obvious fluctuation; the RMSE of velocity error value is
0.686, 0.461, and 0.375, respectively.
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Figure 4: *e east velocity estimation errors.
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Figure 5: *e north velocity estimation errors.
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It can be seen from the three directions of position error
simulation figures and Table 2 that the RMSE of the po-
sition error obtained by IAPF is 3.397, 4.918, and 3.829,
respectively. *e RMSE of APF position error is 4.185,
7.063, and 4.663, respectively, and the RMSE of PF position
error is 6.044, 8.219, and 6.388, respectively. *ese simu-
lation results show that the IAPF can reduce location errors
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Figure 9: *e height position estimation errors.

Table 1: Velocity error comparison for the simulation case (m/s).

Filter
methods

RMSE
of δVe

RMSE of
δVn

RMSE of
δVu

Velocity error range

PF 0.686 0.461 0.375
(−1.12, 1.83),
(−1.11, 1.21),
(−0.82, 0.80)

APF 0.347 0.328 0.357
(−0.83, 0.92),
(−0.31, 0.90),
(−0.75, 0.82)

IAPF 0.288 0.218 0.307
(−0.30, 0.71),
(−0.37, 0.41),
(−0.35, 0.52)
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and improve the resolution accuracy for the SINS/SAR
integrated system.

5. Conclusion

*e proposed IAPF algorithm based on APF can obtain state
estimation and covariance through adaptive regulation in
the sampling process.*e latest measurement information is
efficiently utilized to establish a better importance density
distribution function so that it is closer to the real distri-
bution function. *e process of weight adaptive adjustment
and random weighted calculation can keep the diversity of
particles and improve the filter precision. *e simulations
and comparison analysis have demonstrated that the pro-
posed IAPF has preferable estimation accuracy than APF
and PF in positioning calculation. It has been conducted to
comprehensively verify the effectiveness and superiority of
the proposed IAPF for SINS/SAR integrated navigation
system, which provides a new method for the nonlinear
model filter.

Future work focuses on the improvement of the pro-
posed algorithm tomaking the performance of the algorithm
more perfect and how to reduce the complexity of calcu-
lation and apply this method to other integrated navigation
systems.
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