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Dynamic electric vehicle routing problem (DEVRP) is an extension of the electric vehicle routing problem (EVRP) into dynamic
logistical transportation system such that the demand of customer may change over time. The routing decision of DEVRP must
concern with the driving range limitation of electric vehicle (EV) in a dynamic environment since both load degree and battery
capacity are variable according to the time-varying demands. This paper proposes an adaptive memetic algorithm, where a special
encoding strategy, an adaptive local search operator, and an economical random immigrant scheme are employed in the
framework of evolutionary algorithm, to solve DEVRP efficiently. Numeric experiments are carried out upon a series of test
instances that are constructed from a stationary VRP benchmark. The computational results show that the proposed algorithm is
more effective in finding high-quality solution than several peer algorithms as well as significant in improving the capacity of the

routing plan of EVs in dynamic transportation environment.

1. Introduction

In recent years, electric vehicles (EVs) have begun to widely
apply into the logistical transportation systems due to their
advantages of energy consumption and low pollution [1].
For example, there are about 2000 EVs, accounting for 10%
in total, which are operated by the French electricity dis-
tribution company ENEDIS in 2016. However, EVs usually
have a short driving range of 100-150 miles due to the
technology bottleneck of battery [2]. Furthermore, the en-
ergy consumption of EVs is varied with the load degree, the
speed, and even the road slope that may cause their driving
range to be significantly lower [3]. In reality, the logistical
transportation systems are often dynamic. For example, the
request of a new customer arrives dynamically or the de-
mand of an old customer can change over time. When
deciding the route plan of an EV fleet in these dynamic
environments, the influence of dynamic load degree upon
the driving range must be considered due to the time-
varying delivery requests. Figure 1 illustrates the route ex-
ecution of a single EV in a dynamic logistical transportation
system. Before an EV leaves the depot O time ¢, an initial

route plans to visit the currently known requests
(A, B,C, D, E). While EV executes its route, a new request X
arrives at time ¢; and the initial route is adjusted to fulfill it.
However, the increased load by new arrival request X limits
the driving range of EV that causes its inevitable return to
depot O once for recharging. Finally, the real executed route
of EVis (A, B,C, X, O, D, E). Therefore, the routing plan of
EVs in dynamic logistical transportation system becomes
distinctively different from the traditional vehicle routing
problem (VRP) in the literature as we will demonstrate
throughout this paper.

In this paper, a special dynamic electric VRP (DEVRP) is
investigated for the optimal routing plan of a fleet of EVs so
that they can serve a set of customers with time-varying de-
mands while minimizing the total driving distance of EVs.
Obviously, DEVRP can be regarded as an extension of electric
VRP (EVRP) into dynamic transport environment. Recently, a
lot of researchers have begun to focus on EVRPs due to the
wide application of EVs in the logistical transportation field
[4-9]. Schneider et al. [10] studied an EVRP with time windows
and changing stations in order to minimize the total travel
distance by a homogenous EV fleet. Felipe et al. [11] proposed
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FiGure 1: Example of dynamic EV routing.

several heuristics that were constructed within the framework
of simulated annealing algorithm for an EVRP with multiple
charging technologies and partial recharges. Goeke and
Schneider [12] considered a full charging policy with a linear
charging function approximation in the routing problem of a
mixed electric and conventional vehicle fleet. Lin et al. [13]
discussed the effect of vehicle load on battery consumption in
EVRP. Keskin and Catay [14] investigated the application of an
adaptive large neighborhood search algorithm for an EVRP
that allowed partial recharging. Montoya et al. [15] designed a
hybrid metaheuristic for EVRP, in which the battery-charge
level was defined as a nonlinear function of the charging time.
Zhang et al. [16] utilized an ant colony algorithm for solving an
EVRP with the objective of minimizing the energy con-
sumption of EVs. Jie et al. [17] presented a two-echelon
capacitated EVRP with battery swapping stations and utilized a
hybrid algorithm that combined column generation and
adaptive large neighborhood search to determine the delivery
strategy under battery consumption limitations. It is noticeable
that the current relevant literature on EVRP were concerned
with the recharging operations of EVs along their route or the
utilization efficiency of battery during the transport course.
However, most researches only considered EVRPs as static
optimization problems; that is, all customer demands were
given as constant. As shown by the example in Figure 1,
rerouting an EV must consider the influence of its driving
range with load degree once a new customer demand arrives,
which is not involved if a traditional vehicle is used.

According to the method proposed by Pillac et al. [18],
there are four categories of VRPs. The first is the static and
deterministic VRP, where all input is known beforehand and
vehicle routes do not change once they are in execution [19].
The second is the static and stochastic VRP, which is
characterized by input partially known as random variables
(Gendreau et al.) [20]. The third is the dynamic and de-
terministic VRP, where part or all of the input is unknown
and revealed dynamically during the design or execution of
the routes [21]. The final is the dynamic and stochastic VRP
that has part or all of the input unknown and revealed the
exploitable stochastic knowledge dynamically during the
execution of the routes [22].

The investigated problem in this paper belongs to the
third category; however, the routing algorithm of DEVRP is
significantly complicated due to the influence of EVs’ driving

range varying with their load degree in dynamic environment.
For DEVRP, an effective optimization algorithm should track
these environmental changes and adapt the best routing
scheme of an EV fleet to the changes accordingly. Therefore,
we will investigate the applications of an adaptive memetic
algorithm (MA) for DEVRP in this paper. The contributions
of this study can be summarized as follows:

(i) We extend EVRP into dynamic delivery transport
environment, which is more general and practical,
and present a special DEVRP, where the driving
range of EV is limited by the variable load degree
according to the time-varying demand requests.

(ii) We propose an adaptive MA method to solve the
investigated DEVRP. The proposed method intro-
duces a special individual representation strategy,
an adaptive local search (LS) operator, and an
economical random immigrant scheme into the
framework of evolutionary algorithm (EA).

(iii) We validate the performance of the proposed
method using a series of test instances constructed
from a stationary VRP benchmark.

The rest of this paper is outlined as follows. Section 2
formally provides the investigated DEVRP. Section 3 de-
scribes the proposed MA method in detail. Section 4 con-
structs DEVRP test suites from a stationary VRP benchmark
and evaluates empirically the performance of the proposed
MA for DEVRPs. The final section concludes this paper with
discussions on future works.

2. Problem Definition

In this section, we provide a formal description of the
DEVRP, in which a homogenous fleet of EVs start from a
single depot and deliver the goods to a set of customers. Each
EV has a fixed load capacity and limited driving range. While
EV is traveling, the battery charge level decreases propor-
tionally with the distance traversed and the current load
degree. All EVs must return to the depot for the battery
recharging. The demands of customers may change during
the design stage. As a consequence, the delivery routes may
have to be revised to accommodate the corresponding
changes of demands.
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Let I ={1,...,n} be the set of nodes representing the
customers and 0 a node representing the depot. Each cus-
tomer has a time-varying demand g; over the design horizon
[t, T] with ¢t >0. The DEVRP is defined on a directed and
complete graph G = (V,A), where V ={0}Ul and
A={(i,j):i,j€V,i+j} represents the set of arcs con-
necting vertices of V. Each arc (i, j) has two associated
nonnegative values: a travel distance d;; and a battery
consumption b;;. All EVs have a battery of capacity Q and a
maximal load capacity C,,,,. Note that b;; can be calculated
by the following formulation:

Acur ~ Gemp
b,. =—.¢ d)

Y dful ~ Gemp F W
where e represents the engine efficiency of EV, and gy qgy»
and g, represent the load degrees with the current, full,
and empty statuses of EV on arc (i, j), respectively.

The additional assumptions in the investigated DEVRP
are given as follows:

(1) Each EV starts with the full-battery capacity from the
depot

(2) Each EV route ends at the depot

(3) Each customer node is visited once by only an EV
route

(4) Driving speed on each arc is constant

(5) The battery is recharged to full each time after
returning to the depot

(6) No time window constraint is considered for the
delivery service and the battery recharging

The purpose of DEVRP investigated in this paper is to
decide an optimal delivery route plan so as to minimize the
total travel distance of EV's as well as adapting to the time-
varying demands of customers during the design stage.
Considering that the traditional exact or approximation
methods for large-scale VRPs are not very exciting, an
adaptive memetic algorithm will be proposed for solving this
problem efficiently and the detailed algorithmic designs will
be given in the next section.

3. Proposed MA Method for DEVRP

3.1. General Framework of MA. In the EA community, MA
can be regarded as a hybrid metaheuristic method inspired
by Darwinian principles of natural evolution and Dawkins’
notion of a meme, defined as a unit of cultural evolution that
is capable of local refinements. Within the framework of a
MA, EA operators are responsible for global rough search
and LS operators (an LS is also called a meme) are used for
local refinement. Due to the advantage of maintaining an
efficient balance between exploration and exploitation, MAs
have been successfully used to solve a lot of complex op-
timization problems [23-26]; however, they are rarely
considered for dynamic optimization problems [27, 28].
The proposed MA in this paper is a class of EA-based
hybrid metaheuristic, which can be expressed by the pseu-
docode in Figure 2, where pop_size, pc, and pm are the

begin
parameterize (pop_size, pc, pm),
t=0;
initializePopulation (P (0));
evaluatePopulation (P (0));
if the LS method is used then
elite = selectForLocalSearch (P(0));
execute the LS operation upon elite;
repeat
P’(t) = selectForReproduction (P(t));
P”(t) = crossover (P’(t));
mutate (P”(t));
evaluatePopulation (P”(t));
P (t + 1) =selectForSurvival (P”(t) U P(t));
if the LS method is used then
elite = selectForLocalSearch (P(t));
execute the LS operation upon elite;
if the immigrant scheme is used then
immigrate a number of random chromosomes into P (t + 1);
t=t+1,
until a stop condition is met

end.
FIGURE 2: Framework of the proposed MA for DEVRP.

population size, crossover probability, and mutation proba-
bility, respectively. Within this MA, a population of pop_size
chromosomes are generated randomly and then evaluated at
the initialization step. Then, an elite chromosome, i.e., the
chromosome with the best fitness, is improved by an LS op-
erator. At each subsequent generation, the chromosomes
undergo a binary tournament selection, where two chromo-
somes are selected randomly from the current population and
the best one is taken for one parent, and the selected chro-
mosome undergoes an order crossover (OX) operation with a
probability pc. After crossover is executed, a 2-OPT mutation
operator is performed for each newly generated offspring
chromosome with a probability pm. Then, the pop_size best
chromosomes among all the parents and offspring are selected
to proceed into the next generation, and an elite chromosome
in the newly generated population is refined in the LS oper-
ation. If the immigrant scheme is used, a certain number of
immigrants are generated randomly and replace the worst
chromosomes in the current population in order to improve
the exploration capacity of MA in dynamic environment.

3.2. Individual Representation. How to express a chromo-
some using a proper encoding method is a basic work when
designing an MA for VRP. A good representation scheme
can help the algorithm obtain high-quality solutions easily,
while an improper representation may make it hard for an
algorithm to achieve even feasible solutions.

Prins [29] proposed a simple and effective encoding
scheme of GA for VRP, where each chromosome is defined as a
sequence of N customer nodes, just like in most GAs for
traveling salesman problem (TSP). This encoding scheme can
be viewed as a giant tour performed by one vehicle of infinite



capacity if only the same vehicle performs all trips one by one.
Then, an optimal split procedure can partition a given chro-
mosome into the best VRP solution. Based on this encoding
mechanism, we develop a permutation encoding scheme in
MA for the investigated DEVRP. Note that the evaluation of a
chromosome is time-costing since the splitting procedure, as
shown in Figure 3, is known as an exact algorithm in O(N).
Thus, the evaluation number will be considered as the time
index in the proposed MA for DEVRP in this paper.

3.3. Local Search. In many heuristic methods for the routing
problems, the inverse operation, where two nodes are selected
from a segment which is reversed, is often employed as the local
move technique, as shown in Figure 4. The quality of a
neighbor generated by executing one inversion can be esti-
mated by a parameter A, which is calculated by the formula
A = (ac+b d) - (ab + ¢ d). Obviously, the smaller the value
of A is, the higher the quality of the new generated solution is.

In the original inversion scheme, the sequence between
two different nodes chosen randomly in a single tour is
reversed. Since there are existing multiple tours in the VRP
solution, the inversion can be divided into two ways: single-
tour-based inversion (SI) and multiple-tour-based inversion
(MI). The former starts from choosing a single tour and
reverses the sequence between two different nodes in the
chosen tour. In the latter, the tours are not considered in
isolation, and paths and nodes are allowable to exchange
between different tours.

An example of ST and MI is presented in Figure 5, where
node 3 and node 6 are selected from single (SI) and multiple
(MI) tours and the sequence between them is reversed. It is
easy to see that SI can always help a solution s make a single-
tour local improvement, which means that one local move in
SI always occurs in a smaller area around s, and MI can
perform one move in a wider range upon s. Obviously, each
local move makes a biased search and hence may be efficient
for some classes of problems but not for others. Therefore,
how to develop an efficient LS operator and avoid utilizing
inappropriate local move becomes a very important issue.

Here, we design an adaptive LS (ALS) method for the
investigated DEVRP according to an effective learning
mechanism [30] in order to utilize SI and MI operators effi-
ciently. In our proposed ALS method, SI and MI are both
allowed to work together and selected by probability to gen-
erate a neighbor of an individual at every step of an LS op-
eration on every iteration of the algorithm. In order to obtain
the advantages of both of them during different periods when
they are effective, an adaptive learning strategy is used to adjust
their execution probabilities according to the improvement
each inversion operator has achieved on every LS step.

Let p; and p,,; denote the probabilities of applying SI and
MI to generate a neighbor of an individual that is used for local
search, respectively; py; + p,,; = 1. At the start of this strategy,
ps; and p,,; are both set to 0.5, which means giving a fair
competition chance to each inversion operator. As each in-
version move always makes a biased search, the inversion
operator which produces more improvements should be given
a greater selection probability. Let # denote the improvement
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Vo=0;
for i=1to n do V;=+ oo endfor
for i=1to n do

load =0; cost=0; dist=0; j=i,

repeat
load = load + qj;
if i=j then

dist = d0,5j+ ds,-,o; cost = bo,sj + bsj,0§
else
dist = dist-dsj_l_o + dsj_l.sj + dsj,OQ
cost= cost—bSH_O + bsH,Sj + bs,-,o;
enif
if (load <= C,,4,) and (cost <= Q) then
if V;_y +dist<V; then
V; =V,_1 +dist;
P =i-1;
endif
J=itlh
endif
until (j >n) or (load > Cp,q,) or (cost > Q)
endfor
Denotations:
S: a sequence vector of visiting n customers;
P: a label vector of EVs.
FIGURE 3: Algorithm for the splitting procedure.

degree of the selected individual when one inversion operator is
used to refine it and # can be calculated by
11 — flmp'f flnll’ (2)
mi1
where f;,, is the final fitness of the selected individual for
the local refinement after executing one LS operation and
fin; 1s its initial fitness before the local refinement. At each
generation, the degree of improvement of each inversion
operator is calculated when a predefined number of itera-
tions is achieved, and then p; and p,,; are recalculated to
proceed with the local improvement in the next generation.
Suppose y; () and #,,, (t), respectively, denote the total
improvement of SI and MI at generation t. Their selection
probabilities p; (t + 1) and p,,,; (t + 1) at generation (t + 1)
can be calculated orderly by the following formulae:

Psi (t + 1) = Dsi (t) +38- i (t),
Poi (E+1) = Py (8) + 8- 17,,, (1),

pat+1) (3)
Psi(t + 1) + pmi (t + 1))

pi(t+1)=

pmi(t+1)=1_psi(t+1)’

where § signifies the relative influence of the degree of the
improvement on the selection probability. The proposed
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FIGURE 5: An example of SI and MI operators.

inverse-based LS operator can be expressed by the pseu-
docode in Figure 6.

From Figure 6, it can be seen that SI and MI are used to
generate a certain number of s’s neighbors, which compose a
neighbor set S, by probability. For each neighbor s’ in S, the
corresponding value of A (s, s/) is calculated to estimate the
effect of this local move. It is noticeable that the quality of s’
is only estimated by the value of A(s,s’) rather than its
fitness f (s7), which differs from the general LS method as
shown in Figure 1. This is because that the evaluation of
fitness is too time-consuming (see the relevant description in
Section 2.1), while the total evaluation number in each
generation is always limited. Finally, the best neighbor s*
with the smallest value of A would be evaluated and replace s
if its fitness is lower than f (s).

3.4. Increasing Population Diversity. The major problem
when EAs are applied for dynamic optimization problems
is that the converging population cannot adapt to the
changing environments. The random immigrant scheme,
where the population is partially replaced by the new-
generated chromosomes at every generation, is a simple
and efficient scheme for EAs in dynamic environments
since it can introduce a constant diversity into the pop-
ulation [31, 32]. Obviously, it is more helpful to migrate
random chromosomes into a converging population than a
spread-out one. Thus, it is not necessary to always inject a
constant number of random chromosomes into the pop-
ulation at every generation.

Here, we propose an economical random immigrant
scheme for the proposed MA, where the immigrant ratio ri
of every generation can be calculated based on the value of a
population diversity index &. The index & can be calculated as
follows:

(4)

f _ min1|fave - fbest|, 1})

f ave

where fi. and f,,. are the best and average fitness among
the fitness values of the population, respectively. The index &

begin
if ps; and p,,; are not initialized then
set Psi = Pmi = 0.5;
set Nsi = Nmi = 0;
for i=1to ls_size do
set S=@ and ns = 0;
while (ns < max_ns) do
if random() < pg; then //SI is selected
generate a neighbor s of s using SI operator;
else // Ml is selected
generate a neighbor s’ of s using MI operator;
calculate A(s,s’);
S=Su{s'}
ns=ns+1;
endwhile
find a solution s* with the smallest value 4 ofin S;
evaluate f(s™);
if f(s*) < f(s) then s =5s";
update 7ng; and 7,,;;
endfor
recalculate py; and pp,i;
end.
Denotations:
max_ns: the maximal allowable value of [S| per generation;
random(): a pseudo-random number between 0 and 1;

A(s,s”): the corresponding value of 4 when s moving to s’

FiGUure 6: Pseudocode for the ALS method.

is a fitness-based measurement of population diversity, and
it can be seen as a measurement of the convergence degree of
an algorithm. If £ — 1, there is a high population diversity
and therefore the algorithm is far from convergence; if
& — 0, there is a low population diversity, which means
that the convergence is approaching.

With the definition of &, the immigrant ratio ri can be
calculated by the following formula:



ri = min{a - (1 - &) (ri_max — ri_min) + ri_min, ri_ max},
(5)

where ri_ max and ri_min are, respectively, the predefined
maximum and minimum value of ri and are preset constant
to control the decreasing or increasing speed of ri. From this
formula, it is easy to understand that less random immi-
grants could be introduced into the population in the
presence of higher diversity (i.e., when & — 1) as a result of
ri — ri_min. However, when the population is converging
(i.e., when & — 0), ri — ri_ max, which increases the level
of random immigrants with a great degree.

4. Experimental Study

4.1. Dynamic Test Environment. In this section, the behaviors
of investigated algorithms are examined on a series of DEVRPs
which are constructed based on an instance from VRPLIB
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/).  In
the basic VRP instance eil51, one depot node and N = 50
customer nodes are defined by the points in the plane and the
cost for each edge (i, j) is the Euclidean distance between node i
and node j. For each EV, the maximal load capacity is set to 160
and the capacity of battery is set to 20 kWh.

According to the generated method of dynamic opti-
mization problems by Wang et al. [33], the dynamics of
DEVRPs is defined as follows: every 7 generations, the
demands of p x N customers change according to a random
Gaussian variable. More formally, a change of a single
customer can be described as follows:

g; (t) = min{max{q,;,, 15+ 8 - N (0, D}, gpnax}> (6)

where ¢;(t) denotes the demand of customer i at time ¢,
Gmax = 160 and g,,;;, = 1 denote the allowable maximum and
minimum demand of a customer, respectively, and N (0, 1)
denotes a normal distribution random number in (0, 1). In
fact, g, is equal to the capacity of an EV, while q,;,, is set to
1 in order to ensure that the demand of each customer is
nonnegative. Moreover, the mean demand and variance of
all customers is 15 and 8, respectively, in the original data set.
According to this constructing method, the parameter
controls the speed of changes while p € (0.1,1.0) controls
the severity of changes. A bigger p means more severe
changes while a smaller 7 means more frequent changes.

In this study, the change speed parameter 7 is set to 50,
100, and 200, respectively, which means that the environ-
ment changes very fast, in the moderate speed, and slowly,
respectively. The change severity parameter p is set to 0.1,
0.5, and 1.0, respectively, in order to examine the perfor-
mance of algorithms in dynamic environments with dif-
ferent severities: from slight change p = 0.1 to moderate
variation p = 0.5 to intense change p = 1.0. In order to study
the behavior of algorithms in randomly changing envi-
ronment, we also set p to be a random number uniformly
distributed in (0.0, 1.0), i.e., p = rand. In total, a series of 12
different dynamic problems are constructed from each
stationary test problem. The dynamics parameter settings are
summarized in Table 1.
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TaBLE 1: The index table for dynamic parameter settings.

T Environmental dynamic index

50 1 2 3 4
100 5 6 7 8
200 9 10 11 12
p— 0.1 0.5 1.0 rand

4.2. Experimental Design. Experiments are carried out in
order to study the major features of our proposed MAs and
to compare their performance with several other peer al-
gorithms. The following abbreviations represent the algo-
rithms considered in this paper.

(1) SGA: A simple GA

(2) SGAr: A simple GA with restart from scratch
whenever the environment changes

(3) RIGA: SGA with the traditional random immigrants’
scheme

(4) MA-Inverse: MA with the simple reverse-based LS
operator

(5) MA-Swap: MA with the simple swap-based LS
operator

(6) MA-Insert: MA with the simple insert-based LS
operator

(7) MA-ALS: MA with our proposed ALS operator
(8) MAr-ALS: MA-ALS with a simple restart scheme

(9) RIMA-ALS: MA with the ALS operator and our
proposed economical random immigrant scheme

The following parameters are used in all algorithms: the
population size (pop_size) is set to 100 for all MAs, but is set to
120 for SGA, SGAr, and RIGA because the LS operation in MAs
may be executed by Is_size = 20 steps per generation. It is easy
to see that the total number of evaluations per generation is
always 120 for all algorithms. The order crossover probability pc
equals 0.8 and the inversion mutation probability pm is set to
0.2 for all GAs and MAs. The specific parameters in our
proposed algorithms are set as follows: & = 1.0, ri_ max = 0.1,
and ri_min = 0.01 for the random immigrant scheme, while
A =0.98, Is_size 1 =5, and Is_size2 = 5 in the ALS operator.

For each experiment of an algorithm on a test problem,
30 independent runs were executed with the same set of
random seeds. For each run of an algorithm on a DOP, 10
environmental changes were allowed and the best-of-gen-
eration fitness was recorded per generation. The overall
offline performance of an algorithm is defined as the best-of-
generation fitness averaged across the number of total runs
and then averaged over the data gathering period, as for-
mulated below:

_ o1& 1
Fpg = G Z <§ ZFBGiJ')’ (7)

i=1 =1

where G is the number of generationsie., G =10-7, R = 30
is the total number of runs, and F BG, 18 the best-of-gen-
eration fitness of generation i of run j.
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4.3. Experimental Study on the Effect of LS Operators. In the
experimental study on LS operators, we investigate the
performance of MAs with different LS operators, with the
aim of examining the effect of our proposed operator in
Section 3. In particular, five different algorithms, including
MA-ALS, MA-Inverse, MA-Swap, MA-Insert, and SGA, are
tested on the stationary instance of DEVRP. For each run of
an algorithm on each problem, the maximum allowable
number of generations was set to 200. The experimental
results are shown in Figure 7, where the data were also
averaged over 30 runs.

From Figure 7, it can be seen that the performance of
four MAs is always better than that of SGA on the stationary
EVRP. This is because the LS operators can improve the
performance of an algorithm significantly. The similar re-
sults have been obtained by many researchers. It is no-
ticeable that the behavior of different MAs is different during
the running course. MA-Insert, MA-Inverse, and MA-Swap
significantly outperform SGA at the early iterative stage of
running the algorithms, while their behavior becomes a little
disappointing at the late iterative stage. However, MA-ALS
almost performs much better than other algorithms on the
whole course of running. This is because three different LS
operators are employed and selected to execute local im-
provements for an individual with an adaptive mechanism
in MA-ALS. Obviously, our proposed LS operator, which
combines the features of two inverse operation in an
adaptive learning strategy, can improve the individual more
efficiently than each of the three single LS operators. The
result that MA-ALS outperforms significantly other algo-
rithms shows the efficiency of the proposed ALS operator.

4.4. Experimental Study on the Performance of MAs on
DEVRPs. In the experiments on DEVRPs constructed in
Table 1, we attempt to compare the performance of our
proposed algorithm RIMA-ALS with some other peer al-
gorithms, including SGAr, RIGA, MA-ALS, and MAr-ALS
described in Section 4.2.

The experimental results with respect to the overall
offline performance are presented in Table 2 and plotted in
Figure 8. The corresponding statistical results of comparing
algorithms by the one-tailed t-test with 58 degrees of
freedom at a 0.05 level of significance are given in Table 3. In
Table 3, the t-test results regarding Alg. 1 — Alg. 2 are shown
as “s+,”, “s—,” “4,” or “=” when Alg. 1 is significantly better
than, significantly worse than, insignificantly better than, or
insignificantly worse than Alg. 2, respectively. From Table 2,
Table 3, and Figure 8, several results can be observed and are
analyzed below.

First, RIMA-ALS significantly outperforms other peer
algorithms on most DEVRPs, as indicated in the relevant ¢-
test results in Table 3. This result validates our expectation of
the proposed MA for solving DEVRPs. In RIMA-ALS, the
ALS operator can make a sufficient exploitation for the best-
fitness chromosome. Many researches in the literature often
utilize the LS technique to refine each chromosome in the
current population. This is too costly or impossible for an
MA in dynamic environments considering that the total cost
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on the stationary problem.

per iteration in terms of evaluations is always limited. The
ALS operator is only applied for the best-fitness chromo-
some in our proposed algorithm and can always help the
algorithm keep tracking a changing high-quality solution,
which is obviously feasible, especially on real-world appli-
cations. Moreover, the population is also introduced a
certain degree of diversity by the economical random im-
migrant scheme, which can help the algorithm adapt well to
environmental changes, especially when the environment is
subject to significant changes. More relevant analysis on the
effect of the operators in RIMA-ALS will be explained in the
late experimental analysis.

Second, MAr-ALS performs much worse than MA-ALS
and RIGA, but it is better than SGAr on all dynamic
problems. Given the perfect restart scheme, MAr-ALS does
not reuse any information from the past population, but
only restarts to search the equivalent problem from a ran-
dom initial state when an environmental change occurs. It is
easy to understand that MAs or GAs with the restart scheme
always take too much cost to reachieve the high-fitness
solutions. The result that MAr-ALS significantly under-
performs MA-ALS and RIGA on DEVRPs indicates the
importance of reusing the useful information in the past
population for MA in dynamic environments. The reason
why MAr-ALS outperforms SGAr lies in that the ALS op-
erator can help the algorithm obtain the high-fitness solu-
tion more quickly, which has been obtained in the
experiment in the last section.

Third, MA-ALS always performs well on most DEVRPs,
even outperforms RIMA-ALS on DEVRP when 7 = 200 and
p = 0.1. This happens because that a new environment is
close to the previous one when the value of p is very small. It
is much advantageous to execute sufficient exploitation for
the elite chromosome in the current population when a
slight environmental change occurs in terms of severity.
When p increases to 0.5 or 1.0, MA-ALS is significantly
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TABLE 2: Experimental results of all peer algorithms on DEVRPs.
Dynamics Algorithms
T p SGAr RIGA MA-ALS MAr-ALS RIMA-ALS
50 0.1 1026.93 + 7.05 659.91 + 15.15 616.16 + 17.85 872.54 + 10.28 610.53 + 11.79
50 0.5 1022.74 + 8.74 654.29 + 12.97 616.40 + 16.78 872.31 + 10.55 608.07 = 15.39
50 1.0 1023.24 + 7.80 660.73 + 13.88 621.13 + 14.89 872.15 + 8.97 612.98 + 11.96
50 rand() 1022.43 + 9.44 659.25 + 20.74 616.70 + 13.86 871.43 + 9.34 606.87 + 12.21
100 0.1 891.90 + 8.14 613.56 + 14.70 585.51 = 15.45 77713 + 9.32 584.08 + 12.20
100 0.5 892.85 + 7.17 606.41 + 10.91 589.58 + 10.59 776.26 + 6.86 582.60 + 10.81
100 1.0 892.03 + 6.72 610.34 + 9.08 586.30 + 12.12 771.01 £ 11.20 581.57 + 11.15
100 rand() 893.47 + 10.15 607.56 = 12.51 588.22 + 10.51 774.04 £ 9.83 583.07 + 10.67
200 0.1 766.86 + 8.25 586.05 + 12.56 566.39 + 9.74 687.77 + 8.47 566.78 + 12.63
200 0.5 765.06 £ 6.99 581.79 + 13.65 566.90 + 8.96 688.89 + 9.67 566.41 + 13.10
200 1.0 766.04 + 6.46 58232 + 7. 569.22 + 7.30 686.49 + 6.17 564.33 + 9.02
200 rand() 767.29 £ 6.76 585.65 + 9. 567.11 = 10.42 685.89 + 8.56 566.82 + 11.36
1100 T T T T T
1000 +
g
g 900 -
£
2
.E 800 |-
go
S 700 b
8
600
500 i P i
0 1 4 5 8 9 12
Dynamic environmental index
—— SGAr -o- MAr-ALS
-8- RIGA —— RIMA-ALS
-~/ MA-ALS
FIGURE 8: Experimental results of all GAs and MAs on DEVRPs.
TaBLE 3: The t-test results of comparing algorithms regarding the overall offline performance.
t-test result DEVRP instances
7 =50, p— 0.1 0.5 1.0 Rand()
RIMA-ALS-MAr-ALS s+ s+ s+ s+
RIMA-ALS-MA-ALS + s+ s+ s+
RIMA-ALS-RIGA s+ s+ s+ s+
MAr-ALS-MA-ALS s— s— s— s—
MAr-ALS-RIGA s— s— s— s—
MAr-ALS-SGAr s+ s+ s+ s+
MA-ALS-RIGA s+ s+ s+ s+
RIGA-SGAr s+ s+ s+ s+
7 =100, p= 0.1 0.5 1.0 rand()
RIMA-ALS-MAr-ALS s+ s+ s+ s+
RIMA-ALS-MA-ALS + s+ s+ s+
RIMA-ALS-RIGA s+ s+ s+ s+
MAr-ALS-MA-ALS s— s— s— s—
MAr-ALS-RIGA s— s— s— s—
MAr-ALS-SGAr s+ s+ s+ s+
MA-ALS-RIGA s+ s+ s+ s+
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TaBLE 3: Continued.

t-test result DEVRP instances

RIGA-SGAr s+ s+ s+ s+
7 =200, p= 0.1 0.5 1.0 rand()
RIMA-ALS-MAr-ALS s+ s+ s+ s+
RIMA-ALS-MA-ALS - s+ s+ s+
RIMA-ALS-RIGA s+ s+ s+ s+
MAr-ALS-MA-ALS s— s— s— s—
MAr-ALS-RIGA s— s— s— s—
MAr-ALS-SGAr s+ s+ s+ s+
MA-ALS-RIGA s+ s+ s+ s+
RIGA-SGAr s+ s+ s+ s+

beaten by RIMA-ALS, which shows the necessity of
maintaining the sufficient population diversity for MAs in
dynamic environments. Since it is usually not possible to
judge the strength and weakness of an environmental change
in advance, the proposed random immigrant scheme is a
good choice when MAs are applied for DOPs; notice that
RIMA-ALS always performs better than MA-ALS on all
DEVRPs when p = rand.

Finally, the environmental parameters affect the per-
formance of algorithms. The performance of all algorithms
increases when the value of 7 increases from 50 to 100 to 200.
When 7 becomes larger, algorithms have more time to find
better solutions before the next change. However, the per-
formance of algorithms hardly changes with the increasing
or decreasing of the value of p.

5. Conclusion

In this paper, an adaptive MA is proposed for addressing a
special DEVRP that is characterized by the time-varying
customer demands during the route design stage, under the
consideration of the influence of the variable load degree
upon the driving range of EVs. In the proposed MA method,
there are three major algorithmic schemes. The first is to
develop a splitting procedure to translate an individual with
simple permutation-based representation to a solution of
DEVRP. The second is to propose an ALS operator that
utilizes two different inverse-based LS operations, that is, SI
and MI, in an adaptive cooperation way. The last is to
employ an economical random immigrant scheme to
maintain a sufficient population diversity for the proposed
algorithm to adapt well to the changing environment.
From the experimental results based on a series of DEVRPs,
which are constructed from a stationary instance of VRP, the
following conclusions can be drawn on the dynamic test
problems. Firstly, MAs with the ALS operator enhanced by the
suitable diversity technique can exhibit a better performance in
solving DEVRPs. For most test problems, RIMA-ALS, which
hybridizes GA with the ALS operator and the economical
random immigrant scheme, outperforms other peer algorithms.
Secondly, the ALS operator can help the algorithm execute a
robust local refinement since it employs multiple LS operators
via an adaptive cooperation mechanism. In our experiments,
MA-ALS performs much better than other MAs with a single LS
operator for the stationary instance of VRP. Thirdly,

maintaining a sufficient population diversity and reusing the
past information efliciently are both important for MAs in
dynamic environments. For most DEVRPs, RIMA-ALS always
performs better than MA-ALS and MAr-ALS, while MA-ALS
outperforms MAr-ALS. Finally, the environmental parameter
can affect the performance of algorithms. In our experiments,
algorithms perform better with the increase of the frequency of
changes, while the influence of the severity of change seems very
limited. Generally speaking, the experimental results indicate
that the proposed algorithm, where an EA is hybridized with the
ALS operator and an economical random immigrant scheme,
seems a good optimizer for DEVRPs.

For the future work, it is straightforward to examine the
performance of our proposed algorithm for more DEVRP
instances. For example, a mixed fleet of EVs or multiple
charging stations can be considered in DEVRPs. Another
interesting research topic is to investigate the effect of hy-
bridizing the other LS operations, such as those especially
used for EVRPs, within this adaptive learning way. In ad-
dition, it is also valuable to carry out the sensitivity analysis
on the effect of parameters, e.g., a, A, etc., on the perfor-
mance of the proposed algorithm in the future.
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