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In this paper, we apply the complete discrimination system method to establish the exact solutions of the fractional complex
Ginzburg–Landau equation in the sense of the conformable fractional derivative. Firstly, by the fractional traveling wave
transformation, time-space fractional complex Ginzburg–Landau equation is reduced to an ordinary differential equation.
Secondly, some new exact solutions are obtained by the complete discrimination system method of the three-order polynomial;
these solutions include solitary wave solutions, rational function solutions, triangle function solutions, and Jacobian elliptic
function solutions. Finally, two numerical simulations are imitated to explain the propagation of optical pulses in optic fibers. At
the same time, the comparison between the previous results and our results are also given.

1. Introduction

It is well known that the Ginzburg–Landau equation is one
of the most important models to describe optical phe-
nomena [1–7]. In order to better analyze the complex optical
phenomena and further study their essence, the best ways
are to find the exact traveling solutions [8–15] to the
Ginzburg–Landau equation describing the nonlinear optical
phenomena. In recent years, a variety of powerful mathe-
matical approaches have been developed to derive the exact
solutions to Ginzburg–Landau equation, such as the
(G′/G2)-expansion method [16], the Modified simple
equation method [17], the F-expansion [18], the sine-
Gordon expansion method [19], the extended direct alge-
braic method [20], and the dynamical system method
[21–23].

Consider the following time-space fractional complex
Ginzburg–Landau equation [24–28]:
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where 0< δ ≤ 1, describing the order of the fractional de-
rivative, x denotes distance along the fiber, t denotes time in
dimensionless form, a, b, α, β, and c are valued constants,
and F is a real-valued algebraic function which must have
the smoothness of the function F(|u|2)u: C⟶ C. Con-
sidering the complex plane C as a two-dimensional linear
space R2, F(|u|2)u is k times continuously differentiable:
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Equation (1) is one of the very many models that govern
pulse propagation dynamics through optical fibers for
transcontinental and transoceanic distances. In [24],
Sulaiman et al. studied the conformable time-space frac-
tional complex Ginzburg–Landau equation via extended
sine-Gordon equation expansion method. In [25], Abdou
et al. considered the fractional complex Ginzburg–Landau
equation by employing the extended Jacobi elliptic function
expansion method. In [26], Arshed constructed the soliton
solutions to fractional complex Ginzburg–Landau equation
by utilizing the exp (− ϕ(ξ))-expansion method. In [27],
Ghanbari and Gòmez-Aguilar employed the generalized
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exponential rational function method to study the periodic
and hyperbolic soliton solutions to conformable Ginz-
burg–Landau equation. In [28], Lu et al. studied the (2 + 1)-
dimensional fractional complex Ginzburg–Landau equation
via the fractional Riccati method and fractional bifunction
method. Recently, the complete discrimination system
method proposed by Liu is very powerful and useful tool,
and the exact solutions of many fractional partial differential
equations have been solved (see [29–35]). In this paper, we
employed the complete discrimination system method to
construct new exact solutions of the fractional complex
Ginzburg–Landau equation.

+e paper is arranged as follows. In Section 2, we will
give the definition of modified Riemann–Liouville derivative
and its properties. In Section 3, we will introduce the
complete discrimination system for the polynomial method.
In Section 4, we will apply this method to solve the fractional
complex Ginzburg–Landau equation with the Kerr law and
the power law nonlinearity. In Section 5, we draw the nu-
merical simulations. In Section 6, we present the concluding
remarks.

2. Conformable Fractional Derivative and
Its Properties

+e definition and properties of the conformable fractional
derivative are defined as [36].

Definition 1. Let f: [0,∞)⟶ R. +en, the conformable
fractional derivative of f of order α is defined as

D
α
t f(t) � lim

ε⟶0

f t + εt1− α
  − f(t)

ε
, ∀t ∈ (0, +∞), α ∈ (0, 1],

(3)

the function f is α-conformable differentiable at a point t if
the limit in equation (3) exists.

Remark 1. +e conformable fractional derivative possesses
the following properties:

(i) Dα
t (tμ) � μtμ− α, ∀μ ∈ R

(ii) Dα
t (af(t) + bg(t)) � aDα

t f(t) + bDα
t g(t),

∀a, b ∈ R
(iii) Dα

t (f ∘g)(t) � t1− αg(t)α− 1g′(t)Dα
t (f(t))|t�g(t)

3. Complete Discrimination System for
the Polynomial

To show the basic idea of our method, consider the following
nonlinear fractional differential equation:
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where u is an unknown function and P is a polynomial of u

and its partial fractional derivatives.
Using the fractional complex transformation,

u(x, t) � u(ξ),

ξ � k
x
β
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+ ω

t
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α
,

(5)

where k and ω are arbitrary constants.
Equation (4) is reduced to the following integer-order

ordinary differential equation:

Q u, u′, u″, . . .(  � 0, (6)

where Q is a polynomial in u and its derivatives and notation
(′) is the derivative with respect to ξ.

Equation (6) can be written as

u′(ξ) � G u, θ1, θ2, . . . , θm( , (7)

where θ1, θ2, . . . , θm are parameters. +en, integrating the
above formula once, we have
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where G(u) is a polynomial function and ξ0 is an integral
constant.

In this paper, there are two complete discrimination
system that will be used, the second-order complete dis-
crimination system,

G(u) � au
2

+ bu + c,

Δ � b
2

− 4ac,
(9)
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According to the complete discrimination system for
G(u), the roots of G(u) can be classified, and the detailed
classification will be given in Section 4.

4. Applications

Taking the fractional complex transformation,
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(11)

where v is the soliton velocity, k is the soliton frequency, ω is
the soliton wave number, and θ is the phase constant.
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Inserting (11) into (1) and separating into real and
imaginary parts yield

− ωU + a U″ − k
2
U  + bF U

2
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U′( 
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U
+ 2αU″ + cU,

(12)

v � − 2ak. (13)

Equation (13) gives the velocity of soliton. Taking α � 2β,
equation (12) takes the following form:

(α − 4β)U″ − ω + ak
2

+ c U + bF U
2

 U � 0. (14)

4.1. Kerr Law. +e Kerr law of nonlinearity describes the
phenomenon that a light wave in an optical fibre encounters
nonlinear responses from nonharmonic motion of electrons
with an external electric field. In this case, F(U) � U so that
equation (14) reduces to

(α − 4β)U″ − ω + ak
2

+ c U + bU
3

� 0. (15)

Multiplying U′ on both sides of equation (15) and again
integrating it on ξ, we can obtain

U′( 
2

� a4U
4

+ a2U
2

+ a0, (16)

where a4 � − b/2(α − 4β), a2 � (ω + ak2 + c)/(α − 4β), and
a0 are arbitrary constants.

Taking the transformation U � ±
����������������

(− 2b/(α − 4β)− 1/3ψ


and ξ1 � (− 2b/(α − 4β)1/3ξ, equation (16) becomes

ψ′( 
2

� ψ ψ2
+ p1ψ + p0 , (17)

where p1 � (4(ω+ ak2 + c)/(α − 4β))(− 2b/(α − 4β)− 2/3 and
p0 � 4a0(− 2b/(α − 4β)− 2/3. Integrating equation (17), we
have
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where ξ0 is the integration constant and values zero in the
following solutions. Let Δ � p2

1 − 4p0 be discriminant of
second-order polynomial G(ψ) � ψ2 + p1ψ + p0, and there
are four cases for the solutions of equation (18) according to
the cases of roots of G(ψ).

Case 1.1 (Δ � 0): as for ψ > 0, we have
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If p1 < 0, it follows from equation (19) that the solution
of equation (15) takes the form
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If p1 > 0, it follows from equation (19) that the solution
of equation (15) takes the form
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If p1 � 0, it follows from equation (19) that the solution
of equation (15) takes the form

u4(x, t) � ±
2

(− 2b/(α − 4β))
1/2ξ − (− 2b/(α − 4β))

1/6ξ0
e
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Case 1.2 (Δ> 0 and p0 � 0): as for ψ > − p1, we have ± ξ1 − ξ0(  � 
dψ

ψ ������ψ + p1
√ . (23)
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If p1 > 0, it follows from equation (23) that the solution
of equation (15) takes the form
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If p1 < 0, it follows from equation (23) that the solution
of equation (15) takes the form
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Case 1.3 (Δ> 0, p0 ≠ 0): suppose that λ1 < λ2 < λ3, one of
λ1, λ2, λ3 is zero, and others are two roots of G(ψ) � 0.
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For another transformation, ψ � (− λ2sin2 φ + λ3)/
cos2 φ, it follows from equation (26) that the solution of
equation (15) takes the form
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4.2.PowerLaw. Power-law nonlinearity can be regarded as a
generalisation of Kerrs power-law nonlinearity. In this case,
F(U) � Un so that equation (14) can be given as
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here, in equation (31) the parameter n dictates the power law
nonlinearity. For stability issues, it is necessary to have
0< n< 2, and in particular n≠ 2, to avoid self-focusing
singularity. Balancing U″ with U2n+1 in equation (31) gives
N � 1/n. In order to obtain closed-form solutions, we use
the transformation U � ϕ1/2n that reduces equation (31) into
the ODE:
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We use the complete discrimination system for the
third-order polynomial, and then we have the following
solving process:

Case 2.1: when d2 > 0, according to Equation (35), we
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then, the solutions of equation (31) can be presented as
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Case 2.2: when d2 < 0, according to equation (35), we
have

± ξ − ξ0(  �
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then, the solutions of equation (31) can be presented as
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Figure 1: +e solitary wave solution u1 for equation (1) with ω � 1, α � − 1, k � 1, c � − 1, β � 1/4, a � 1, and b � 1. (a) Perspective view of
the wave. (b) +e wave along the z-axis.
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Figure 2: +e triangle function solution u3 for equation (1) ω � 1, α � 2, k � 1, c � − 1, β � 1/4, a � 1, and b � 1, (a) Perspective view of the
wave. (b) +e wave along the z-axis.
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Case 2.3: when d2 � 0, according to equation (35), we
have

u14(x, t) � 2
− 4bn2

(α − 4β)(1 + n)
 

− 1/3

ξ − ξ0( ⎡⎣ ⎤⎦

− 1/n

· e
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(40)

5. Graphical Representation of the
Obtained Solutions

In this section, the exact solutions of the fractional complex
Ginzburg–Landau equation are given. +rough the above
results, we get some new exact solutions, such as solitary
wave solutions u1(x, t), u2(x, t), u5(x, t), u6(x, t), u11(x, t),
and u12(x, t); trigonometric function solutions u3(x, t),
u7(x, t), and u13(x, t); Jacobi elliptic function double pe-
riodic solutions u8(x, t), u9(x, t), and u10(x, t); rational
function solutions u4(x, t) and u14(x, t). Furthermore,
u1(x, t) and u5(x, t) are bounded solutions and u2(x, t) and
u6(x, t) are unbounded solutions. Comparing with other
works [25, 26], these new solutions have not been reported
in the former literature. Using the mathematical software
Maple, we plot some of these obtained solutions which are
shown in Figures 1 and 2.

6. Conclusion

In this work, we apply the complete discrimination
system method to construct the exact solution to frac-
tional complex Ginzburg–Landau equation with Kerr
and power laws of nonlinearity. +e classification of all
traveling wave solutions are given by the complete dis-
crimination system, and these exact solutions include
solitary wave solutions, rational function solutions, Ja-
cobian elliptic function solutions, and triangle function
solutions. Comparing with other works [25, 26], these
solutions have not been reported in the former literature.
Moreover, this method is very efficient and powerful in
finding the exact solutions for the nonlinear fractional
differential equations, and the obtained solutions can
help us to more deeply explain the nonlinear dynamics of
optical soliton propagations.
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