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To improve the accuracy and real-time performance of autonomous decision-making by the unmanned combat aerial vehicle
(UCAV), a decision-making method combining the dynamic relational weight algorithm and moving time strategy is proposed,
and trajectory prediction is added to maneuver decision-making. Considering the lack of continuity and diversity of air combat
situation reflected by the constant weight in situation assessment, a dynamic relational weight algorithm is proposed to establish
an air combat situation system and adjust the weight according to the current situation. Based on the dominance function, this
method calculates the correlation degree of each subsituation and the total situation. According to the priority principle and
information entropy theory, the hierarchical fitting function is proposed, the association expectation is calculated by using if-then
rules, and the weight is dynamically adjusted. In trajectory prediction, the online sliding input module is introduced, and the long-
and short-term memory (LSTM) network is used for real-time prediction. To further improve the prediction accuracy, the
adaptive boosting (Ada) method is used to build the outer frame and compare with three traditional prediction networks. -e
results show that the prediction accuracy of Ada-LSTM is better. In the decision-making method, the moving time optimization
strategy is adopted. To solve the problem of timeliness and optimization, each control variable is divided into 9 gradients, and
there are 729 control schemes in the control sequence. -rough contrast pursuit simulation experiments, it is verified that the
maneuver decision method combining the dynamic relational weight algorithm and moving time strategy has a better accuracy
and real-time performance. In the case of using prediction and not using prediction, the adaptive countermeasure simulation is
carried out with the current more advanced Bayesian inference maneuvering decision-making scheme. -e results show that the
UCAV maneuvering decision-making ability combined with accurate prediction is better.

1. Introduction

With the continuous development of artificial intelligence
technology, the intelligence and autonomy of the unmanned
combat aerial vehicle (UCAV) represented by the American
“Loyal Wingman” have been significantly improved, but the
existing intelligence is far from being able to meet actual
needs [1]. -erefore, the autonomous air combat technology
of UCAV is currently a hot issue studied by various
countries, and it has also been a persistent research topic for
decades [2]. Maneuvering decision-making is a key tech-
nology in autonomous air combat. It is a mechanism for
UCAV to select maneuver in real-time during air combat. It
has high requirements for real-time and accuracy. Existing
maneuver decision-making techniques are mainly divided

into two categories: maneuver decision-making methods
based on action libraries and maneuver decision-making
methods based on self-learning technology. At present,
scholars from various countries have conducted in-depth
studies on these two methods.

-e maneuver decision-making method based on action
library can also be called the rule-based decision-making
method. -is method selects the optimal maneuver from the
action library according to the designed decision rules. Ref-
erences [3, 4] use the influence diagram to study maneuver
decision. -is method regards the multilevel influence dia-
gram as a nonlinear programming problem, which is not
suitable for online planning in high dynamic combat envi-
ronment. Reference [5] proposes a maneuver escape decision
based on the action library and establishes 13 basic maneuver
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units that can meet real-time performance requirements.
However, in complex situations, the accuracy of decision-
making needs to be improved. Reference [6] proposes the
Beetle Antennae Search-Tactical Immune Maneuver System
(BAS-TIMS) and designs 11 kinds ofmobile units; the decision
accuracy is high, but the heuristic algorithm converges slowly
and cannot meet the real-time requirements. References [7, 8]
use the differential game to study the decision-makingmethod
for maneuver decision and establish a scoring matrix to select
the best maneuver. But the huge action library increases the
computational complexity and reduces the real-time perfor-
mance of decision-making. References [9, 10] expand the basic
action library, propose a decision-making method based on
statistical principles, and establish a more complex situation
assessment model to reflect the battlefield environment;
however, the coupling relationship between the evaluation
models is ignored, and the accuracy of decision-making needs
to be improved. Reference [11] proposes an improved sym-
biotic organisms search (SOS) algorithm and designs 11
common basic maneuvers, which can meet the accuracy re-
quirements of decision-making, but it takes too long to cal-
culate the optimal value, which leads to longer decision-
making time. -e above research shows that the maneuver
decision method based on the action library is difficult to
measure the standard of the maneuver library. When the
maneuver library units are too few, although the real-time
performance canmeet the requirements, the decision accuracy
is too low. When there are too many mobile library units, the
accuracy is improved, but the timeliness cannot meet the
requirements.

-e maneuver decision-making method based on self-
learning technology uses self-learning technology such as
machine learning and reinforcement learning to make
maneuver decision. Reference [12] proposes a deep rein-
forcement learning decision-making method, but it is only
used in route planning, which has large limitations, low
decision-making accuracy, and poor real-time performance.
Reference [13] uses the radical basis function network (RBF)
to optimize the rate of change of control variables to make
maneuver decision-making. In the case of comprehensive
data, decision-making accuracy is high, but real-time per-
formance needs to be improved. Reference [14] uses the
basic action library as the basic unit of reinforcement
learning and realizes continuous action space by weighting
the basic maneuver, which also leads to long decision-
making time. References [15, 16] use the Bayesian theory to
select the optimal discrete maneuver for maneuvering de-
cision-making; it requires high data accuracy. References
[17, 18] use a deep reinforcement learning technique to deal
with maneuvering decision-making problems, with low real-
time performance. -e above research shows that such
methods have strict requirements for offline data. If the data
are missing or the data are wrong, the generalization ability
of the model will decrease, and the decision accuracy will be
difficult to meet the requirements.

In order to solve the problem of the existing research that
it is difficult to maintain high accuracy and low timeliness in
maneuver decision-making, we made the following original
contributions in this study:

(1) A moving time maneuver decision-making method
based on the dynamic relational weight algorithm
and trajectory prediction is proposed, which com-
bines trajectory prediction and maneuver decision-
making to improve the real-time and accuracy of
decision-making

(2) Amore comprehensive situation evaluation function
is established on the basis of the UCAV three-de-
gree-of-freedommodel, which can objectively reflect
the situation of air combat in real-time

(3) A dynamic relational weight algorithm is proposed,
which breaks the limitations of the constant weight
calculation situation and improves the accuracy of
decision-making

(4) It proposes an adaptive boosting long- and short-
term memory network (Ada-LSTM) trajectory
prediction method. Compared with the other three
traditional prediction methods, the prediction ac-
curacy is significantly improved.

(5) -rough the simulation experiments of tracking
analysis, comparative tracking, and adaptive coun-
termeasure, the high accuracy and low timeliness of
the decision-making method proposed in this study
are verified

-e rest of this study is organized as follows. -e second
section introduces a moving time maneuver decision system
based on trajectory prediction and the dynamic relational
weight algorithm. -e third section establishes the UCAV
three-degree-of-freedommodel and the air combat situation
system. -e fourth section proposes a dynamic relational
weight algorithm. -e fifth section proposes an adaptive
boosting long- and short-term memory network online
trajectory prediction method. -e sixth section optimizes
the moving time decision strategy, and the seventh section
performs simulation verification. -e last section is the
conclusion and future development.

2. Maneuvering Decision-Making System
Based on Trajectory Prediction and the
Dynamic Relational Weight Algorithm

Considering that the maneuver decision method has a
certain hysteresis in the calculation process, the maneuver
trajectory prediction is added to give the decision method a
time compensation, so as to improve the accuracy and real-
time of the decision method. In different air combat situ-
ations, the maneuver strategy is different. For example, the
UCAV should maintain the angle advantage and increase
the distance advantage in the case of tail pursuit; in the head-
on situation, it should increase the angle advantage to obtain
a more secure advantageous position. -erefore, the dy-
namic relational weight algorithm is used to adjust the
situation in real-time, and the moving time strategy is used
to effectively solve the problem of online decision-making
[19–22]. Based on the above methods, this section designs a
maneuver decision-making system. -e process is shown in
Figure 1. -e specific steps are as follows:
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Step 1. Input the historical maneuver trajectory of the
enemy aircraft and construct a sliding input matrix and
a correction matrix
Step 2. Use the Ada-LSTM network to predict the
maneuvering trajectory to obtain the position infor-
mation at the next moment
Step 3. Bring the predicted enemy aircraft position
information and the current UCAV position infor-
mation into the subsituation function to obtain the
future angle situation sa− future, future distance situation
sr− future, and future energy situation se− future

Step 4. Input sa− future, sr− future, se− future into the relational
weight algorithm and calculate the dynamic angle
weight w1, dynamic distance weight w2, and dynamic
energy weight w3

Step 5. Use the moving time strategy to optimize the
control quantity
Step 6. Update the position information through the
optimal control quantity to determine whether the
termination condition is met; if it is met, the maneuver
is over, if it is not met, return to step 1.

3. UCAV Three-Degree-of-Freedom Model and
the Air Combat Situation System

3.1. UCAV *ree-Degree-of-Freedom Model. -e UCAV
three-degree-of-freedom model is used to describe the
motion state of a UCAV. -e following assumptions are
made:

(1) Treat the UCAV as a particle, regardless of its shape
(2) Ignore the sideslip angle
(3) Ignore the effect of the Earth’ rotation and curvature

and use the ground coordinate system as the inertial
coordinate system

(4) Ignore the effects of airflow and gusts
(5) Ignore the effect of the altitude, latitude, and lon-

gitude on the acceleration of gravity

Based on these assumptions, the following particle
model can be established [3]:

_x � v cos c cosψ,

_y � v cos c sinψ,

_h � v sin c,

_v � g nx − sin c( ,

_c �
g

v
nz cos μ − cos c( ,

_χ �
g

v cos c
nz sin u,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where, x, y, and h represent the horizontal and height
coordinates of the UCAV. c is the pitch angle; ψ is the yaw
angle; v is the velocity; μ is the roll angle; nx is the tangential
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Figure 1: Maneuver decision-making system.
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overload; nz is the normal overload; and g is the acceleration
of gravity. Among them, x � [x, y, h, v, c,ψ]T is the state
variable of the UCAV, and u � (nx, nz, μ)T is the control
variable.

3.2. Air Combat Situation System. -e main factor that af-
fects the situation of one-on-one close air combat is the real-
time space occupying information of both sides [16].
-erefore, this study builds the angle function, distance
function, and energy function and establishes the close air
combat situation model, as shown in Figure 2. -e overall
function is s(t) � w1sa + w2sr + w3se. Among them, s(t) is
the overall situation, sa is the angle situation, sr is the
distance situation, and se is the energy situation.

3.2.1. Angle Function. In the three-dimensional air combat
coordinate system, the angle function is mainly affected by
the target entry angle and target direction angle, both of
which can be projected into the two-dimensional coordinate
system for simplification. -erefore, the model is projected
onto the horizontal plane to establish a two-dimensional
two-aircraft confrontation model as shown in Figure 3.

Target direction angle p is the angle between the target
line of sight and the direction of the local speed. Target entry
angle q is the target line of sight, which is extended to the
angle of the target speed direction, based on Figure 3.

p � arccos
D · Vt

‖D‖ × Vt

����
����
,

q � π − arccos
D · Vm

‖D‖ × Vm

����
����
,

(2)

where D �

xt − xm

yt − ym

ht − hm

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, Vt is the speed of the UCAV, and Vm

is the speed of target.
sa(t) � (|p| − |q|)/180 is the traditional angle function.

To avoid the singularity problem of the traditional angle
function and the range of p, q is between − π and π. -e
improved angle function [23] is as follows:

sa(t) �
2 + cos p + cos q

4
. (3)

In the above formula, the improved function is analyzed
for the following situations:

(1) p � 0, q � 0, Sa � 1, the UCAV is following the target
(2) p � 0, q � (π/2)/− (π/2), Sa � 3/4, the UCAV is on

the target’s side
(3) p � 0, q � π, Sa � 1/2, the UCAV is facing the target
(4) p � π, q � 0, Sa � 1/2, the UCAV and target face

away from each other
(5) p � π, q � (π/2)/− (π/2), Sa � 3/4, the UCAV is on

the target’s side
(6) p � π, q � π, Sa � 0, the target is following the

UCAV

-e function was simulated in Matlab, and the obtained
data are shown in Figure 4, which is consistent with the
actual situation.

3.2.2. Distance Function. Since different airborne weapons
have different optimal firing ranges, this study proposes the
effective attack distance. -e effective attack distance is the
superposition of the best attack distance of different
weapons, which forms a section of the best attack effect, as
shown in Figure 5.

Set the maximum attack range as dmax, minimum attack
range as dbmin, maximum effective attack range as dbmax, and
minimum effective attack range as dbmin. -e design dis-
tance advantage function is as follows:

Sr �

e
− d− dmax( )/dmax( )− 1( ), dmax ≤d,

e
− d− dbmax( )/ dmax− dbmax( )( ), dbmax ≤d≤dmax,

1, dbmin ≤d≤dbmax,

e
− d− dbmin( )/ dmin − dbmin( )( ), dmin ≤d≤dbmin.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

3.2.3. Energy Function. In the course of flight, there are two
types of energy: kinetic energy and potential energy, and
they can be converted into each other. Before constructing
the energy function, the energy formula [24] is determined
as

E � H +
V

2

2g
. (5)

where H is the flight altitude, and V is the current velocity.
-e energy function is constructed as follows:

Se �

1,
Et

Em

≥ 2,

4 Et/Em( )− 2
, 0.5≤

Et

Em

< 2,

Et

4Em

,
Et

Em

< 0.5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where Et is the UCAV energy, and Em represents the energy
of target.

4. Dynamic Relational Weights Algorithm

In the process of UCAV close air combat, the situation plays
a major role in regulating the operational changes at the next
moment, which affects the final result. -e traditional sit-
uation assessment systems mostly use the constant weights
to calculate the overall situation, which often greatly deviates
from the actual situation. In severe cases, it may even be the
opposite, causing one to miss the best time to defeat the
enemy. -is study follows the principle of angle advantage,
distance advantage, and energy advantage from large to
small. By combining the relational analysis [25] and entropy
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weight theory [26], a new dynamic relational weight algo-
rithm is proposed. -is method has a large development
space in the autonomous decision-making of unmanned
intelligent military equipment, such as unmanned vehicles

and unmanned submarines, and is suitable for solving the
weight problem with a certain priority arrangement.

4.1. Establishment of Dynamic Correlation Matrix. Gray
relational analysis (GRA) [27] essentially provides a method
to measure the distance between vectors. For factors with
time series, it can be seen as a time curve, while the GRA
algorithm is tomeasure whether the two curves are similar in
shape and trend. In the UCAV close air combat system,
according to this characteristic, the overall situation and
various situations can be established as shown in Figure 6.

-e relational degree can directly reflect the effect of each
subsituation on the overall situation in the UCAV close air
combat system. -erefore, a dynamic relational degree
matrix is established to reflect the specific situation of
combat at all times, and the establishment process is as
follows:

Step (1). Discretization of the continuous process.
According to the moving time strategy [16], the process
of air combat confrontation is decomposed into a
maneuvering process with finite discrete time periods.
Step (2). Construct the association sequence. -e re-
lational matrix is divided into parent sequence and
child sequence, which are consistent in the timing
sequence. -e UCAV air combat process is a Markov
process, and the changes in the next moment are only
relevant to the present moment. After discretization,
take three step length processes as the current moment
and construct the parent sequence:

S � S1 S2 S3 . (7)

S1, S2, and S3 represent the overall situation at dif-
ferent moments.
Construct each situation subsequence:

Ssub �

Sa1 Sa2 Sa3

Sr1 Sr2 Sr3

Se1 Se2 Se3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Among them, Sa1, Sa2, and Sa3 represent the angle
situation at different moments, Sr1, Sr2, and Sr3 rep-
resent the distance situation at different moments, and
Se1, Se2, and Se3 represent the energy situation at
different moments.

Step (3). Columns and normalization. Eliminate the
difference in the sequence quantities at each moment.
Step (4). Calculate the relational degree and update the
relational matrix. -e calculation formula of relational
[28] is

δ(k) �
minimink S(k) − Ssub(k)


 + ρmaximaxk S(k) − Ssub(k)




S(k) − Ssub(k)


 + ρmaximaxk S(k) − Ssub(k)



, ρ � 0.5. (9)
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where δ(k) represents the degree of relevance between the
subsituation and the overall situation.

-e relational matrix is

δ �

δa1 δa2 δa3

δr1 δr2 δr3

δe1 δe2 δe3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

δa1, δa2, and δa3 represent the correlations between the
angular situation and the overall situation at different
moments, δr1, δr2, and δr3 represent the correlations be-
tween the distance situation and the overall situation at
different moments, and δe1, δe2, and δe3 represent the
correlations between the energy situation and the overall
situation at different moments.

4.2. Solve Weights. After the relational matrix has been
established, the weight can be solved by referring to the
entropy weight method [29]. -e entropy method is an

assignment method to determine the weight of each index in
the system through the theory of information entropy, and it
is used in many disciplines. For example, in the direction of
group decision-making [30], the entropy method is used to
calculate the attribute weights; in the direction of prediction
[31], it is used to determine the weight of multiple indicators
from the perspective of information volume. It is also used in
the direction of quantitative evaluation to improve TOPSIS
[32]. -e entropy weight method implies that a smaller
degree of variation of the index corresponds to less infor-
mation of the reaction and a lower corresponding weight. A
smaller probability corresponds to a smaller amount of
information, and one can simulate a similar curve, which is
fitted by the ln(x) function, i.e., I(x) � − ln(x). -e essence
of information entropy is the expected value of information:
H(x) � 

n
i�1(I(x) · x). In the process of UCAV air combat

decision-making, the weight cannot be reflected by the
degree of variation of the indicators. When the angle ad-
vantage is optimal, one must maintain and improve the
distance advantage in the future maneuvering process. In

Maximum attack distance 
of aircra� gun

Minimum attack 
distance of missile

Effective attack 
distance

Minimum attack distance 
of aircra� gun
Maximum attack 
distance of missile

Figure 5: Effective attack range.

Angle
advantage

Distance
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Energy
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Figure 6: Situation structure diagram.
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this case, the variation of the angle advantage is 0, but its
corresponding weight should be maximal.

Step (5). Construct fitting function I. Because the size of
the relational matrix is different, the fitting function
constructed is also different. A smaller relational degree
corresponds to a weaker effect of the subsituation on
the overall situation. According to the principle that the
angle advantage is greater than the distance advantage,
which is greater than the energy advantage, when
δa < δr + δe or#x2009; δr < δe, smaller δa and δr corre-
spond to a weaker angle, a shorter distance, and more
urgent adjustment. -e quantities are inversely pro-
portional, so we simulate the similarity curve
I1 � − lnx. When δa > δr + δe or δr > δe, greater the δa

and δr correspond to more advantageous angle and
distance, which must be maintained, and they are
proportional to each other, so we simulate the simi-
larity curve I2 � ex. -e specific hierarchical relation-
ship is shown in Figure 7:
Step (6). Calculate the expectation matrix E. -e ex-
pectation matrix is calculated as follows:
Ei � 

3
j�1 I × δij.

Step (7). Solve the weights using the if-then principle.
-e pseudocode to solve for the weights is given in
Table 1.

5. Adaptive Boost of Online Trajectory
Prediction of the Long- and Short-Term
Memory Network

5.1. Long- and Short-Term Memory Network. -e long- and
short-term memory (LSTM) network is currently a better
network structure for dealing with timing problems.
-rough the control of three gates, the problem of long-term
dependence of RNN in processing sequences is solved to a
certain extent, and information is transmitted mainly
through the state of the unit. -e structure is shown in
Figure 8.

From the calculation process, Ct− 1 is first multiplied with
the output of the forget gate and then accumulated with the
output of the input gate. -e essence is to update the in-
formation at the last moment and then merge it with the
information at the current moment, so that the information
will be stored for a long time in this way. To ensure the
simplification of the data, the forget gate is added, ht− 1 and
Xt are spliced into a single vector, and the data are nor-
malized between 0 and 1 through the sigmoid activation
function, where 1 is “completely reserved” and 0 is “com-
pletely discarded.” -is method effectively filters data and
avoids useless calculations. -e calculation formula for the
specific forget gate is

Ft � σ Wf · ht− 1, Xt  + bf . (11)

where σ is expressed as the sigmoid activation function.
-e input gate determines the input information of the

current unit, and the Tanh function represents the current
information. At the same time, the sigmoid function is used

to determine which information is useful and which is
useless, multiplied by the Tanh function output, and input to
the current unit state. -e formula is

it � σ Wi · ht− 1, Xt  + bi(  · tanh Wc · ht− 1, Xt  + bc( .

(12)

where tanhis expressed as the Tanh function.
-e output gate determines the output of the current

unit. -e current unit state Ct is represented by the Tanh
function, ht− 1 and Xt are activated by the sigmoid function at
the same time, and they are multiplied; the result is the
current unit output ht. -e calculation formula is

δr > δe

δr < δe

δr > δe

δr < δe

δa > δr + δe

δa > δr + δe

I1

I1

I1

I2
I2

I2

Figure 7: Hierarchy diagram of fitting function.

Table 1: Pseudo code to solve for the weights.

If δa < δr + δ and δr < δe

-en, I1ij � − ln x

Ei � 
3
j�1 I1ij × δij

If δa > δr + δ and δr > δe

-en, I2ij � ex

Ei � 
3
j�1 I2ij × δij

wi � (1 − w1) × (Ei/
3
i�2 Ei) wi � Ei/

3
i�1 Ei

Else, if δa < δr + δ and δr > δe Else, if δa > δr + δ and δr < δe

-en, I1ij � − ln x

Ei � 
3
j�1 I1ij × δij

w1 � E1/
3
i�1 Ei

-en, I2ij � ex

Ei � 
3
j�1 I2ij × δij

w1 � E1/
3
i�1 Ei

I2ij � ex

Ei � 
3
j�1 I2ij × δij

I1ij � − ln x

Ei � 
3
j�1 I1ij × δij

wi � (1 − w1) × (Ei/
3
i�2 Ei) wi � (1 − w1) × (Ei/

3
i�2 Ei)

End End
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Figure 8: Long- and short-term memory network unit.
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Ot � σ Wo · ht− 1, Xt  + bo( ,

ht � Ot · tanh Ct( .
(13)

In [33], it has been proposed that independent predic-
tion of three-dimensional coordinates is more accurate than
the overall prediction, so the coordinates on the X, Y, and Z
axes are individually used as the input of the LSTM network.
When using the three-degree-of-freedom model to simulate
the trajectory, the data are sampled at an interval of 0.3 s, and
ten times are sampled as a group. -e 4 × 6 sliding module
matrix is constructed from the first nine samples to predict
the tenth sample data.

-e sliding module input matrix:

Einput �

e1 e2 e3 e4 e5 e6

e2 e3 e4 e5 e6 e7

e3 e4 e5 e6 e7 e8

e4 e5 e6 e7 e8 e9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

-e sliding module predicts the output correction
matrix:

Eoutput � e7 e8 e9 
τ
. (15)

In the online test of the LSTM network, the first three
rows of the matrix are used to make real-time corrections
through the output correction matrix to adjust the internal
weights and biases. At this time, the network input node is 6
and the output node is 1. Since the increase in the number of
hidden layers in the LSTM network will cause a rapid in-
crease in time cost, considering the high requirements for
timeliness of maneuver prediction, a double hidden layer
network structure is set [34].

5.2. AdaBoostAlgorithm. -e AdaBoost algorithm [35] is a
boosting method that combines multiple weak predictors
into a strong predictor and uses this method to build the
overall outer frame, as shown in Figure 9. -e LSTM
network is trained as its weak predictor. -e weight of the
sample that the previous network misclassified will be
strengthened, and the sample with the updated weight
will be used to train the next network again. In each round
of training, use the overall sample to train a new LSTM
and generate a new sample weight and the weight of the
weak predictor. It iterates until the predetermined error
rate or the specified maximum number of iterations is
reached.

From boosting idea to the adaptive boosting algorithm,
the key is to introduce the idea of the online distribution
algorithm. -e strategy in the online allocation algorithm
each is a weak predictor in the AdaBoost algorithm, and
the overall weight is determined according to the loss value
caused by each strategy. -is is also the theoretical source
of the weight of the weak predictor in the AdaBoost al-
gorithm. In order to obtain a strong predictor with high
fitting accuracy, multiple weak predictors need to be
added, but this will modify the integration method of the
existing weak predictors and increase complexity. Ada-
Boost uses a greedy strategy to avoid this problem and uses

linear addition to add new weak predictors. Linear ad-
dition does greatly to improve the accuracy and simplify
the algorithm, but the calculation time has also become a
new problem. In maneuvering trajectory prediction, due to
the drastic changes in air combat, real-time requirements
are very high, and the number of weak prediction periods
K is the decisive factor for accuracy and time. Use LSTM as
a weak predictor to fill the AdaBoost framework, try
different numbers of weak predictors and predict multiple
times for the strong predictor of the same K, take the
average error and average time, and determine the most
reasonable number of weak prediction periods. -e results
are shown in Table 2.

It can be seen from Table 2 that when K� 1, 2, 3, the time
consumption is small, but the error is too large, so it is not
considered; when K� 4, the error is improved, but when X-
axis, Y-axis, and Z axis are considered as a whole, the error
formula is that σ �

����������
σ2x + σ2y + σ2z


. It cannot meet the high-

precision requirements of maneuver prediction; when K� 5,
the error drops more, which roughly meets the high-pre-
cision requirements, and the prediction time consumption is
also low; whenK� 6, compared withK� 5, the accuracy does
have a certain improvement, but the time consumption has
also increased a lot. For single-step prediction, the predic-
tion time of 0.134 s is too long, so it is not considered. In
summary, this study chooses to form a strong predictor by
five LSTM network weak predictors.

5.3. Comparison of Predicted Trajectories. A group of ma-
neuvering trajectories of the enemy aircraft is generated
randomly by using the three-degree-of-freedom model,
sample 300 times, and to make a prediction for every 10
groups, a total of 30 cycles are predicted. To improve the
prediction accuracy, three-dimensional coordinate inde-
pendent prediction [33] is used to compare with traditional
RNN, CNN, and LSTM prediction methods. -e results are
shown in Figure 10.

In the three-dimensional view, it can be clearly found
that the prediction result of the AdaBoost-LSTM network is
closest to the actual value, and the overall trajectory does not
have many mutations, while the trajectories drawn by the
traditional CNN, RNN, and LSTM network prediction re-
sults have many mutations. After calculation, the average
prediction error of the AdaBoost-LSTM network is 34.3m,
that of the CNN is 41.5m, that of the LSTM is 48m, and that
of the RNN is 88.8m. It can clearly show that the prediction
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LSTM
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… … …

Figure 9: Adaptive boosting framework.

8 Mathematical Problems in Engineering



Table 2: Error and time consumption of strong predictor with different K.

Error
(m)

Error
(m)

Error
(m)

Error
(m)

Error
(m)

Mean error
(m)

Mean time
(s)

K� 1 45.5 60.6 51.2 64.2 24.2 49.1 0.042
K� 2 40.3 38.5 50.3 41.8 46.5 43.5 0.056
K� 3 38.7 36.2 29.8 39.5 37.2 36.3 0.072
K� 4 27.8 28.3 30.2 27.6 25.2 27.8 0.089
K� 5 18.3 21.4 20.5 19.8 25.6 21.12 0.105
K� 6 17.5 15.6 18.7 20.2 17.8 17.96 0.134
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Figure 10: X, Y, and Z axes and 3D trajectory prediction. (a) 3D trajectory prediction results, (b) X-axis predicted trajectory, (c) Y-axis
predicted trajectory, and (d) Z-axis predicted trajectory.
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accuracy of the AdaBoost-LSTM network is higher than that
of other traditional deep learning networks, and the accuracy
can meet the requirements of maneuvering decision-
making.

6. Moving Time Strategy for Optimal
Maneuvering Decision

6.1. Maneuvering Decision Process Control of UCAV Based on
the Rolling Horizon. -e process of air combat is a dynamic
confrontation process. It is difficult to know the endpoint of
the confrontation, so it is difficult to get the global optimal
solution. Only by scientifically designing the local optimal
solution can the global optimum be gradually approached.
Because the time effectiveness of air combat confrontation is
very strong, the process of air combat confrontation is
decomposed into a maneuver decision process of the finite
discrete time period according to the moving time strategy.
-e moving control process is shown in Figure 11.

In the graph, Ti (i ∈ [1, n]) is the ith process among n
discrete processes. Based on the continuity of the two
state changes and considering the maneuverability of
UCAV, the variable range of control variables is divided
into m control sequences. In the time of making a ma-
neuver decision, it is required to keep the situation of the
moment, which implies that there must be a sufficient
time to complete the decision. -erefore, the optimal
sequence must be selected from the control sequence for
the maneuver decision.

6.2. Optimal Design of Maneuver Decision Control Variables.
To quickly find the optimal maneuver control variable
uk (k ∈ [1, m]) in the control sequence and satisfy the launch
conditions, we attempt to use the heuristic search algorithm
to optimize, but the actual demand time is too long to meet
the timeliness of air combat decision.-erefore, try to divide
the control variables Δuk � (Δnx,Δnz,Δμ)T by the gradient
to maximize the benefit of the evaluation function of ma-
neuvering decision; then, we obtain the control quantity
uk+1 � uk + Δuk at the next moment.

To ensure that the UCAV can quickly and accurately find
the optimal control variable, a fine control gradient is
constructed. Each control variable is divided into 9 levels in
the allowable range of maneuverability. -erefore, there are
729 control schemes in total. -e gradient of these three
control variables is set as follows:

Δnx ∈

Δnxmin,
Δnxmin

2
,
Δnxmin

4
,
Δnxmin

8
, 0

Δnxmax,
Δnxmax

2
,
Δnxmax

4
,
Δnxmax

8

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

Δnz ∈

Δnzmin,
Δnzmin

2
,
Δnzmin

4
,
Δnzmin

8
, 0

Δnzmax,
Δnzmax

2
,
Δnzmax

4
,
Δnzmax

8

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

Δμ ∈

Δμmin,
Δμmin

2
,
Δμmin

4
,
Δμmin

8
, 0

Δμmax,
Δμmax
2

,
Δμmax
4

,
Δμmax
8

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(16)

7. Simulation Analysis

To verify the real-time performance and accuracy of the
maneuver decision method which combines the dynamic
relational weight algorithm and the moving time strategy,
first, conduct a contrast pursuit simulation experiment,
choose three more advanced decision-making methods,
pursue the target machine at the same time, and analyze the
situation in the same decision-making step.-en, choose the
most competitive decision-making method among the
comparison methods, perform adaptive countermeasure
simulation experiments with the method proposed in this
study, and verify again the accuracy of the method proposed
in this study. In the verification simulation, the UCAV and
the enemy aircraft use the same platformmodel and have the
same constraints and maneuverability, that is, the hardware
conditions of the two parties are the same. -e simulation
termination condition is that angle situation sa > 0.9 and
distance situation se � 1.

7.1. Contrast Pursuit. To verify the real-time and accuracy of
the algorithm, the robust maneuver decision theory [9] is
selected from the maneuver decision methods based on the
action library and choose the DNN decision method [36]
and Bayesian decision method [16] in self-learning decision
theory, compared with themethod proposed in this study. In
this section, the target aircraft is designed to make a large-
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radius serpentine maneuver at an altitude of 5000 meters,
and UCAV uses four methods to pursue and analyze the
situation of each method within the same decision step. -e
initial position information is given in Table 3. -e initial
settings of different decision-making methods are given in
Table 4.

It can be seen in Figure 12 that the DNN decision
method has the largest deviation, and in the later stage, it
does not occupy an absolute advantageous position, and the
decision accuracy is poor. -e robust decision method does
not reveal its shortcomings in the initial stage, but when the
target makes a large maneuver, it cannot adjust the position
in time, resulting in a decrease in decision accuracy.
Bayesian decision and dynamic decision always occupy an
advantageous position in the overall pursue process.

-e situation of each method is shown in Figure 13.
Before 50 decision steps, the angles situation of the four
methods are basically the same, but after 60 decision steps,
the angle situation of DNN decision decreases and the
fluctuation is very large. After 140 steps, the angle situation
continues to decrease, indicating that the accuracy of the
DNN decision method is poor when encountering a large
enemy aircraft maneuver. When the enemy makes a large
maneuver between 70 and 120 steps, the angle situation of
the robust decision drops rapidly and the adjustment is slow,
indicating that the decision-making is not accurate, the
essential reason is that the division of the maneuver library is
still not comprehensive enough. During the 60 and 140
decision steps, Bayesian decision and the decision method
proposed in this study have always maintained a good angle
situation; it means that these two methods have high

decision accuracy. After 140 steps, the dynamic weight
decision has a better angle situation, indicating that this
method is more accurate.

First, at the theoretical level, the big-oh notation is used
to describe the computational complexity of the method
proposed in this study. T represents the step of calculating
the dynamic weight in the fourth section, which is the
constant order complexity O(T). In the moving time
strategy, N represents the decision-making plan, which is
linear order complexity O(N). -ey are serial codes, and the
overall complexity is O(T+N). -en, analyze the compu-
tational complexity from the aspect of simulation time
consumption. A total of 170 decision steps are taken for the
contrast pursuit, and among them, the DNN decision
method takes 10.45 s in total, and the average single-step
decision time is 0.0615 s. -e robust decision method takes
25.43 s in total, the average single-step decision time is
0.149 s. -e Bayesian decision method takes a total of 9.68 s,
and the average single-step decision time is 0.057 s. -e
method proposed in this study takes 7.68 s in total, and the
average single-step decision time is 0.045 s; it can meet the
real-time requirements. -e average single-step decision
time is shown in Figure 14.

7.2. Adaptive Confrontation without Predication. In the
contrast pursuit, the Bayesian decision method performs
better in accuracy and real-time. -erefore, the enemy
aircraft adopts the Bayesian decision-making method, while
the UCAV adopts the decision-making method proposed in
this study. -e two sides conduct adaptive confrontation.

Controlm–1 Controlm–1 Controlm–1Controlm–1 Controlm–1

Controlm Controlm Controlm ControlmControlm Controlm

Controlm–2 Controlm–2 Controlm–2 Controlm–2 Controlm–2 Controlm–2

Control1 Control1 Control1 Control1 Control1 Control1

Best control

Control3 Control3 Control3 Control3 Control3

Control4 Control4 Control4 Control4 Control4

Control5 Control5 Control5 Control5Control5

Control6 Control6 Control6 Control6Control6 Control6

Control7 Control7 Control7 Control7 Control7

Best control Best control Best control Best control Best control Best control

Best control

Control2 Control2 Control2 Control2Control2

Best control

Best control

Best control

Best control

T1 T2 T3 TnTn–1Tn–2

Time sequence

Co
nt

ro
l s

eq
ue

nc
e

… … … …

…

… … …

Figure 11: Description of the UCAV maneuver decision process control in the rolling time domain.
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-e simulation termination condition is angle situation
sa > 0.9 and distance situation sr � 1. First, in themutual safe
situation, that is, the situation is about 0.5, conduct a set of
confrontation simulations and analyze. -en, in the four
working conditions of advantage (UCAV situation is high
and enemy aircraft situation is low), mutual safe (UCAV and
enemy aircraft situation is about 0.5), mutual disadvantage
(UCAV and enemy aircraft are in a low situation), and
disadvantage (UCAV situation is low and enemy aircraft
situation is high), carry out multiple sets of simulation
experiments to verify the accuracy of the decision-making
method in this study.

-e initial state of the adaptive countermeasure simu-
lation in the mutual safe situation is given in Table 5.

-e simulation result is shown in Figure 15. In the initial
stage, the two aircrafts are close to each other and are in a
situation of mutual safe. Bayesian weights control the UCAV
to make a nose-up dive maneuver and obtain a more
favourable angle advantage. -e overall situation rises and

presents more advantages. After the two aircrafts meet, the
dynamic weight is quickly adjusted to control the aircraft to
make a large-radius bucket maneuver, which occupies a
height advantage. In the second stage, the two aircrafts are
fighting at close range. -e dynamic weight is quickly ad-
justed according to the current situation. -e angle ad-
vantage rapidly increases. -e outer somersault is always
around the Bayesian weight and attempting to complete the
tail attack. In the last stage, the radius is relatively large.
Because the Bayesian adjustment is not sufficiently timely,
the large somersault maneuver becomes a tail chase situa-
tion, and the aircraft controlled by dynamic weight finally
wins the fight. Without predicting the trajectory of the
enemy aircraft, maneuvering decision-making takes 135
seconds.

It can be seen from Figure 16(a) that the overall sit-
uation of UCAV controlled by dynamic weight is at a
mutual safe in the initial stage. In the later period, the
situation generally showed an upward trend. -e Bayesian

Table 3: -e position and velocity information of UCAV and enemy.

x (m) y (m) z (m) v(m/s) Yaw angle Pitch angle
UCAV 0 0 5000 100 π/3 0
Enemy 1200 1600 5000 120 5π/12 0

Table 4: -e initial settings of different decision-making methods.

Decision method Initial setup
Robust decision 45 basic mobile units, weight setting w1 � w2 � w3 � w4 � 0.25.
DNN decision Learning rate is 0.001, 12 network layers, 6 dense layers, 6 dropout layers, and loss function is mean square error.

Bayesian decision

Advantage w1 � 0.4, w2 � 0.1, w3 � 0.4, w4 � 0.1,
Disadvantage w1 � 0.4, w2 � 0, w3 � 0.5, w4 � 0.1,
Mutual w1 � 0.6, w2 � 0.15, w3 � 0.1, w4 � 0.15.

Mutual disadvantage w1 � 0.4, w2 � 0.3, w3 � 0, w4 � 0.3.
Dynamic weight Original weight w1 � 0.4, w2 � 0.3, w3 � 0.3.

Target
Start point 
of target
Dynamic weights

Bayesian decision
Robust decision

DNN
Start point 
of UCAV

0 500 1000 1500
(x/m)

0

1000

2000

3000

4000

5000

6000

(y
/m

)

Figure 12: Contrast pursuit trajectory chart.
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weight control UCAV tried to get rid of the disadvantaged
position and caused the situation to fluctuate. However,
because the dynamic weight is more suitable for the actual
situation, the UCAV controlled by the Bayesian weight
cannot be eliminated in time. Figure 16(b) describes the

most important changes in the angle situation during
close air combat. In the initial stage of the two sides flying,
the UCAV with dynamic weight control fly at a faster
initial speed, causing the tail to chase and the angle sit-
uation drops sharply. -e potential energy and the kinetic
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Figure 13: Contrast pursuit situation. (a) Angle situation, (b) distance situation, and (c) energy situation.
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Table 5: Adaptive countermeasure simulation initial state.

x (m) y (m) z (m) v (m/s) Yaw angle Pitch angle
Dynamic weights 3000 0 5000 200 π/4 0
Bayesian weights 0 0 5000 150 − π/4 0
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energy are converted into each other, and the angle sit-
uation is also showing an upward trend, finally, meeting
the angle termination condition. Figure 16(c) shows the
change of the distance situation. During the dynamic
weight control of the UCAV maneuver, it is always hoped
that the enemy aircraft will be within the best effective
attack distance, so it always fluctuates and eventually
meets the distance termination condition. Figure 16(d)
shows the change of energy situation. In close air combat,
UCAV completes energy changes by adjusting speed and
altitude. -e figure shows that energy changes during the
confrontation process are quite frequent, which is con-
sistent with the actual confrontation process.

-e adaptive countermeasure experiment was carried
out under four working conditions, and each group was run

20 times. -e results are given in Table 6. In the case of
advantage, the dynamic weight decision method has a
winning rate of 100%, and the step length is stable. In the
case of mutual safe and mutual disadvantage, the dynamic
weight decision method has a winning rate of not less than
60%. In a disadvantageous situation, the winning rate is 40%.
It shows that this method has better decision accuracy under
different working conditions.

7.3.AdaptiveConfrontationwithPredication. On the basis of
nonpredictive adaptive countermeasures, the dynamic
weight-controlled UCAV is added with enemy trajectory
prediction, and compared with nonpredictive adaptive
countermeasures, it is verified that the UCAV maneuvering
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Figure 15: Adaptive countermeasure simulation trajectories. (a) -e initial stage, (b) the second stage, and (c) the last stage.
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decision-making ability under the condition of accurate
trajectory prediction is better. -e mutual safe simulation
result is shown in Figure 17.

In the initial stage, because the UCAV speed controlled
by the dynamic weight is faster, the forward rush phe-
nomenon is caused, so the overall situation is low, but after

adding the trajectory prediction of the enemy aircraft, the
disadvantage time of the initial stage is significantly reduced.
When there is no trajectory prediction, the UCAV with
dynamic weight control takes about 60 s to change from a
unilateral disadvantage to a mutual disadvantage. After
adding the predicted trajectory, it only takes about 40 s to
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Figure 16: Curve graph of the situation. (a) Overall situation, (b) angle situation, (c) distance situation, and (d) energy situation.

Table 6: Confrontation results of different working conditions without prediction.

Situation Method x (m) y (m) z (m) v (m/s) Yaw angle Pitch angle Win rate Decision step (mean/variance)

Advantage Dynamic 0 0 5000 150 0 0 100 114/0.00e+ 0Bayesian 0 2000 5000 150 0 0

Mutual safe Dynamic 3000 0 5000 200 π/4 0 65 134.95/0.520e+ 1Bayesian 0 0 5000 150 − π/4 0

Mutual disadvantage Dynamic 0 0 5000 150 0 0 60 161.25/0.851e+ 1Bayesian 0 4000 5000 200 π 0

Disadvantage Dynamic 1500 1500 5000 150 π/4 0 40 110.1/0.104e+ 1Bayesian 0 0 5000 150 π/4 0
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turn into a mutual disadvantage. In the second stage, the
two-aircraft fighting time is also significantly reduced, from
a double-circle maneuver to a single-circle maneuver. In the
last stage, after the first and second stages of accumulating
advantages, the dynamic weight controls the UCAV to
quickly approach the enemy aircraft and use the dive to form
a tail chase, which meets the termination conditions. In the
case of predicting the trajectory of the enemy aircraft,
maneuvering decision-making takes 115 s, which saves
about 20 s of confrontation time compared to not predicting
the trajectory of the enemy aircraft.

Comparing Figure 18(a) with Figure 16(a), it can be
clearly seen that the disadvantage time in the initial stage is
shorter and the overall situation is rising more rapidly. In the
second stage, the overall situation continued to rise more

steadily, and compared to Figure 16(a), the enemy’s situation
declined more rapidly. In the last stage, Figure 18(a)
completed the termination condition in a shorter time.
Figure 18(b) shows that in the initial stage, the angle ad-
vantage is obviously and rapidly decreased, but compared to
Figure 16(b), it rises earlier and has less volatility.-e second
and third stages of the angle advantage rise faster in
Figure 18(b), so the angle termination condition can be met
more quickly. Compared with Figure 16(c), it can be seen in
the last stage of Figure 18(c) that the predicted maneuver
decision can increase the distance advantage of the UCAV
and reduce the distance advantage of the enemy aircraft. -e
difference between Figures 18(d) and 16(d) is not very
significant, and it always presents a state of alternating
fluctuations.
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Figure 17: Adaptive countermeasure simulation trajectories with predication. (a)-e initial stage, (b) the second stage, and (c) the last stage.
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-e prediction module was added to conduct adaptive
confrontation experiments under four working conditions,
and each group was run 20 times. -e results are shown in

Table 7. It can be seen from Table 7 that under the four
different working conditions after the prediction module is
added, the decision step length is reduced, and the winning
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Figure 18: Predicted situation graph. (a) Overall situation, (b) angle situation, (c) distance situation, and (d) energy situation.

Table 7: Confrontation results of different working conditions with prediction.

Situation Method x (m) y (m) z (m) v(m/s) Yaw angle Pitch angle Win rate (%) Decision step (mean/variance)

Advantage Dynamic 0 0 5000 150 0 0 100 98/0.00e+ 0Bayesian 0 2000 5000 150 0 0

Mutual safe Dynamic 3000 0 5000 200 π/4 0 75 117.95/0.206e+ 1Bayesian 0 0 5000 150 − π/4 0

Mutual disadvantage Dynamic 0 0 5000 150 0 0 70 142.9/0.377e+ 1Bayesian 0 4000 5000 200 π 0

Disadvantage Dynamic 1500 1500 5000 150 π/4 0 50 97.3/0.158e+ 1Bayesian 0 0 5000 150 π/4 0
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rate is improved compared with no prediction. -e results
prove that the accuracy of the decision system with the
prediction module is significantly improved.

8. Conclusion

In this study, the UCAV three-degree-of-freedom model is
established. Simultaneously, the angle function, distance
function, and energy function constitute the air combat
situation system. Based on the priority principle of angle,
distance, and energy from large to small, the correlation
between each subsituation and the total situation is analyzed.
-e fitting function is hierarchically constructed, and the
dynamic relational weight algorithm is established. -e
moving time strategy is adopted to optimize the control
amount and form 729 decision-making schemes. -rough
AdaBoost-LSTM network real-time prediction of enemy
aircraft trajectory, combining trajectory prediction with
maneuvering decision-making, through tracking, compar-
ative confrontation, and adaptive confrontation simulation
experiments, the following conclusions are drawn:

(1) -e decision method combining the dynamic rela-
tional weight algorithm and moving time strategy is
more accurate than the current existing decision
method

(2) -e decision-making method proposed in this study
can meet real-time requirements

(3) Compared with the traditional deep learning net-
work, the AdaBoost-LSTM network has higher ac-
curacy in maneuvering trajectory prediction, and the
time can also meet the requirements of mobile de-
cision-making by adjusting the number of internal
weak forecast periods.

(4) UCAV maneuver decision-making ability which
combines with accurate prediction is better

-e future research direction is to perfect the trajectory
prediction, improve the prediction accuracy, shorten the loss
time, and further improve the decision-making theory.
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-e data used to support the findings of this study are
available from the corresponding author upon request.
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