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In this paper, the global residue harmonic balance method is applied to obtain the approximate periodic solution and frequency
for a well-known system of strongly nonlinear oscillator in engineering. *is method can improve accuracy by considering all the
residual errors in deriving each order approximation. With this procedure, the expressions of the higher-order approximate
solution and corresponding frequency for the considered system can be determined easily.*e comparison of the obtained results
with previously existing and corresponding exact solutions shows the high accuracy and efficiency of the method.

1. Introduction

It is well known that the most models can be described by
nonlinear differential equations. It is difficult to obtain exact
solutions for these nonlinear problems. *us, to find ana-
lytically approximate solutions to these nonlinear problems
has been the desire of many researchers for a long time.

*e classical perturbation methods [1–3] for solving
nonlinear equations are limited to the weakly nonlinear
systems. To overcome this shortcoming, many improved or
effective methods applicable to the strongly nonlinear sys-
tems have been developed. *ese methods include the
homotopy perturbation method (HPM) [4–6], the energy
balance method [7], the harmonic balance method [8], the
variational iteration method [9], and the Lattice Boltzmann
method [10–12]. Also, many researchers have applied these
methods to study the models in many different fields. By
applying the homotopy analysis method (HAM), Easif et al.
[13] obtained the approximate solutions of the variable
coefficient variant boussinesq system, Vakilzadeh et al. [14]
investigated the dynamic pull-in instability of a suspended
microchannel resonator, and Suharsono et al. [15] studied
the solution of the reverse flow reactor model. Abed [16]
studied the Kuramoto–Sivashinsky equation by the new
iterative method. Talarposhti et al. [17] analysed the solution

to micropolar nanofluid between two parallel plates in a
rotating system by using AGM. Gerdroodbary [18] simu-
lated the magnetohydrodynamic (MHD) flow of a nanofluid
inside an inclined enclosure with a sinusoidal wall by the
CVFEM method. Khalouta and Kadem [19] investigated the
solution of a class of nonlinear fractional partial differential
equations by using the reduced differential transform
method. Ramos [20] solved Bratu’s and Troesch’s problems
by the hybrid block method. Peiravi and Alinejad [21]
studied a 3D Newtonian droplet impact by the volume of
fluid (VOF) method.

Among these strongly nonlinear methods, the global
residue harmonic balance method (GRHBM) is an effective
and analytical one.*eGRHBMwas the first presented by Ju
and Xue [22] to obtain the periodic solutions of the jerk
equation. By introducing a parameter p and viewing it as a
small parameter, the GRHBM can be independent on the
large parameter and can give the higher-order analytical
approximation. And, to improve the accuracy, the residual
errors are considered in the approximations of each order.
*us, the GRHBM has found applications in various non-
linear problems [23–26].

In this paper, we study a system of strongly nonlinear
oscillators in engineering, namely, the large amplitude free
vibration of a restrained uniform beam carrying an
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intermediate lumped mass. *is system was first presented
by Hamdan and Shabaneh [27] and then has been analysed
by Ganji et al. [28] by applying AFF and HPM. However, the
higher-order analytical approximate solution for this system
has not been obtained. To obtain high-order and more
accurate results, this system is revisited in this paper by using
the GRHBM. *e higher-order approximate solution and
corresponding frequency have been obtained. Comparison
of the results obtained by using GRHBMwith those obtained
by exact solutions and other methods shows that the
GRHBM can be very accurate, effective, and straightforward.
It also can be extended to other nonlinear oscillators in
engineering and physics.

2. System Discussion

A schematic of the beam under research is given in Figure 1.
Here, we give a brief description of this beam. For more
details, one can refer to [27].

*e beam is considered to be uniform of length l and unit
mass m, hinged at the base to a rotational spring Kr and
carried a lumped mass M at an arbitrary point s � d along
the beam span. ζ � s/l is a dimensionless arc length.

According to [27], the Lagrangian of this beam should be

L �
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where the primes and dots denote the derivatives with re-
spect to ξ and t, respectively, η � d/l is the relative position of
M, μ � M/ml is a mass ratio parameter, δ(ζ − η) is Dirac’s
function, λ � 1/l, and EI is the modulus of flexural rigidity.

Assume x and y satisfy the constraint relation as follows:
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� 1. (2)

Equation (2) can be rewritten as

1 + λx′ � 1 − λy′( 
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1/2

. (3)

Assume (λy′)2≪ 1 and y(ζ, t) have a form as follows:

y(ζ , t) � ϕ(ζ)u(t), (4)

where ϕ(ζ) is an eigenfunction.
Expanding the right side of equation (3) to the fifth-

order term, then equation (3) yields
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Combining with equations (5) and (4), equation (1) can
become
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(6)

where α1, α2, . . . , α8 are functions of ζ, which describe the
mode shapes.

Applying the Euler–Lagrange equation

d
dt

zL

z _u
  −

zL

zu
� 0, (7)

to equation (6), one obtains the following problem:

€q + q + ε1q
2
€q + ε1q _q

2
+ ε2q

4
€q + 2ε2q

3
_q
2

+ ε3q
3

+ ε4q
5

� 0,

(8)

with

q(0) � A,

_q(0) � 0,
(9)

which ε1, . . . , ε4 are functions of α1, . . . , α8.

3. Review of the Global Residue Harmonic
Balance Method

Consider the systems as follows:

Φ(€q , _q, q) � 0,

q(0) � A,

_q(0) � 0,

(10)

where _q � dq/dt, A is the amplitude of the system, and
Φ(€q, _q, q) is a nonlinear function satisfying

Φ(−€q , − _q, −q) � −Φ(€q , _q, q). (11)

By introducing τ � ωt, equation (10) becomes

Φ ω2
q″,ωq′, q  � 0,

q(0) � A,

q′(0) � 0,

(12)

where q′ � dq/dτ and ω is an frequency.
Let the periodic solution of equation (12) exist, and it can

be expressed by such a set of functions as follows:

cos(2m − 1)τ|m � 1, 2, 3, . . .{ }. (13)

According to equation (13), the initial approximation
solution satisfying the initial conditions should be
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q0(τ) � A cos τ,

τ � ω0t,
(14)

where ω0 can be determined later.
Substituting equations (14) into (12), the initial residual

is

R0(τ) � Φ ω2
0q0″,ω0q0′, q0 . (15)

If R0(τ) � 0, then q0(τ) turns into the exact solution of
equation (10). Generally, such case will not appear in the
nonlinear systems.

Eliminating the secular terms in equation (15), through
which, ω0 can be determined. *en, the zeroth-order ap-
proximation solution is obtained of the form as follows:

q0(τ) � A cos τ,

τ � ω0t,
(16)

with the initial residual as follows:

R0(τ) � Φ ω2
0q0″,ω0q0′, q0 . (17)

Next, we introduce a parameter p ∈ [0, 1], denote q(τ)

and ω as q(τ, p) and ω(p), and expand q(τ, p) and ω(p) as
follows:

q(τ, p) � q(k−1)(τ, p) + p
k
qk(τ) + · · · ,

ω2
(p) � ω2

(k−1)(p) + p
kωk + · · · ,

(18)

in which

q(k−1)(τ, p) � q0(τ) + pq1(τ) + · · · + p
k− 1

qk−1(τ),

ω2
(k−1)(p) � ω2

0 + pω1 + · · · + p
k− 1ωk−1.

(19)

Obviously, q(t, 0) is the zeroth-order approximation and
q(t, 1) is the required approximate solution of equation (12).

Generally, the higher-order approximation to the solution
can be provided by equation (18). For instance, the first-
order approximation can be shown as

q(τ) � q0(τ) + pq1(τ),

ω2
� ω2

0 + pω1.
(20)

Inserting equations (20) into (12) and equating the
coefficients of p, we can get
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d
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(21)

where zΦ0/zq denotes that zΦ/zq is to be evaluated at the
zeroth-order approximation.

By taking equation (13) into account, let

q1(τ) � a3,1(cos τ − cos 3τ), (22)

and substitute it into equation (21), and we consider the
following equation:

R1(τ) � F1 τ,ω1, q1(τ)(  + R0(τ), (23)

where R0(τ) has been introduced into equation (23) to
improve the accuracy.

*e right hand side of equation (23) should not contain
the terms cos τ and cos 3 τ. Letting their coefficients be
zeros, one could obtain two linear equations, then the two
unknowns ω1 and a3,1 can be determined. Till now, the first-
order approximation can be obtained as

q(1)(τ) � q0(τ) + q1(τ),

ω2
(1) � ω2

0 + ω1,

τ � ω(1)t,

(24)

with the residual

R1(τ) � Φ ω2
(1)q(1)
″ ,ω(1)q(1)

′ , q(1) . (25)

For the k-th-order approximation, we may assume

qk(τ) � 
k

i�1
a2i+1,k[cos τ − cos(2i + 1)τ], k � 2, 3, . . . , .

(26)

To determine a2i+1,k, (i � 2, . . . , k) and ωk, substituting
equations (18) into (12) and collecting the coefficients of p,
one should get

Fk τ,ωk, qk(τ)(  �
1
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dk
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(27)
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Figure 1: A sketch of the beam system under research.
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Considering the equation

Rk(τ) � Fk τ,ωk, qk(τ)(  + Rk−1(τ), (28)

eliminating the coefficients of cos τ, cos 3 τ, . . . and
cos(2k + 1)τ in equation (28), then the unknowns
a3,k, a5,k, . . . , a2k+1,k and ωk can be obtained. *us, the k-th-
order approximation should be obtained as

q(k)(τ) � q(k−1)(τ, 1) + qk(τ),

ω2
(k) � ω2

(k−1)(1) + ωk.
(29)

4. Solution Procedure

In this section, the GRHBM is applied to solve system (8)
and (9). With τ � ωt, system (8) and (9) becomes

ω2
q″ + ε1q

2
q″ + ε1qq′

2
+ ε2q

4
q″ + 2ε2q

3
q′

2
  + q + ε3q

3
+ ε4q

5
� 0,

(30)

and

q(0) � A,

q′(0) � 0,
(31)

where q′ � dq/dτ.

4.1. Zeroth-Order Approximation. Firstly, the initial ap-
proximation can be written as

q0(τ) � A cos τ,

τ � ω0t.
(32)

Substituting equation (32) into (30) yields

R0(τ) � F01 cos τ + F03 cos 3 τ + F05 cos 5 τ, (33)

in which
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5
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.

(34)

Solving F01 � 0 gives

ω0 �

���������������
8 + 6ε3A

2
+ 5ε4A

4

8 + 4ε1A
2

+ 3ε2A
4



, (35)

which is the same as the result by Ganji et al. [28]. *en, we
obtain the zeroth-order approximation (32) and the initial
residual error as follows:

R0(τ) � F03 cos 3τ + F05 cos 5τ. (36)

4.2. First-Order Approximation. Substituting equations (20)
and (22) into equation (30) and considering the coefficient of
p, we have

F1 τ,ω1(  �
F11 cos τ + F13 cos 3τ + F15 cos 5τ + F17 cos 7τ

16
,

(37)
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(38)

According to equation (23), we have

R1(τ) � F1 τ,ω1(  + R0(τ). (39)

Eliminating the cos τ and cos 3 τ in equation (39) yields
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Solving equations (40) and (41) gives

a3,1 �
2A

3 8 + 4ε1A
2

+ 3ε2A
4

 H

2304ω2
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2ω2
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A
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in which

H � 8ε1ω
2
0 + 7ε2ω

2
0A

2
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2
,
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4ω2

0ε
2
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4ω2
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6ω2
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(44)

*us, we obtain the first-order approximation as follows:

ω(1) �

�������

ω2
0 + ω1



,

q(1)(t) � A + a3,1 cos ω(1)t  − a3,1 cos 3ω(1)t ,

(45)

where ω0, ω1, and a3,1 are given in equations (35), (42), and
(43).

With the procedure going on, the higher-order ap-
proximation can be obtained similarly.

4.3. Results and Discussion. To illustrate and verify the ef-
ficiency and accuracy of the presented method, the com-
parison of the analytical approximation obtained by the
presented method with the exact solutions and other
methods is discussed in this section. Here, the numerical
results from fourth-order Runge–Kutta method are viewed
as the exact solutions.

For this system, the parameters εi(i � 1, 2, 3, 4) describe
the mode shapes and can be calculated by the values of base
stiffness S, mass ratio μ, and position η. Here, the zeroth- and
first-order approximate frequencies and their relative errors
(RE) by the different values of ε1 ∼ ε4 and A are shown in
Table 1. From Table 1, it can be seen that the zeroth-order
approximations of frequencies the same as the first-order re-
sults by HPM and AFF have a good adjustment with the exact
ones with the maximal relative error 0.79887, and the relative
errors of the first-order approximate frequencies are much less
than the zero-order. It indicates that the first-order approxi-
mate frequencies can be more closer to the exact frequencies

than the zero-order ones, and the GRHBM is more efficient
and more accurate for solving strongly nonlinear problems.

To further illustrate and verify the accuracy of the
presenting method, we select some parameter values as
follows:

A � 0.3,

ε1 � 8.205578,

ε2 � 3.145368,

ε3 � 0.272313,

ε4 � 0.133708,

(46)

A � 0.4,

ε1 � 5.074636,

ε2 � 1.971962,

ε3 � 0.281418,

ε4 � 0.149677,

(47)

A � 0.4,

ε1 � 4.233389,

ε2 � 1.657464,

ε3 � 0.318201,

ε4 � 0.173313,

(48)

A � 0.5,

ε1 � 1.642033,

ε2 � 0.913055,

ε3 � 0.313561,

ε4 � 0.204297.

(49)

Figures 2–5 provide the comparisons of the current
analytical solutions to the exact solutions. From Figures 2–5,
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Table 1: Comparison of frequency corresponding to various parameters of this system.

Mode A ε1 ε2 ε3 ε4 ω0 � ω(1)[28] (RE) ω(1) (RE) ωex

1 1.0 0.326845 0.129579 0.232598 0.087584 1.00705 (0.30664) 1.010180 (0.00297) 1.01015
2 0.5 1.642033 0.913055 0.313561 0.204297 0.93255 (0.40947) 0.935268 (0.11982) 0.93639
3 0.2 4.051486 1.665232 0.281418 0.149677 0.96546 (0.12144) 0.965852 (0.08152) 0.96664
4 0.3 8.205578 3.145368 0.272313 0.133708 0.85970 (0.52752) 0.864408 (0.01712) 0.86426
1 1.2 0.303844 0.115076 0.232598 0.087584 1.02135 (0.67990) 1.027492 (0.08246) 1.02834
2 0.8 0.893981 0.467399 0.313561 0.204297 0.94117 (0.68750) 0.947891 (0.02226) 0.94768
3 0.4 5.074636 1.971962 0.281418 0.149677 0.85275 (0.65326) 0.858566 (0.02516) 0.85835
4 0.3 5.371626 1.995820 0.272313 0.133708 0.90371 (0.32569) 0.906268 (0.04324) 0.90666
1 1.1 0.333861 0.131914 0.333105 0.129923 1.05601 (0.50254) 1.060826 (0.04843) 1.06134
2 0.6 1.512930 0.802700 0.379417 0.250283 0.92528 (0.59649) 0.930113 (0.07810) 0.93084
3 0.4 4.278991 1.715424 0.318201 0.173313 0.87526 (0.53749) 0.879977 (0.00147) 0.87999
4 0.3 10.015007 3.820495 0.297109 0.149231 0.83552 (0.79887) 0.841654 (0.06958) 0.84224
1 0.9 0.327231 0.127022 0.333105 0.129923 1.03871 (0.31394) 1.040568 (0.13551) 1.04198
2 0.7 1.356964 0.696043 0.379417 0.250283 0.91850 (0.74083) 0.925756 (0.04388) 0.92535
3 0.4 4.233389 1.657464 0.318201 0.173313 0.87662 (0.52277) 0.881255 (0.00284) 0.88123
4 0.1 11.178563 4.200250 0.297109 0.149231 0.97418 (0.14969) 0.974368 (0.13038) 0.97564

0 2 4 6 8 10
t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

q 
(t)

Figure 2: Comparison between approximate and exact solutions under the parameter values (46); exact solution; zeroth-order
approximation; first-order approximation.
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t
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0.4
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Figure 3: Comparison between approximate and exact solutions under the parameter values (47); exact solution; zeroth-order
approximation; first-order approximation.
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it is noteworthy that the first-order approximate solutions
are almost similar to the exact solutions. *is shows that the
accuracy of the results obtained by this method is very high.

5. Conclusions

*e global residue harmonic balance method has been
employed to obtain the approximate periodic solution and
frequency for a well-known system of strongly nonlinear
oscillators in engineering, namely, the large amplitude free
vibration of a restrained uniform beam carrying an inter-
mediate lumped mass.

(i) *e brief descriptions of the beam and the basic idea
of the GRHBM are introduced.

(ii) *e GRHBM can provide a high accuracy by
considering the residual errors in the process of
each order approximation. *e solution proce-
dure of the GRHBM is simple and clear. *e
higher-order approximate solution and fre-
quency for the considered problem by GRHBM
can be obtained easily.

(iii) By comparing with the previously existing results
and the exact solutions, it is shown that the GRHBM
is an accurate, convenient, and efficient method.

(iv) *e GRHBM can be easily extended to other
nonlinear oscillators in engineering and physics.
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