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In view of the advantages of lightweight, high strength, easy cooling, and easy assembly, the rod-fastened rotor is widely used in the
aeroengine and heavy gas turbine. However, because of assembly, stress relaxation, material creep, and other reasons, the
clamping force of the tie rods will be out of tune during the long-term operation of the rotor.,e detuning of the clamping force of
the tie rods not only affects the contact stiffness of the contact interface but also causes the rod-fastened rotor with a certain
residual shaft bow, which will affect the dynamic characteristics of the rod-fastened rotor. Based on the statistical model of rough
surface contact (GW contact model), this paper presents a method to calculate the equivalent flexural stiffness of rough surface
considering the detuning of the clamping force of the tie rods and gives the calculation method of the residual shaft bow
deformation of the rod-fastened Jeffcott rotor with detuning of the tie rods.,e effect of the preload, the rate of detuning of the tie
rods, the number of detuning tie rods on the natural frequency, and the response of residual shaft bow of the rod-fastened Jeffcott
rotor at a certain speed are investigated. ,e results show that the detuning of the tie rods makes the flexural stiffness of the rotor
inconsistent along with twomain stiffness directions of the rotor, whichmakes the natural frequency of the rotor divided into two.
,e negative detuning of the tie rods decreases the natural frequency of the rotor, while the positive detuning of the tie rods
increases the natural frequency of the rotor.,e smaller preload or the larger rate of detuning of the tie rods makes the detuning of
the tie rods have a greater influence on the natural frequency of the rotor. ,ese results will provide a theoretical reference for the
dynamic analysis and design of the rod-fastened rotor.

1. Introduction

,e rod-fastened rotor is a kind of rotor structure widely
used in aeroengine and gas turbines. It depends on one
central tie rod or several circumferential tie rods to clamping
the discs together. ,e rod-fastened rotor is a typical as-
sembled structure, which has the advantages of lightweight,
easy cooling, convenient assembly, and flexible selection of
disc material. However, the complex structure also brings
some difficulties in the dynamic analysis. ,e contact states
of the interfaces between the discs are mainly ensured by the
clamping force from the tie rods. ,erefore, the clamping
force is crucial, which will directly affect the contact stiffness
of the contact interfaces of the discs. In the process of

assembling, the tie rods are elongated to offer the preload to
the discs. However, because of assembling, stress relaxation,
and material creep, the clamping force of the tie rods will be
uneven, which results in the detuning of the clamping force
along the circumferential direction in the contact surfaces. It
will affect the flexural stiffness of the rotor shaft segment and
the dynamic performances. Besides, the detuning of the
clamping force of the tie rods leads to the rotor with a
residual shaft bow, which affects the amplitude of the rotor
system. Some faults of the rotor system are from serious
vibration. So the research on the effect of the detuning of
clamping force on the dynamic characteristics of the rod-
fastened rotor is quite necessary. However, few investiga-
tions have been focused on this aspect.
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In recent years, some scholars put forward the dynamic
model of the rod-fastened and analyze the dynamic be-
havior of it. Rao [1] built a mechanic model of the rod-
fastening rotor based on a comprehensive analysis of the
structural characteristics of the rod-fastened rotor. ,e
correctness of the model is proved by comparing it with
experimental results. Qi et al. [2] studied the dynamic
characteristics of the gas turbine rotor considering contact
effects and pretightening forces. An improved 2-D FEM
method considering the contact effect was given and im-
proved the computing accuracy of the critical speed of the
rotor. Zhang et al. [3] provided a determination method of
contact stiffness based on the modal test and finite element
analysis, which was proven to be effective. Jam et al. [4]
proposed a finite element model for vibration analysis of
rod-fastened rotor. ,e results proved that the finite ele-
ment model is effective. Peng et al. [5–7] studied the overall
contact behavior between an elastic-plastic hemisphere and
a rigid plane and the elastic-plastic contact between two
rough statistical surfaces. ,en, a dynamic analysis of a
rod-fastened rotor based on elastic-plastic contact was
investigated. Lu et al. [8] investigated the dynamic char-
acteristic of the gas turbine rotor considering contact effect
and tie rods by the finite element method. Gao et al. [9]
investigated the effects of bending moments and pre-
tightening forces on the flexural stiffness of contact in-
terfaces in rod-fastened rotors. Liu Heng et al. [10, 11],
Yuan et al. [12], and Hu et al. [13] investigated the non-
linear dynamic behaviors of the circumferential rod-fas-
tened rotor. ,ese studies show that the preload is a crucial
parameter to determine the contact stiffness of the inter-
faces between discs, which affects the dynamic behavior of
the rotor system. Besides, some investigations focused on
the dynamic performances of the rotor with residual shaft
bow. Nicholas et al. [14] studied the influence of residual
shaft bow on unbalance response of a simple rotor by
theoretical analysis, and three ways to balance a rotor with
residual shaft bow were given. Flack et al. [15] conducted a
theoretical and experimental comparison of unbalance
responses of a bowed Jeffcott rotor supported by five
different sets of fluid film bearings. A transfer matrix
method was used to calculate the vibration response of the
rotor system. Shiau et al. [16] investigated the effects of
residual shaft bow on dynamic performances of a simply
supported rotor with mass unbalances and disk skew, and
the effect of disk positioning between supports was also
discussed. From the point of fault diagnosis, Rao [17]
discussed the vibration problem of the Jeffcott model with a
residual bow during its operation time. Several observa-
tions were proposed to identify the presence of a rotor with
the bow. Kang et al. [18] studied the dynamic character-
istics of a geared rotor-bearing system in which the residual
shaft bow, the gear eccentricity, and the gear’s transmission
error were considered. Song et al. [19] studied the vibration
of a rotor with a residual shaft bow by simulation and
experiment. Sanches et al. [20] discussed how to identify
the two most common faults of unbalance and residual
shaft bow in rotating machines by theoretical and exper-
imental techniques.

,e above reports are all focused on the normal rotors,
which have no detuning of the clamping force of the tie rods.
However, in engineering, the uneven clamping force is
unavoidable because of the assembling, self-loosening of the
bolt, and material creep. ,erefore, this paper investigates
the dynamic performances of the rod-fastened rotor with the
uneven clamping force of the tie rods. First, based on the
GW contact model (the statistical model of rough surface
contact proposed by Greenwood andWilliamson), a method
of calculation of the flexural stiffness of the interfaces with
the detuning of the clamping force of the tie rods is pro-
posed. Meanwhile, residual shaft bow deformation of the
rotor resulted from the detuning of the clamping force of the
tie rods is given. ,en, the effect of preload, the rate of the
detuning of the tie rods, and the number of the detuning tie
rods on the dynamic performance of the rotor system are
investigated. Some useful conclusions will provide a refer-
ence to the dynamic design of the rod-fastened rotor.

2. Theoretical Analysis

2.1. -e Flexural Stiffness of the Rod-Fastened Jeffcott Rotor.
,e rod-fastened Jeffcott rotor depends on the eight cir-
cumferential tie rods to clamping the two shaft heads, and
there is an annular contact interface between the two shaft
heads (see Figure 1).,e length of both end shaft segments is
L1, respectively. ,e length of the clamped shaft segment is
L2. ,e elastic modulus of the material is E. ,e moment of
inertia of the end shaft segments is I1, and the moment of
inertia of the clamped shaft segment is I2. Due to the series
relation between the shaft segments and the contact interface
in the structure, the flexural stiffness of the rod-fastened
Jeffcott rotor can be expressed as

Ks �
2L1 + L2

 2L1/EI1(  + L2/EI2(  + 1/Gr( ( 
, (1)

where Gr is the equivalent flexural stiffness of the contact
interface and E is the elastic modulus of the material.

According to the statistical model of rough surface
contact proposed by Greenwood and Williamson, the
contact of the two rough surfaces is the contact behavior of
the microconvex bodies distributed on them. ,e rela-
tionship of the pressure between the contact surfaces and the
distance between the two reference surfaces of the rough
contact surface [21] can be written as

P �
4

3σ
���
2π

√ ηAnomE′β1/2 
∞

d
z − d0( 

3/2
e

− z2/2σ2( ) dz , (2)

where P is the pressure between the contact surfaces and is
the root mean square of the height distribution of the
microconvex body. η is the distribution density of the
microconvex body of the rough contact surface. β is the
average radius of curvature of the top of the microconvex
body. E′ is the equivalent elastic modulus of the material.
Anom is the nominal contact area of the contact interface. d0
is the distance between two reference contact planes without
relative rotation after the preload is applied. z is the height
parameter of the microconvex body.
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,e equivalent flexural stiffness of the contact interface
[21] can be written as
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dz dAnom,

(3)

where Gr is the equivalent flexural stiffness of the contact
interface. M is the bending moment applied to the contact
interface. y is the radial parameter of the contact surface. θ is
the rotation angle between two contact planes.

,e contact surface and the distribution of tie rods can
be seen in Figure 2. Corresponding to eight tie rods, the
annular contact interface is equally divided into eight parts,
from S1 to S8. When the clamping force of each tie rod is
equal, the contact stress on the whole contact surface is
uniform. However, when the clamping force of one tie rod is
different from the other tie rods, the detuning of the
clamping force between the tie rods have occurred. When
the clamping force of the detuning tie rod is fd and the
clamping force of the other tuning tie rods are ft, the
detuning rate of the clamping force of one tie rod can be
written as

D �
fd − ft

ft
. (4)

When D is greater than zero, it means the positive
detuning of the tie rod. When D is less than zero, it means
the negative detuning of the tie rod. If one tie rod is out of
tune, in the detuning part of the contact interface, the
distance between reference planes of the two rough contact
surfaces d1 will be different from the distance d0 under the
tuning condition (see Figure 3).

For example, in Figure 2, when only the No. 1 tie rod is
out of tune, the equivalent flexural stiffness of the contact
interface along the x-direction and y-direction can be
written as

Gry � −
2

σ
���
2π

√ ηE′β1/2 
π/8

− (π/8)
dφ

r2

r1

r dr 
∞

d1

z − d1 − rθ sinφ( 
3/2

e
− z2/2σ2( ) · r

2sin2 φ dz

−
2

σ
���
2π

√ ηE′β1/2 
2π− (π/8)

π/8
dφ

r2

r1

r dr 
∞

d1

z − d0 − rθ sinφ( 
3/2

e
− z2/2σ2( ) · r

2sin2 φ dz,

Grx � −
2

σ
���
2π

√ ηE′β1/2 
π/8

− (π/8)
dφ

r2

r1

r dr 
∞

d1

z − d1 − rθ cosφ( 
3/2

e
− z2/2σ2( ) · r

2cos2 φ dz

−
2

σ
���
2π

√ ηE′β1/2 
2π− (π/8)

π/8
dφ

r2

r1

r dr 
∞

d1

z − d0 − rθ cosφ( 
3/2

e
− z2/2σ2( ) · r

2cos2 φ dz,

(5)

where r and φ are the polar coordinate parameters.
Due to the detuning of the clamping force of the tie

rods, the equivalent flexural stiffness of the contact in-
terface along the x-direction and y-direction will be not
equal, which will lead to the rod-fastened Jeffcott rotor with
asymmetric flexural stiffness along with the two main
stiffness directions.

2.2. -e Equation of Motion of the Rod-Fastened Jeffcott
Rotor. According to Euler–Bernoulli theory, the lateral
stiffness of the rod-fastened Jeffcott rotor can be given by

KJi � 48Ksi 2L1 + L2( 
− 3

� 48
2L1

EI1
+

L2

EI2
+

1
Gri

 

− 1

2L1 + L2( 
− 2

,

(6)

where i� x, y. ,e x-direction and y-direction respect two
main stiffness directions.

Figure 4 is the sketch map of the motion of the Jeffcott
rotor. In Figure 4, Od is denoted as the geometry center of the
disc, and Og is denoted as the center of mass. δr is the residual
shaft bow, e is the eccentricity, ω is the angular velocity of the
rotor, and Ψ0 is the initial phase angle of the eccentric. Z is the
dynamic displacement of the geometry center of the disc, and
Zg is the dynamic displacement of the center of mass of the
rotor. xoy is the static coordinate system, and ξoη is the dy-
namic coordinate system. Because the flexural stiffness of the
rotor along the x-direction and y-direction is not equal, it is
necessary to express the equation of motion of the rod-fastened
Jeffcott rotor in the dynamic coordinate system. In the xoy
coordinate system, the equation of motion of the rod-fastened
Jeffcott rotor can be written as

Tie rod

Sha�

L1 L2 L1
r t r 2 r 1

Figure 1: ,e rod-fastened Jeffcott rotor.
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It is easy to write the equation of motion of the rod-
fastened Jeffcott rotor in the ξoη coordinate system. It can be
given by
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(8)

where ξ0 and η0 are the residual shaft bow deformation in
the ξoη coordinate system. ωk1 �

����
kξ/m


and ωk2 �

�����
kη/m



are the two first-order natural frequencies. In the rotating
coordinate system, ξoη, ξ, and η take two main stiffness
directions. ,us, kξ �KJx and kη �KJy.

When there is no eccentric of the mass of the rotor, the
amplitude of steady response of the rod-fastened Jeffcott
rotor with residual shaft bow can be derived from Equation
8. It can be given by
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, (9)

where ω is the angular speed of the rotor; ωk1 and ωk2 are the
two first-order natural frequencies. Ar takes the maximum
value of vibration response in two directions ξ, η.

2.3. -e Calculation of the Residual Shaft Bow Deformation.
,e detuning of the clamping force of the tie rods will lead to
the rotor with the residual shaft bow. ,e residual shaft bow
deformation will directly affect the vibration response.
,erefore, the accurate calculation of the residual shaft bow
deformation is essential.

From Figure 5, the clamped shaft segment has certain
residual shaft bow deformation due to the detuning of the
clamping force of the tie rods. When there is one tie rod out
of tune, it is easy to know the bending moment can be given
by

M �
P Drt

n
, (10)

where P is the preload of the rotor, rt is the installation
radius of the tie rods, and n is the number of the tie rods.D is
the detuning rate of the clamping force of one tie rod.

According to the bow deformation relation, the de-
flection angle of the rotor axis α can be given by

α �
L2

2R
�

M

2
L2

EI2
+

1
Gr

 . (11)

,erefore, the residual shaft bow deformation of the
rotor can be written as

δr � R(1 − cos α) + L1 sin α. (12)

,erefore, in the above section, ξ0 � δr1 and η0 � δr2.

3. Results and Discussion

3.1. -e Rotor Model. ,e rod-fastened Jeffcott rotor is
shown in Figure 1.,emain physical parameters are listed as
follows: L1 � 0.2m and L2 � 0.1m. ,e outer radius of the
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Figure 2: ,e contact surface and the distribution of tie rods.
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Micro-convex
bodies

Reference
planes

d0
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Figure 3: ,e skeptical of the contact interface when the tie rod is
out of tune.

4 Mathematical Problems in Engineering



contact annulus r1 � 0.125m, and the inner radius of the
contact annulus r2 � 0.1m. ,e installation radius of the tie
rods rt � 0.075m. ,e elastic modulus of the material is
E� 1.99e11N/m2. ,e density of the material is
ρ� 7.85e3 kg/m3. ,e mass of the rotor is m� 50.84 kg. ,e
number of the tie rods is n� 8.

,e detuning of the clamping force of the tie rod will affect
the frequency and the residual shaft bow response of the rod-
fastened Jeffcott rotor. ,e following paper is mainly to in-
vestigate the effect law of the preload, the rate of detuning of tie
rods, and the number of the detuning tie rods on the dynamic
performance of the rod-fastened Jeffcott rotor.

3.2. -e Effect of the Preload. According to the reference
papers mentioned above, the preload is crucial to the rod-
fastened rotor. It directly affects the contact state of the
contact interface between the discs, which in turn affect the
dynamic performance of the rotor system. As shown in
Figure 6, the frequency of the rod-fastened Jeffcott rotor is
monotonously increasing with the increase of preload.
When the preload is larger than 5e4N, the rate of increase of
the frequency of the rod-fastened Jeffcott rotor is very slow.
,at is, because in this situation, the frequency of the rod-
fastened Jeffcott rotor is almost very close to the frequency of
the corresponding integral rotor. ,at is to say, when the
preload is relatively small, the contact state of the contact
interface has a greater influence on the dynamic perfor-
mance of the rod-fastened rotor.

Figures 7 and 8 plot the effect of the preload on the
frequency of the rotor system when one tie rod is out of tune.
In the figures, rf1, rf2 respects the rate of change of two
natural frequencies. rf1, rf2 can be given by

rf i �
Fdi − Ft

Ft
i � 1, 2 , (13)

where Ft is the natural frequency of the rotor system when
the clamping force of the tie rods is uniform, while Fd is the
natural frequency of the rotor system when the clamping
force of the tie rods is detuning.

It shows that the detuning of the tie rods leads to the
flexural stiffness of the rod-fastened is not equal along the
two main stiffness directions, which makes the rotor have
two first-order frequencies. ,e negative detuning of the tie
rod makes the frequency of the rotor decrease, while the
positive detuning of the tie rod makes the frequency of the
rotor increase.,e absolute value of the rate of change of the
frequency of the rotor is decreasing with the increase of
preload. It means that the detuning of the tie rod has a
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Figure 4: ,e sketch map of the motion of the Jeffcott rotor.
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Figure 5: ,e residual shaft bow of the rod-fastened Jeffcott rotor
resulted from the detuning of the clamping force of the tie rods.
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preload when one tie rod has a negative detuning.
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greater effect on the frequency of the rotor when the preload
is relatively smaller. When the preload is larger than 5e4N,
the effect of detuning of one tie rod on the frequency of the
rotor is very small and almost negligible. When the preload
is the same, the larger absolute value of the rate of detuning
of the tie rod has a greater influence on the frequency of the
rotor. Comparing Figure 7 with Figure 8, under the same
preload and the absolute value of the rate of detuning of the
tie rod, the negative detuning of the tie rod has a large effect
than the positive detuning of the tie rod.

Figure 9 plots the effect of the preload on the residual
shaft bow deformation of the rotor system and the effect of
the preload on the response amplitude of the rotor with a
certain speed (2407 rad/s) when one tie rod has a negative
detuning. It shows that the residual shaft bow deformation is
monotonously increasing with the increase of the preload.
However, the amplitude of response of the rotor with a
certain speed decreases firstly and then increases with the
increase of the preload. ,e preload of the trend turning
point is about 2.5e3N. ,is is because, when the preload is
smaller than 2.5e3N, the flexural stiffness of the rod-fastened
rotor is relatively smaller. Although the residual shaft bow
deformation of the rotor is small, the response amplitude of
the rotor is not very small. In this situation, the flexural
stiffness of the rod-fastened rotor is the deciding factor. ,e
flexural stiffness of the rod-fastened rotor is increasing with
the increase of the preload and the amplitude of response of
the rotor decreases. When the preload is larger than 2.5e3N,
the flexural stiffness of the rod-fastened rotor is relatively
larger, and the rate of change of the flexural stiffness of the
rod-fastened rotor is relatively smaller. In this situation, the
residual shaft bow deformation of the rod-fastened rotor is
the deciding factor. ,e residual shaft bow deformation of
the rotor is increasing rapidly with the increase of the
preload, and the response amplitude of the rotor also

increases rapidly. ,e larger absolute value of the rate of
detuning of the tie rod has a greater influence on the residual
shaft bow deformation and the response amplitude of the
rotor.

Figure 10 plots a comparison of the residual shaft bow
deformation and the response amplitude of the rotor under
the conditions of the positive detuning and the negative
detuning of one tie rod. It is shown that the effect law of the
positive detuning of the tie rods and the negative detuning
of the tie rods on the residual shaft bow deformation and
the response amplitude of the rotor are the same. However,
the negative detuning of the tie rods has a larger residual
shaft bow deformation and the response amplitude of the
rotor compared with the positive detuning of the tie rods at
the same preload and absolute value of the rate of detuning
of the tie rod, especially when the preload is relatively
smaller.

3.3. -e Effect of the Rate of Detuning of Tie Rods.
Figures 11 and 12 plot the effect of the rate of detuning of one
tie rod on the frequency of the rotor. It can be seen that the
negative detuning of the tie rod and the negative detuning of
the tie rod all make the absolute value of the rate of change of
the frequency of the rotor increase with the increase of the
rate of detuning of one tie rod. It means that the larger the
rate of detuning of tie rods have a greater influence on the
frequency of the rotor. Under different preload situations,
the effect law of the rate of detuning of tie rods on the
frequency of the rotor is the same.When the rate of detuning
of the tie rod is the same, the smaller preload has a greater
influence on the frequency of the rotor.

Figure 13 plots the effect of the rate of negative detuning of
one tie rod on the residual shaft bow deformation of the rotor
system and the effect of the rate of negative detuning of one tie

0

0.005

0.01

0.015

0.02

0.025

Th
e r

at
e o

f c
ha

ng
e o

f t
he

 fr
eq

ue
nc

y

104 105103

Preload/N

Coordination
D = +0.3, rf1

D = +0.5, rf1
D = +0.3, rf2

D = +0.5, rf2
D = +0.8, rf1
D = +0.8, rf2

Figure 8: ,e rate of change of the frequency of the rotor with
preload when one tie rod has a positive detuning.

D = –0.3,δr
D = –0.5,δr
D = –0.8,δr

D = –0.3,Ar
D = –0.5,Ar
D = –0.8,Ar

10–8

10–7

D
isp

la
ce

m
en

t/m

104 105103

Preload/N

Figure 9:,e change of the residual shaft bow deformation and the
response amplitude of the rotor with preload when one tie rod has a
negative detuning.

6 Mathematical Problems in Engineering



rod on the amplitude of response of the rotor with a certain
speed. It shows that the residual shaft bow deformation is linear
monotonously increasing with the increase of the absolute
value of the rate of negative detuning of one tie rod. ,e re-
sponse amplitude of the rotor with a certain speed also in-
creases with the increase of the preload. When the preload is
smaller, the amplitude of response of the rotor increases ex-
ponentially with the increase of the preload, and the speed of
increase is faster. When the preload is larger than 2.5e3N, the
increase of the response amplitude of the rotor is linear.

Figure 14 plots a comparison of the change of the re-
sidual shaft bow deformation and the response amplitude of
the rotor with the absolute value of the rate of detuning of
one tie rod under the conditions of the positive detuning and
the negative detuning of one tie rod. It is shown that the
change of the residual shaft bow deformation and the re-
sponse amplitude of the rotor with the absolute value of the
rate of detuning of one tie rod is the same under the positive
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Figure 10: A comparison of the residual shaft bow deformation
and the response amplitude of the rotor under the conditions of the
positive detuning and the negative detuning of one tie rod.
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Figure 11:,e rate of change of the frequency of the rotor with the
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Figure 13: ,e change of the residual shaft bow deformation and
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detuning of the tie rods and the negative detuning of the tie
rods. ,e negative detuning of the tie rods have a larger
residual shaft bow deformation and the response amplitude
of the rotor compared with the positive detuning of the tie
rods when the preload is relatively larger.

3.4. -e Effect of the Number of the Detuning Tie Rods.
Figure 15 plots the rate of change of the frequency of the
rotor with the preload under the different numbers of
detuning tie rods.,e rate of detuning of the tie rods is − 0.5.
It shows that, under different numbers of detuning tie rods,
the change law of the rate of change the frequency of the
rotor with the increase of preload is similar. However, the
larger number of detuning tie rods have a greater influence
on the frequency of the rotor. Especially, when the preload is
small, the number of detuning tie rods is four, the rate of
change of the frequency of the rotor almost reaches 4.5%.
Besides, the larger number of detuning tie rods makes the
two frequencies of the rotor closer to each other. It means
that the larger number of detuning tie rods makes the
flexural stiffness along the two main stiffness direction tend
to be consistent. ,e positive detuning of the tie rods makes
the frequency of the rotor increase, and this is just contrary
to the result of the negative detuning of the tie rods. But the
effect law of the number of detuning tie rods on the fre-
quency of the rotor is absolutely consistent.

Figure 16 plots the rate of change of the frequency of the
rotor with the rate of detuning of the tie rods under the
different numbers of detuning tie rods. ,e preload of the
rotor is 2.5e3N. As seen from Figure 16, under different
numbers of detuning tie rods, the change law of the rate of
change of the frequency of the rotor is similar. ,e larger
number of detuning tie rods have a greater influence on the
frequency of the rotor. When the rate of detuning of the tie

rods is larger, the number of detuning tie rods has a greater
influence on the frequency of the rotor.

Figure 17 plots the change of the residual shaft bow
deformation and the response amplitude of the rotor with
the preload under different numbers of detuning tie rods.
,e rate of detuning of the tie rods is − 0.5. It shows that the
effect law of the preload on the residual shaft bow
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Figure 15:,e rate of change of the frequency of the rotor with the
preload under the different number of detuning tie rods.
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deformation and the amplitude of response of the rotor
under the different number of detuning tie rods is consistent.
,e larger number of detuning tie rods makes the rotor have
a greater residual shaft bow deformation, which leads to a
greater amplitude of response of the rotor.

Figure 18 plots the change of the residual shaft bow
deformation and the amplitude of response of the rotor with

the rate of negative detuning of the tie rods under the
different number of detuning tie rods. ,e preload of the
rotor is 2.5e3N. It shows that, when the rate of detuning of
the tie rods is larger, the larger number of detuning tie rods
has a greater influence on the frequency of the rotor.

4. Summary and Conclusions

Based on the GW contact model, this study presents a new
method to calculate the equivalent flexural stiffness of rough
surface considering the detuning of clamping force of the tie
rods and gives the calculation method of the residual shaft
bow deformation of the rod-fastened Jeffcott rotor with
detuning of the tie rods. ,e effect of the preload, the rate of
detuning of the tie rods, and the number of detuning tie rods
on the dynamic performance of the rod-fastened Jeffcott
rotor are investigated. Some conclusions can be drawn as
follows:

(1) ,e detuning of the tie rods makes the flexural
stiffness of the rotor inconsistent along the two main
stiffness directions of the rotor, which makes the
natural frequency of the rotor divided into two.

(2) ,e negative detuning of the tie rods decreases the
natural frequency of the rotor, while the positive
detuning of the tie rods increases the natural fre-
quency of the rotor.,e smaller preload or the larger
rate of detuning of the tie rods make the detuning of
the tie rods have a greater influence on the natural
frequency of the rotor.

(3) With the increase of the preload, the residual shaft
bow deformation of the rotor increases monotoni-
cally due to the detuning of the tie rods, and the
response amplitude of the residual shaft bow of the
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Figure 17: ,e change of the residual shaft bow deformation and the response amplitude of the rotor with the preload under different
number of detuning tie rods.

D
isp

la
ce

m
en

t/m

×10–7

0

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1
�e rate of detuning of the tie rods

One tie rod, δr
Two tie rod, δr
Three tie rod, δr
Four tie rod, δr

One tie rod, Ar
Two tie rod, Ar
Three tie rod, Ar
Four tie rod, Ar

Figure 18: ,e change of the residual shaft bow deformation and
the response amplitude of the rotor with the rate of negative
detuning of the tie rods under different number of detuning tie
rods.

Mathematical Problems in Engineering 9



rotor decreases firstly and then increases. ,is is
because, when the preload is relatively smaller, the
flexural stiffness of the rod-fastened rotor is also
relatively smaller. At this time, although the residual
shaft bow deformation of the rotor is small, the
amplitude of response of the rotor is not very small,
because the flexural stiffness of the rod-fastened
rotor is the deciding factor at present. ,e flexural
stiffness of the rod-fastened rotor is increasing with
the increase of the preload, and the amplitude of
response of the rotor decreases. When the preload is
relatively larger, the flexural stiffness of the rod-
fastened rotor is also relatively larger, and the rate of
change of the flexural stiffness of the rod-fastened
rotor is relatively smaller. In this situation, the re-
sidual shaft bow deformation of the rod-fastened
rotor is the deciding factor. ,e residual shaft bow
deformation of the rotor is increasing rapidly with
the increase of the preload, and the response am-
plitude of the rotor also increases rapidly.

(4) With the increase of the rate of detuning of the tie
rods, the residual shaft bow deformation and re-
sponse amplitude of the rotor all increase mono-
tonically. Compared with the positive detuning of
the tie rods, the negative detuning of the tie rods has
a greater impact on the natural frequency of the rotor
and makes the response amplitude of the rotor
larger. ,emore number of detuning tie rods has the
greater influence on the natural frequency and re-
sponse amplitude of the rotor.
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