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This paper presents a convex approach for nonlinear descriptor systems with multiple delays; it allows designing delayed
nonlinear controllers such that the closed-loop system holds exponential estimates for convergence. The proposal takes advantage
of an equivalent convex representation of the given descriptor model together with Lyapunov-Krasovskii functionals; thus, the
conditions are in the form of linear matrix inequalities, which can be efficiently solved by commercially available software. To
avoid possible saturation in the actuators, conditions for bounding the control input are also given. Numerical and academic

examples illustrate the performance of the proposal.

1. Introduction

In the last decades, a large number of results concerning the
analysis and stabilization of systems by means of the direct
Lyapunov method [1], since the publication of the book [2],
linear matrix inequalities (LMIs) have become a preferred
solution to many control problems [3, 4], as they can be
effectively solved by means of convex optimization tech-
niques already implemented in commercially available
software [5, 6]. These ideas have been extended to the
analysis of time-delay systems (TDSs) via LyapunovKra-
sovskii (L-K) functionals [7] or LyapunovRazumikhin (L-R)
functions [8]. In this context, there are several results that
provide sufficient stability conditions using LMI-based ap-
proaches for different classes of TDS, such as linear time-
delay systems [9-13], uncertain linear time-delay systems
[14-16], neutral linear systems [17-20], systems with un-
certain time-invariant delays [21], descriptor system ap-
proach for TDS [22], linear parameter-varying (LPV) time-
delay systems [23], systems with time-varying delays
[24-29], exponential estimates for TDS [30, 31], systems

with polytopic-type uncertainties [32], singular systems [33],
neural networks with time delay [34, 35], and genetic reg-
ulatory networks with probabilistic time delays [36]. Re-
cently, in [37] convex approaches are employed to provide
robust stability conditions based on quasi-polynomials.

In general, delays are undesirable phenomena, because
they can destabilize or produce a poor performance in the
system response. However, in recent years, it has been shown
that delays can also stabilize and improve the close-loop
performance of a system. Moreover, the deliberate induction
of delays by means of the control law is an efficient alter-
native to stabilize systems [38, 39]; these types of controllers
are known as delayed ones. For example, in [40-42], a
proportional control with an appropriate delay replaces a
traditional proportional-derivative one; thus, the system
response is fast and insensitive to high-frequency noise. In
[43], a scheme called time-delayed feedback control (TDFC)
is proposed, originating different investigations [44-55].

As mentioned above, LMI-based approaches have be-
come important in the control community; however, in the
context of TDS, there is an inherent conservatism for
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stability and stabilization conditions even for linear setups
[37]; this leaves room for improvements. Moreover, a
problem little explored by the community is obtaining
stability conditions for nonlinear TDS. Although, originally,
LMI-based stability conditions were given for linear time-
invariant (LTI) systems, these have also been used on LPV
[3] and nonlinear setups via exact Takagi-Sugeno (TS) [56].
The latter case employs the sector of no linearity approach
[57] which allows rewriting the original nonlinear model as a
convex one by means of scalar convex functions that capture
uncertainties and nonlinearities. This technique has also
been applied to a class of nonlinear TDS; for instance, in
[58, 59], sufficient LMI conditions are proposed; in [60],
uncertain TS systems are considered; in [61], sufficient LMI
conditions have been given for a class of nonlinear systems.
A larger family of functionals is explored in [62]. None-
theless, none of these previous works deal with nonlinear
descriptor systems; they appear when using the EulerLa-
grange formalism for modeling plants [63]. In the context of
convex descriptor models without delays, there are some
recent works [64, 65]; time-delay nonlinear descriptor
systems are a few works in the literature; for instance, in [66],
LMI stability and stabilization conditions have been de-
veloped for systems with only one time-delay.

Contribution: this paper proposes an LMI methodology
for analysis and stability of nonlinear descriptor systems
with multiple delays, thus overcoming recent results in the
literature. For example, the work [4] only considers linear in
standard form systems with multiple delays, [52] only
studies nonlinear systems in standard form, and [66] treats
nonlinear systems in descriptor with one delay. Additionally,
to avoid possible saturation in the actuators, LMI conditions
for bounding the control signal are established. Numerical
and academic examples illustrate that including delays in the
controller can reduce noise in the control signal, which
increases the useful life of the actuators.

The paper is organized as follows: the problem statement
and preliminary results are shown in Section 2. LMI-based
stability analysis and delayed nonlinear controller design
conditions for a class of nonlinear descriptors systems with
multiple delays are given in Section 3, and additionally
conditions for input constraints are also given. In Section 4,
the implementation and numerical validation of the pre-
vious theoretical results are provided. Concluding remarks
are stated in Section 5.

2. Problem Statement and Preliminary Results

2.1. Problem Statement. Let us consider a nonlinear de-
scriptor system under multiple delays of the following form:

d
E(x)x(t) = A(x)x(t) + Y A, (0)x(t - 7,) + B(x)u,
h=1
x(6) = ¢(0), 6 ¢€[-1,0],

1

where x € R" is the state vector, u € R™ is the input vector,
E(x), A(x), B(x), and A, (x) are matrix functions assumed
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to be smooth and bounded, 0<7,<7,< - <7; =7 are
time delays, and ¢ € € ([-7, 0], R") are the initial functions,
where € ([-7,0], R") is the Banach space of real continuous
functions on the intervals [—7,0] with the following norm:

41, = max 19 (), 2)

where || - || stands for the Euclidean norm in R”. It is as-
sumed that for each initial condition ¢ € € ([-7,0],R"),
t>0 there exists a unique solution x(t,¢) of the system;
moreover, x,(¢) = {x(t +6,¢): 6 € [-7,0]}. In this work,
matrix E (x) is assumed to be invertible, at least in a region
including the origin; this is a common assumption when
studying systems (1) derived from the EulerLagrange for-
malism [63, 65].

In order to obtain LMI conditions, the sector nonline-
arity approach [57] is employed to compute an exact convex
representation of (1). This methodology begins by defining a
premise vector z(x) € R? whose entries are different non-
constant terms in A(x), ATh(x), B(x), he{l,2,...,d};
similarly, {(x) € R? is the premise vector with nonconstant
terms in E (x). It is assumed that each entry of the vectors
z(x) and {(x) is bounded in the compact set Q. that in-
cludes the origin, that is, z;(x)e€ [2),2]] and
(e (x) € [(2,(i]. Thus, each of them can be expressed as
convex sums of their bounds:

ie{l,2,...,p}

0 i 1
z; (x) = z; wy (x) + z; W) (x),

Go(x) = Ok (x) + (b (%), ke f{L2,....q) ¥
where
wj(2) = %
wy (x) = 1 - w} (2),
(4)
W) = %

W} () =1-wi (),

are scalar convex functions holding the convex sum property
forall x € Q, ie, 0<w;(2) <1, wi +w)=1,0<w, ({) <1,
and ! + wk = 1. Then, the so-called scheduling (member-
ship) functions can be computed:

w;(2) =w; (Dw (x)-wf (x), i;€{0,1},

. ) q (5)

@ (€) = wp, (Mwy,, () wp (%), k; € {0, 1},
where i €{1,2,...,r}, r =2, and indexes [ii,---i,] are
chosen as a p-digit binary representation of (i — 1); similarly,
ke{l1,2,...,p}, i; €{0,1}, p=2% and the set [klkz---kq] is
a g-digit binary representation of (k —1). The scheduling
functions also hold the convex sum property in (), .. Finally, an
equivalent convex representation of (1) is [67]
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P

Z (OE%(t) = Zw

k=1 i=1

d
: <Aix(t) + Z Ay x(t-1,)+ B,-u),
h=1

(6)
where  Ep = E(x)l, -0 A =A@y, 0= Ari= A4,
(x)|wl_(z):1, he{l,2,...,d}, and B; = B(x)I _, are con-

stants matrices; r = 2P and p =21 are the number of vertices
for the right and left side of (6), respectively. It is important to
notice that (6) is a convex rewriting of (1); thus, all the con-
clusions derived from the former directly apply to the latter.

2.2. Notation and Properties. In the following, convex sums
of matrices will be shortly represented by

r

i=1

M=

)

j=1 k

II
™M=

w; (2)W; (2)@g (O
1

1

-

(7)

Thus, (6) is expressed as E x(t)=A,x()+
Yhey A wx (t = 1)) + Bu(t). Additionally, an asterisk ( *)
will be employed in matrix expressions to denote the
transpose of the symmetric element; for in-line ones, it
indicates the transpose of the terms in its left-hand side, that
is, A+B+ AT +B"+C=A+B+(%)+C.

Usually, when deriving LMI conditions for convex de-
scriptor models, the designer is faced to inequalities of the
form Y, <0; the scheduling functions are dropped off by
means of the following relaxation lemma:

Lemma 1 (see [68]). Let Yij= Uk’ (i, ) =1{1,2,. 1P

and k € {1,2,...,p} be matrices of adequate sizes. Then,
ii P w; (2)w; (2)@, ()Y <0, (8)
i=1 j=1 k=1
holds if the following LMIs,
%Yﬁk + Y+ Y <0, 9)

are satisfied for all (i, j) = {1,2,...,r}%, ke {1,2,...,p}.
The following results establish the exponential estimates
for time-delay nonlinear systems:

Lemma 2 (see [30]). Consider system (1). If there exists a
functional V () and positive constants c,, c,, and a, such that
M) ¢ llxl* <V (x) <6, lx, 1%,
(2) V(x,) +2aV (x,) <0

then, the solutions x(t,¢) of the system (1) satisfy the ex-
ponential estimates:

-1
Y, = Zw(z)Yl,Y —Zwk(f)Yk, <zwi(Z)Yi> >
k=1 i=1

x (6, §)] < ( e 14l (10)

As customary, for the analysis and design of convex
descriptor models, the so-called descriptor redundancy is
employed [69] in our case, the augmented Vectors x(t) =
EHOK: (t)] and % (£ - 7y) = [ 27 (t 1) &7 (- )],

he{1,2,...,d}, are employed to rewrite (6) as follows:
R pa— d _— p—
EX(t) = A, X(t)+ Y A, %(t-7,)+Byu, (11)
h=1
with
_[ro
E= ,
100
T [0 I
W T _Aw —Ew 4
12
_ 0 0 (12
AThW = ATW O >
L h
_ [0
B, = " , he{l,2,...,d}.

In what follows, the stability and stabilization conditions
are derived from the augmented system (11); nevertheless, it
is important to stress that the system under study has the
form (1).

Let us recall previous works on the subject. The work
[66] studies the stability and stabilization of a nonlinear
descriptor system with only one delay, that is (1) with
d = 1. For stabilization purposes, the following control
law is proposed:

u =Ky x(t) + Fyox(t—1), (13)

w1thK WX (1) = Z z w;(z (x)wy (¢ (x))K ik and F,,
Z] 1 LW (z(x))wk (((x))F]k, it is a nonlinear control
law w1th nonhnearltles of both sides of the nonlinear de-
scriptor model. In the Section 3, a generalization of this
controller will be presented.

3. LMI Conditions for Descriptor Systems with
Multiple Delays

In this section, the developments are based on the following
LyapunovKrasovskii functional candidate:

V(x,) =% (OE P,x(t)
d (14)
+y jo X' (t+0)E Q™% (¢ + 6)do,

T

with



4
_ [Pl 0 ]
" P2w P3w
_ [Q, 0
Qh:[ 5
00
E'P,=P.E>0, a>0,P,>0,Q,>0,he{l,2,...,d}.

(15)

Note that, the functional (14) is a valid L-K functional
candidate as it reduces to

d 0
V(x,)=x (t)Px()+ ) J X" (t + 0)Que™x (t + 6)d6,
h=1 7
(16)
[ d
Py A+ APy +2aP, + ) Q,
h=1
P, - EgPy; + Py A,
Y“ =
ijk T
PZjArli
T
L PZjATdi
where (i, j) = {1,2,...,7}* and k € {1,2,...,p}. Addi-

tionally, the solution x (¢, ¢) of (1) satisfies the exponential

estimates:
CZ —at
I (6 9 < 2 eIl
1

with € = Amin (Pl) and 6= Amax (Pl) + ZZ:I Th/\max (Qh)’
he{l,2,...,d}.

(18)
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which is clearly positive definite and bounded by
allxl*<Vix,)<c,llx 2 with ¢, =A,,(P;)  and
€y = Apax (P1) + ZZ:1 TpAmax (Qp), thus fulfilling conditions
(1) in Lemma 2.

For the analysis of system (1), i.e., when u = 0, we have
the following result.

Theorem 1. The origin of system (1), with u = 0 and an exact
convex representation (6), is exponentially stable if the exist
matrices P, >0, P,;, Ps;, Q>0 with he{l,2,...,d},

j€f{l,2,...,r}, and a scalar a >0 such that LMIs (9) hold
with
(%) (%) (%) (=)
_Ezp3j_P3TjEk (=) (*)
; , (17)
A iPs; —e “Q, (%)
(%)
A;ipw‘ 0 ‘eizmde_

Proof. 'The time derivative of (14) along the trajectories of
(11) is V(x,) =V, +V, with

V, =% ()PLEx(t) + % ()E P, %(t),
(19)

m

d e
v, = ;E Lh X (¢ + 0)F Q™% (¢ + 0)do,
-1

which once the dynamics of (11) are substituted and using
Leibniz’s rule yield

d d T
v, = xT(t)l_JI,(waic(t) +Y A, x(t- Th)> + <Aww5c(t) +Y A, x(t- Th)> P x (1),
h=1 h=1

d

0
Vo=) {xT (DE'Qx(t) - % (t-1,)e ™ E Qx(t - 1,)} - 2 j X O Qe k(1 + 6)d6}.

h=1

From the latter, we have that V (x,) + 2aV (x,) is equal to
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[ —T = P . ]
x@® 1 PLA,, + Ay P, +2aE P,+YEQ, () () %(£)
h=1
xX(t—-1 o o x(t—1
( ‘ 1) zw 3 —e‘z‘”lEQl (%) ( ) ) (21)
o : : («) |,
x(t—‘rd) T _ e x(t—‘rd)
L waPW 0 ‘E Qd J
~ 'Thus, in order to fulfill condition (2) in Lemma 2, manipulations when developing vectors Xx(t) and
V (x,) +2aV (x,) <0 can be established after some algebraic ~ X (t —1,),h € {1,2,...,d}, by the following inequality:
_ . J .
PouAw + APy + 20Py + ) Q, (+) (#) (%) (%)
h=1
T T
Py - EP2w+P3wAw ~EyPs, — P3,E, - (x) (%) <0. (22)
PZWAT w Arlwp —€ aT]Ql ()
: : (%)
T -2
L PZWAwa A'rde3w 0 - tXTde J
Finally, in order to drop off the scheduling functions w  with
and w via the relaxation scheme in Lemma 1, the proof is Tl T
concluded. E Py =P, E>0,
Let us consider system (1). Now, the task is to design a ) p, 07!
multiple delayed PDC control law of the following form: P, = [ ] ,
2w P3w
d
“ wax(t)+;Fhw‘°x(t ) (23) Qh:[ Oh 0], P,>0,Q,>0,a>0,h €{1,2,...,d}.
where K LW (z (x))wy (((x))K],< and Fj,, = (25)
ZJ 1 w (z(lx))wk ({(x))Fth,h €{1,2,...,d} are non- O
linear gams to be designed via the augmented system (11);
th;ls,_ (23) can be expressed as u(f)= K, X (t)+ Theorem 2. The origin of system (1) with an exact convex
2h=t P X (= 13) with Ko = [Kyo 0] and  representation (6), under the law of control (23), is expo-

Fwo = [ Fawe 0]. The following result provides LMI con-
ditions for the design of the control law (23). It is based on a
slightly modification of the L-K functional candidate (14),
that is,

V(x,) =% () P, 'x ()

nentially stable if existing matrices P; >0, P,;, Py;, R, >0,
M, Nhjk,h €{l,2,...,d},je{l,2,...,r}, and a scalar
a>0 if the LMIs (9) hold with the following:

(O T == 2a0 29)
Y [ S 0E Qe s 0o,
e -7,
- , d -
Pj;+P,;+2aP, + ) R, () (=) (%) (%)
h=1
AP, + BM ~ EPy + PL, ~EP,; ~PLE] () (%) o6
Yi'k = 26
! 0 p,A” +N1]kB 2 (%)
(*)
-2a
i 0 PATd,+Nd]kB 0 e 2R, |




Then, the vertex control gains are computed as K =
M Pt and Fyy = NyyPrljef{l,2..r) ke{l,2,...,
p},andh € {1,2,...,d}. Moreover, Q,=P;'R,P;',he
{1,2,...,d} and the solution satisfies the following expo-
nential estimates:

C — (]
()] < Ee Il (27)
1
where 1 = Apin (PTH) and Cy = Ay (PTH) + ZZ:I
Th/\max (Qh)

Proof. Using the augmented system (11) and its corre-
sponding control law, the closed-loop system is

d
+B KT () + Y (A + By Fp)X(t— 7).

h=1

Ex(t) = (Aye

(28)
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Similar to the proof of Theorem 1, consider the func-
tional (24) and its time derivative V (x,) =V, + V, with

V, =% ()E P, %(t) + X' (t)P, Ex(t),

d d 0
=5 |

h=1 “Th

(29)
% (t+0)E Q,e™% (t + 6)d.

Substituting the dynamics of (28) in V, while using
Leibniz’s rule in V,, we have

d T
V, = <(Aww + B, K, )X (t) + Z(Zm + Ewﬁhww)z(t - Th)> P, x(t) +x (t)ﬁ;f

h=1

h=1

d
’ <(wa + waww)z(t) * Z(an‘ + Ewﬁhww)i (t - Th))’ (30)

d T —T— _ _T —2am,5lA =~ ’
v, = Z{x (VE Qx (1) -x (t-7,)e ""E Qx(t ~74) - 2a J,

Therefore, V (x,) + 2aV (x,) is equivalent to

Th

% (t + O)F Q% (t + e)de}.

d
—T — — —T—-1 —T=
() 17| Pw Aw+BKyo)+(#)+2aE P, +YEQ, (%) ... (%) %(t)
h=1
x(t-1) — R e x(t-1)
. (AT]W+BWF1W10) P, —e *1E Q ... (%) . . (31)
_ : N EY .
xX(t-14) o T P | = (Rl )
L (Ardw + Bdeww) Pw 0 L. € ‘E Qd ]
After some simplifications, V(xt) +2aV (x;) <0 (con-
dition (2) in Lemma 2 holds if
[ r T 1 d 1
-P] PZWP;W(AW+Bwwa)+(*)+20cP; +ZQh (*) (%) (*) (%)
h=1
Pl (A, +B,K,,)+P;' + E-P; P! -ELp;. - PJTE, (%) (%) o )
T T T\ p-1 -1 T T -1 -2 >
—(A‘rlw + FlwaW)P3wP2wP1 (Arlw + FIW(I))P3W —e MlQl ( * )
: : (%)
T T T \p-1 -1 T T T \p-1 -2
L _(Ardw + FdwaW)P3WP2WP1 (Ardw + FdwaW)PSW 0 —e mdQ J
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holds too; however, from the previous inequality, one cannot
directly obtain LMI conditions. Thus, by means of the

congruence property, that is, pre- and postmultiplying by

the matrix block — dlagH If PO ] P, ...,P1:| gives
d

_ J .
Py, + Py, +2aP + ) R, (%) (+) (%) (%)
h=1
AP, + B,M,,, — E,P,, + P, —E,Ps, — P} EI (%) (%)
waw = Coar <0, (33)
0 PlA +N| B —e MR, (%)
(%)
T T T -2
| 0 PA,  + NyyoBy 0 —e MR, |

with the definitions M, = K,,P; and N, = FuwoP1
he{l,2,...,d}. Now, the previous inequality can be
translated into the LMI conditions in the theorem once the
relaxation scheme in Lemma 1 is applied.

Recall that, by hypothesis matrix, E (x) in (1) is invertible
in a region around the origin; thus, it is always possible to
calculate a standard state-space form as follows:

d
X(t) = A(x)x(t) + Z Arh (x)x(t - 7,) + B(x)u,

(34)

h=1
where A(x)=E '(x)A(x), B(x)=E '(x)B(x), and
;}Th (x)=E! (x)A,, (x),h €{1,2,...,d}. Naturally, it is

possible to obtain a convex representation of system (34),
that is,

d
x(t) = A, (x)x(t) + Z ;\Thw(x)x (t-1,) + B, (x)u,
h=1

(35)

=YL wi (24, A :Z::lwi(z)gfhi’

W and
Zle w; (z)Ei, where 7 is the number of vertex models,

with A,
B, =Y.

w

d
~T
2]A, +A; Pyj+2aP + hz Q,
=1

P, - P, + P} A,

PZ]ATll

T~
L szA

T4l

Moreover, the solution
exponential estimates:

Ix (6, )] < f 14l

x(t,¢) satisfies the following

(38)

-P

h e {1,2,...,d}. Even though nonlinear systems (34) and (1)
and their convex forms are equivalent, establishing expo-
nential stability of them via LMIs may lead to different
feasibility set solution. Keeping the original descriptor form
(1) results in a convex representation with less vertex ma-
trices; this, in general, yields less conservative results [64].

Thus, the following result provides stability and stabi-
lization conditions for systems of the form (34) by means of
the L-K functional (14) (for stability) and (24) (for stabili-
zation), respectively.

Corollary 1. Stability: the origin of system (1), with u =0
and an exact convex representation (35), is exponentially
stable if the exist matrices Py >0, P,;, Py;, and Q>0 with

he{l,2,...,d}, je{1,2,...,7}, and a scalar a > 0 such that
LMIs,
2 —
Vi + Y+ Y;<0, V() ={1,2,....,7%, (36
hold with
() (x) (=) (=)
- P3; (%) (%)
R (37)
A iPs; NQ, (%)
: ()
AT p 0 —2at,
it 3j e € Q4

Stabilization: the origin of system (1) with an exact convex
representatlon (35), under the law of control u = K X
() + Zh L F e x (8= 1), is exponentially stable if existing
matrices P >0, P,;, Psj, R,>0, M Nh],h €{L,2,.

d}, je{l,2,...,7} andascalaroc>01ftheLMIs(36) holdwrth
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Py, + Py +2aP + ) R, (%) () (%) (%)
h=1
AiP1+EiMj—P2j+P§j j—Pfj (%) (%)
Y, = ~ o (39)
K 0 PA, +N|B R, (+)
(%)
i 0 PA,+NyB 0 . e ™R,

Then, the vertex control gains are computed as K j=
M]PII and th:Nh]'PII, thZNthf,jG{l,Z...,
71, h € {1,2,...,d}. Then, the solution satisfies the following
exponential estimates:

(6, )] < Fe‘“ﬂwuf.
C

Proof. It follows a similar path than results in Theorems 1
and 2, respectively.

The result above employs the same L-K functional of the
descriptor approach, and thus the slack matrices P,, and
P, are also considered into the LMI conditions. Another set
of LMI conditions for establishing the exponential estimates
of systems in standard form (34) and its convex represen-
tation (35) can be done via a L-K functional without slack
matrices, namely,

(40)

d 0
V(x,) =< (OPx(t)+ Y J (¢ + 0)Que™x (1 + 6)do,
h=1 ° "

(41)
whose positiveness is inferred by P>0, Q,>0,
he{l,2,...,d} and its boundedness c,|x|*<V (x,)<
ollx 2, with ¢, =1, (P)  and ¢, = Ay, (P)+
Z;{:I Ty Amax (Qp). This is summarized in the following
result. O

Corollary 2. The origin of the system (1) with an exact convex
representation (35) and u(t) =0 is exponentially stable if
there exists matrices P>0, Q, >0 withh € {1,2,...,d} and a
scalar a>0 such that,

] . ]
Plﬂii+}iiTP+20cP+ZQ,1 (%) - (%)
h=1
AP N, e (%) <0,
: (%)
i AP e MQ, |

(42)

holds for i€ {1,2,...,7}. Then, the solution satisfies the
following exponential estimates:

I (6, $)l < \Ee*“fugbur,
G

with ¢; = A, (P) and ¢y = A, (P) + ZZ:I 7,Qp-

(43)

Proof. 1t follows a similar path than previous results. [

Remark 1. Theorem 1 establishes LMI conditions for the
exponential estimates for the origin of system (1), these
conditions include results in [66, Theorem 1] are always
included when d =1 (system (1) with only one delay).
Moreover, conditions in Corollary 2 always include those for
linear systems in [4, Theorem 2], to see this set r = 1.

Remark 2. The numerical complexity of the LMI problems
in the above results can be approximated by log,, = (n3n,),
where 7, is the number of total LMI rows and n, is the
number of scalar decision variables [70]. For Theorem 1 we
have m=n(d+2)r* p+n(d+1) and n;=05n(n+1)
(1 +d) +2rn?; as for Theorem 2, n; = n(d + 2)r’p + n(d +
1) andny; = 0.5n(n+ 1) (1 +d) + 2rn* + nmrp (1 + d); as for
standard systems, Corollary 1 (stability) is n, = n(d + 2)7* +
n(d+1) and ny=0.5n(n+1)(1+d) +27n* Corollary 1
(stabilization) is 1, = n(d +2)7 +n(d + 1) and n; = 0.5n
(n+1)(1 +d) + 27n* + nm7 (1 + d); while Corollary 2 is
m=n(d+1)f+n(d+1)and n; =0.5n(n+ 1)(1 +d).

Results in Theorem 2 can be directly applied for real-
world setups; nevertheless, the LMIs might render controller
gains whose magnitude cannot be applied in practice. To
alleviate this issue as well as to avoid damages in the ac-
tuators, the following result provides conditions for
bounding the control input (23); they can be combined with
those of Theorem 2.

Theorem 3. Consider the delayed nonlinear controller given
in (23); then, this controller satisfies that |ul| < y, for any u > 0,
if the following inequalities hold:
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P, My,] T ") ¢ (0) --- ¢"(0)
, >0 (44) ¢(6) P, o - 0
M. Y 66 0 R, -~ 0 |>0, VOel[-7,0]
. : : . 0
e—zmth Nzww- (;5(9) 0 0 - Ry
, |s0 hequa...d), (45) (46)
thw %I

Proof. Observe that lul® = uTu with the delayed PDC (23)
yields

d T d
lull? = <wax(t) + Z FlpyoX (t = T,,)> <wax(t) + Z FlpoX (t = Th)>
h=1 h=1

d d
= x' (t)K\T;wwax(t) +2 z x (t)szthwwx (t - Th) + Z x' (t - Th)F£wahwwx (t - Th)
h=1 h=1
(47)

d
<2 <XT (t)Kz;wwax(t) + Z XT (t - Th)FwaFhwwx (t - Th))
h=1

d o
< 2<xT (DK o Ko (£) + Y. j X" (t + O)F;, FrwoX (t + 9)d9> <,

h=1" "Th

which is satisfied if the following holds: On the other hand, let us consider the following in-
S OKE 207K (8) equality on functional (14):

L0 g T (48)
+ ZJ X (t+ O)F 24 Fryox (t +60)d0< 1.
h=1" "Th

d
V(x)=x"(OP'x(t)+ ) IO X" (t + 0)e*Q,x (t + 6)d
L ) (49)

0 0
<¢" OP PO + Y J o7 (0)°Q, 9 ()0 <¢ (P} $(0) + Y J o7 (0)*°Q, 6 ()d0< 1.

h=1+""h h=1"""

Now, combining (48) and (49), it follows that

d
0<x” (DK 20 K yx () + Y JO Xt + O)FT, 20 Fpx (t + 6)d0

. . h=1 h
<x" (OP]'x(t)+ ) J X7 (t + 0)e*Qyx (t + 0)do

- 0” (50)
<" PO+ Y | ¢ OQ (010

h=17 "Th

0

d
<$TOPs+ Y [ OGN )@ P )@= 1,
h=1"""
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or equivalently

xT (P = K24 Ky )x (£)

0
-7,

d
£y j X7 (8 + 0)(£20Q — Fhyo2tt i ) (¢ + 6)d0>0,
h=1

(51)

0 d
j <rl —¢" (OP'$(60) - ) ¢T<9>X1Qh1X1¢<e>>de> 0.
T h=1

(52)
Thus, (51) is satisfied if
-1 T , -2
Pl - KW(&)ZAI/{ wa >0,

—2a, T -2 (53)
e th—Fhwa‘u Fhww>0’ hE{l,,d}

hold too. From the latter inequalities and using the Schur
complement together with congruence property with
block — diag[P,,I], conditions (44) and (45) follow with
Mww = waPII’ thw = FhwaII’ and Rh = PlQhPI’
he{l1,2,...,d}. Once again, employing the Schur com-
plement on (52) gives

T NO) 9O e 910 ]
$(6) P, 0 - 0
¢@O 0 P,QP - 0 >0, VOe[-1,0],
: : : ’ 0
L¢(6) 0 0 - P,QP,.
(54)
which  yields (46) after the substitution of

R, =P,QP,he{1,2,...,d}.

4. Examples

Next, a numerical example as well as the well-known
inverted pendulum on a car is employed in order to illustrate
the effectiveness of the proposed results. The LMI conditions
have been checked with the LMIToolbox [6] within
MATLAB 2109a.

4.1. Systems in Standard Form versus Descriptor Form.
The following numerical example illustrates the advantages
of the descriptor structure over standard state-space rep-
resentations. Firstly, it compares stability at the origin via the
LMIs in Theorem 1 and those in Corollary 2 by means of
their feasibility sets. Secondly, a delayed nonlinear control
law is designed via Theorem 2.

Consider a nonlinear system with two delays (d = 2) in
the descriptor form (1):

E(x)x(t) = A(x)x (1) + A, (x)x (t-1,)
+A, (x)x(t-1,) + Bu, (55)
x(0)=¢(0), 0¢[-1,0]

Mathematical Problems in Engineering

where the time delays are 7, = 0.1 y 7, = 0.3 = 7, and ma-
trices are as follows:

[ 0.8 0.1- o
E(x) = "
L 0.08 0.97
i —-0.5 cos x, — 7.5 -1
A X) = >
() 0.083(7x; — 7 sin x,)
+a -55
L X
[0 (56)
B=| |
| 1
[9.5+b 14
A = ,
n (%) ¢ _0067(155x 10 sin x,)
L X
[cos x, —4.2 —6.2
Arz(x) = .
L 3.6 5.1

Descriptor form: following the sector nonlinearity ap-
proach, the following nonlinear terms have been identified:
=02+ e o], z, =cos x, € [-1,1], and
z, = (sin(x,)/x,) € [-0.2,1]; their bounds have been cal-
culated in the region Q, = R?. Thus the vertex matrices are

T 7 -1
A, = ,
[05+a -5.5
o7 -1
A, = ,
|-0.2+a =55
T8 -1
Ay = ,
10.5+a =5.5
-8 -1
A, = ,
|-0.2+a =55
[9.4+b 142
Arll >
| 66 -102
(9.4+b 14.2
A bl
" —66 -9.4
[9.4+b 142
A = 5
o Z66 102
(9.4+b 14.2
AT14 >
| 66 -9.4
(52 6.2
A = >
36 51
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Commonly, systems of the form (55) are analyzed in the

(252 —6.2] following standard form:
A = > . ~ ~ ~ ~
227 36 5.1 | %= A)x () + A, (0)x(t—1) + A (0x(t - 7,) + B(x)u,
[ 3.2 -6.2]
AT 3= > (58)
: 3.6 5.1
- - where
-3.2 -6.2
Ay = > (57)
#7136 5.1 |
0
By =B, =B; =B, = 1l
[ 0.8 0.1
E = ,
[ 0.08 0.97
[ 0.8 -0.5
E, = .
[ 0.08 0.97
0.97 _0.1+5 25 —-0.5 cos x, = 7.5 -1
2 x5 +
- - x; +1 2
Ax)=E ' (0)A(x) =—2—— ,
0.768x> + 0.816 0083 (7x, ~7sinx)
a 5.
-0.08 0.8 x,
[ 097 -0.1 +ﬂ- 95+b
2 X5 +
~ - x5 +1 2
A, (x)=E (A, (x)=—2—— ,
0.768x; +0.816 oo _0067(155x, ~ 10 sin x,)
[ -0.08 0.8 | '
(59)
[ 097 01+
5 : e +5x§ + 5 |[€os x2 -42 -6.2
~ -1 X, t 1
A, () =E' (04, ()= —2"~ ,
0.768x; + 0.816
3.6 5.1
L -0.08 0.8 J
097 -0.1+
~ X241 5x§ +5 0
B(x)=E '(x)B= e
0.768x; + 0.816 .

-0.08 0.8
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In this case, four nonlinear terms are defined as follows:
zy =cos x, € [-1,1], z, =sin x;/x; € [-0.2,1], z3 = (x3
+1)7' € [0,1], and z, = (x}+1)/(0.768x2 + 0.816) €
[1.2255,1.3021]; their bounds hold within Q. Some of the
vertex matrices are given below:

Mathematical Problems in Engineering

04
03
0.2 |

[-8.3824 —0.5147
Al = >
L 1.1765 —5.2942
[-10.1694 -0.5469
Ay = >
L 1.3542 -5.6251
[-9.6324 —4.5589
AIS >
L 0.5882 —5.2942
[11.9829 18.13
A111 >
| —7.3922 -11.3922
[ 12.732  19.263 T
7,10 >
L —7.8543 —-12.104 |
[ 7.13 11.12 7
T115 >
L —7.3922 -10.608 ]
(60)
[—6.6226 —7.99527
A121 ’
L 4.0392 5.6079 |
[—4.5105 —8.4949 7
T210 >
L 4.0834 5.9584 |
[—1.5981 —-4.24517
7,15 >
L 3.8432  5.6079 |
[—0.122557
Bl >
L 0.9804 |
[—0.13021 7
BIO >
L 1.0417 |
[0.61275
By .
L 0.9804

Note that for this example, we have the following:

-0.1 ¢
02}

b
j=}
000 0O

O ® @O

O® @ & & ® O

O® @ @ &

R ] O

O ® e

-0.3
-0.1

e L
o

0.6

0.7

o Theorem 1
x Corollary 1
+ Corollary 2

FI1GURE 1: Feasibility sets for Theorem 1, Corollary 1, and Corollary
2 are applied to the example given in Subsection 4.1.

(i) With respect to its exact convex representation, the
descriptor one has (E, A, A, B),k=1,2i=
1,2,3,4, ie., 8 vertexes, while the standard has
(A, A ,B),i=1,2,...,2% ie, 16 vertexes. Addi-
tionall);, the descriptor keeps a constant matrix B;
thus, descriptor form requires less computational
resources [64]. Indeed, in this case withn = 2, m = 1,
r=4, p=2,7=16, and d = 2, the computational
complexity using Theorem 1 is 7.2567 with 35 LMIs,
using Corollary 1 is 9.7228 with 35 LMIs, and using
Corollary 2 is 4.8713 with 19 LMIs.

(ii) With respect to feasibility sets for Theorem 1, and
Corollaries 1 and 2, when u =0 and parameter
values as a € [0,0.8], b€ [-0.2,0.5] for convex
representations of systems (55) and (58), respec-
tively. In Figure 1, the regions marked with a circle
(o) correspond to the feasibility sets using Theorem
1, while the regions marked by (x) and (+) are the
feasibility sets obtained using Corollaries 1 and 2,
respectively. It can be seen that by using the de-
scriptor form the feasibility set is larger, ie., the
descriptor approach provides more relaxed results
than the standard approach.

Thus, results given in Theorem 1 improve the previously
classic results found in the literature.

On the other hand, Figure 2 shows that the system re-
sponse (55) does not converge to the trivial equilibrium
point when a = -2.5,b=6.2, u =0, 7, = 0.1, 7, = 0.3, and
$0)=[-5 5], 6 [-03,0].

Next, a delayed nonlinear controller of the form (23) is
given by

2
u=Kyx(t)+ Y Fp,x(t-1,), (61)
h=1

which is employed to stabilize this system. To this end, LMI
conditions in Theorem 2 with an exponential decay « = 0.5
together with those from in Theorem 3 for u < 48 = y render
feasible solution providing the following values:
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[0.20603 0.19458 6 T T T
1 . . .

P1 = > | R R R R R R . . R R d
| 0.19458 0.21717 e
[3.5866 3.3247 7 "

Ql = > %

[ 3.3247 3.1135 ] <@
[1.0972 1.215 7

Q2 = >
[ 1.215 1.4539 | " . . .

K, =[-11.0453 -13.9169], 0 5 10 15 20

Time (s)

Fy, =[-11.7060 —6.5843], -

——— X

F,y, =[2.5606 2.2870],
2 FIGURE 2: System response of the example given in Subsection 4.1

K, = [_7.3722 ~12.1755 ]) (descriptor form) when a=-2.5, b=6.2, and u=0.

Fi, =[-13.9524 -8.5677],
e Effectively, system (55) is stabilized at the origin as

Fy, =[3.2894 3.1315], shown in Figure 3. The evolution in time of the system
state is shown in Figure 3(a), while the guaranteed ex-
K, =[-10.4266 -13.6762], ponential decay in the system response is depicted in

Figure 3(b).
Fp =[-10.9789 —6.6378],

Fay =[22735 1.9269], 4.2.  Nonlinear Controller versus Delayed Nonlinear

(62)  Controller. The following example is to illustrate the ad-
vantages of the use of artificial delays in controllers when
there is the presence of noise, as mentioned in the intro-
duction and its corroboration by various results found in the

K,, =[-6.7172 -11.7399],

Fpy, =[-13.2816 -8.7126],

literature.
F,,, =[3.0448 2.8193 |, .
m = | ] Consider the system known as the car-pendulum, whose
K, =[-9.8536 —13.3457], is)cheme is shown in Figure 4, a mathematical model is given
Y

Fi5 =[-9.7933 —4.8426],

M, +M, -M,lcos 07[%(¢)
Fy;, =[-0.2040 1.5048],

~M,lcos @ J+M,I* 18
K;, =[-6.7529 -11.8054], ) (63)
X + M,l0 sin 6 _F‘|

Fi5, =[-13.8964 -8.4844], + = |
y0-M,glsino] LO

F,5, =[0.6296 3.0749],

For illustrative purposes, a delayed measurement
7>0 in the positions of the car and pendulum are in-
tentionally added. Also, we define x; = X, x, = X, x5 =0,
x4 =0, and u=F. Thus, for g=9.81m/s?, [ =0.304m,
M, =02kg, M, =13282kg, J= (M,*)/3, c=0.001,
y =0.001, and 7 = 0.05, the system (63) can be rewritten

K,y =[-5.7661 ~11.1366], “

Ky =[-9.0894 -12.9706 ],
Fiyy =[-9.2846 -5.0947],

Fyy =[-0.3599 1.2441],

Fip = [—13.6875 —9.0667 ], E(x)x(t) = A(x)x () + A, (x)x(t — 7) + Bu(1). (64)

F,,, =[0.5619 2.9637]. where
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5 80
\
)
w ~“\
L o
=0 —
&
_5 . : ;
0 5 10 15 20 10 15 20
Time (s) Time (s)
— — Veyfepe ¢l
o == |k 9l

()

(®)

FIGURE 3: System response of the example given in Section 4.1 (descriptor form) using delayed controller (61). (a) Time evolution of the
closed-loop system. (b) Guaranteed exponential decay a=0.5 for the closed-loop system.

@)

FIGURE 4: Schematic of the inverted pendulum system.

M1 0 0
0 1.5482

E(x) =
0 0 1
L0 —0.0669 cos x5 0
0 0 0 07
010 0 0

A (x) = ,
0000
L 0 0 0.2 0

0

0

0 —0.0669 cos x3

0.0271

A(x) =

-0.001

0

0

0.6561 sin x;

X3

0
—0.0669x, sin x5

1

—-0.001

(65)
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Considering the region Q, = {x: |x;| <2m, |x,| <3 m/s,
|x;| <m/3rad, |x,| <4rad/s}, the nonconstant terms and
their bounds are (; = cos x5 € [0.5,1], z; = x,sin x5 €
[-0.4238,0.4238], and z, = sin x3/x5 € [0.827,1]; the ver-
tex matrices are

ro 1.0 0 0
0 -0.001 0 —-0.0258
A =
0 0 0 1.0
LO 0 -0.4933 -0.001
ro 1 0 0
0 -0.001 0 —-0.025
A2 = >
0 0 0 1
LO 0 —0.596 —-0.001
ro 1 0 0
0 -0.001 0 0.0258
A = ,
0 0 0 1
LO 0 —0.4933 -0.001 J
ro 1 0 0
0 —-0.001 0 0.0258
A, = ,
0 0 0 1
LO 0 —0.5964 —-0.001 J
(66)
00 0 O
0.1 0 0 O
Apn=Ap=As=4Ay= 00 0 0>
0 0020
0
B B B B !
1 =02 = D3 =04 = ol
0
M1 0 0 0
0 1.5282 0 -0.0304
E = S
0 0 1 0
LO —0.0304 0 0.0370
1.0 0 0 0
0 1.5482 0 -0.0608
E, = .
0 0 1 0
L 0 —-0.0608 0 0.0370

As mentioned above, with the purpose of showing the
advantages of using a controller with delayed action in the
presence of noise; for this example, two controllers are used:
a nonlinear controller of the following form is

u =K, x(1), (67)
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and a delayed nonlinear controller of the form (23) is given
by
u = Kox () + Fy,x(t —1). (68)

To illustrate the effectiveness of Theorem 3, the con-
trollers (68) are conditioned to satisfy that [u(¢)]| < 12. For
the controller (67), the same condition is requested, for
which Theorem 3 can be used, after some simple adjust-
ments when considering free-delays controller. For the
controller (67), the corresponding LMI conditions in The-
orem 2 with an exponential decay a =0.003 are found
feasible with the following values:

©0.02024  0.04411 0.1428 —0.005929 ]
0.04411  0.1874 0.6166 —0.02698

P, = ,
0.1428  0.6166 6.036 0.1574

[ -0.005929 -0.02698 0.1574 0.2537 |

0.0077 0.0225 0.1455 0.00005

0.02258 0.09603 0.4836 0.0042
"] 01455 04836 7.879 0.0778 |

0.00005 0.0042 0.0778 0.1026

K, =[-0.3685 —1.71 -8.965 —3.468],
(69)
K, =[-0.4382 -1.979 -8.867 -2.879],

K, =[-0.3567 -1.626 —5.913 -3.452],

K,, =[-0.4368 -1.95 —6.884 -2.852],

Ky =[-0.3619 -1.668 —8.823 -3.516],

K;, =[-0.435 -1.955 -8.748 —2.915],

K, =[-0.3483 -1.573 —5.728 -3.505],

K, =[-0.4333 -1.924 -6.765 —2.889].

On the other hand, for the delayed controller (68), LMI
conditions in Theorem 2 with an exponential decay «a =
0.003 are also feasible with the following values:
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0.0062 0.0422 0.1531

0.0226 0.1531 2.366

L —0.0005 -0.0030 0.0745

Q1=

K,, =[-0.1389 -0.9876 —4.926

[ 0.0020 0.0062 0.02261 -0.00057

—-0.003

0.07454

0.1213 |

[0.0003 0.0016 0.0134 0.0002
0.0016 0.0114 0.0789 0.002
0.0134 0.0789 2.284 0.031
L0.0002 0.002 0.031 0.0418

-2.323],

F,, =[-0.092 —0.0006 —5.691 0.0014 ],

K, =[—-0.1457 -0.99 -4.341 -2.052],

F,, =[-0.0867 —0.0001 —3.54 0.0004],

K, =[-0.1368 —0.9425 -2.012

-2.263],

F,, =[-0.0932 -0.001 —5.956 0.0011 ],

K,, =[-0.1479 -0.9792 -2.502
F,, =[-0.0870 —0.0001 —3.634
K5, =[-0.1394 -0.9793 -4.867
F5 =[-0.0928 —0.0008 —5.829
K, =[-0.1459 -0.9801 -4.278
Fy, =[-0.0870 —0.0001 —3.628

Ky =[-0.1373 —0.9317 -1.924

-2.001],
0.0004 ],
-2.345],
0.0017],
-2.078],
0.0004 ],

-2.284],

F, =[-0.0944 —0.00135 —6.136 0.0019],

Ky, =[—0.1485 -0.9693 —2.432

-2.025],

F,, =[-0.0873 —0.0002 —3.74 0.0005 ].

(70)
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u (volts)

0 5 10 15 20 25 30
Time (s)

—— Kyx ()
Ky (t) + Fyox (t=17)

FiGcure 5: Time evolution of control laws (67) and (68).

80 ,’ e P S e
= ) T ‘ Zpom in
& ; 0.06
B R R i Sl I
j ."1 IF 1 Y
BV
DY TR Y <3 S A A
i 20 225 25
0 5 10 15 20 25 30
Time (s)
— X X3
——m Xy B

ol
|1
i
Sl 20 22.5 .25
0 5 10 15 20 25 30
Time (s)
—_ X3
——— X c—— Xy

FIGURE 6: System response of the example given in Section 4.2.
Time evolution of the closed-loop system with (a) (28) and (b) (68).

To simulate the noise present in the sensors, a random
signal with variance 0.001 and a step 0.001 is introduced at
the system input. In Figure 5, the applied control signals are
plotted, and it can be seen that the control signal presents
less noisy when using the delayed controller than the other.
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In Figure 6, the evolution in time of the state of the
system (64), with ¢(6) = [0.5 0 7/3 0]", 8 € [-0.05,0],
under the control laws (67) and (68), is shown. It can be seen
that the overshoot is greater when using a controller without
a delayed action.

Remark 3. Systems of the form (63) can be stabilized by a
free-delay controller of the form (67). However, using
delayed controllers of the form (68) or (23) to stabilize this
system class may be a better option when systems have
inherent noise.

5. Conclusions

In this paper, analysis and design using a convex approach
for nonlinear descriptor systems with multiple delays have
been presented. This analysis allows synthesizing delayed
nonlinear controllers to ensure convergence of the system
trajectories with a guaranteed exponential decay; moreover,
conditions for bounding the control input avoid possible
saturation in the actuators have been provided. It also has
been shown that keeping the descriptor form increases the
possibility of obtaining feasibility in the LMI conditions,
unlike the use of standard forms. Also, it is observed that
including deliberately delays in the controller can reduce
noise in the control signal, thus avoiding mechanical wear of
the actuators. As future work, an extension of the proposed
results in nonlinear descriptor systems with multiple time-
varying delays is in course, since it will allow the synthesis of
controllers for a larger class of systems.
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