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When fractional calculus operators and models are implemented rationally, there exist some problems such as low approximation
accuracy of rational approximation function, inability to specify arbitrary approximation frequency band, or poor robustness.
Based on the error criterion of the least squares method, a quadratic programming method based on the frequency-domain error
is proposed. In this method, the frequency-domain error minimization between the fractional operator s±r and its rational
approximation function is transformed into a quadratic programming problem.,e results show that the construction method of
the optimal rational approximation function of fractional calculus operator is effective, and the optimal rational approximation
function constructed can effectively approximate the fractional calculus operator and model for the specified approximation
frequency band.

1. Introduction

Fractional calculus is a mathematical problem to study in-
tegral and differential of arbitrary order. Fractional calculus
has many applications, such as physical system modeling
[1–3], control theory [4–6], and so on. In control theory, as
fractional calculus is more and more applied to the design
and analysis of controllers and filters, the research on ap-
proximation methods of fractional order systems or oper-
ator models has attracted more and more attention [7–9].
However, compared with the integer order system, fractional
order system is often more complex, and its essence is
infinite dimension system. Its characteristic equation is a
polynomial with complex variable fractional order index, so
it is difficult to find the analytic solution. ,erefore, the
fractional order system or operator model is usually ap-
proximated by the way of direct approximation in z-domain
or by transforming the fractional system into rational
transfer function.

,e direct approximation method [10] is to use a
function of finite order to approximate fractional operators
in z-domain, and different generating functions are usually

applied to different discrete operators, for example, power
series expansion (PSE) of Euler operator and continuous
fractional expansion (CFE) of Tustin operator. It should be
noted that when the CFE method is used to discretize the
closed-loop continuous fractional transfer function, the
model may be unstable. Some operators, such as Al-Alaoui
operator [11], are obtained by trapezoidal interpolation and
rectangular integration rules. In some cases, the interpo-
lation and inversion process may lead to unstable fractional
order models. ,e indirect discretization of fractional
calculus operator includes two steps: approximation of
transfer function in s domain and discretization of ap-
proximate function. French scholar Professor Oustaloup
and his colleagues proposed filter of fractional order op-
erator [12]. ,is kind of filter allows users to choose the
frequency band and order of interest and use the integer
order transfer function model to approximate the frac-
tional order calculus operator. For those irrational systems
which cannot be described by the standard form of frac-
tional transfer functions, the fractional calculus operators
can be discretized indirectly by frequency response fitting
or Charef filter [13]. ,e fractional order system can also be
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approximated by the differential evolution method, and
many scholars participated in the research. Among them,
the optimization performance of differential evolution
algorithm depends on the control parameters and mutation
strategy to a large extent [14].

In this paper, for the first time, we use the minimi-
zation of the frequency error between the calculus op-
erator and the rational approximation function to
approximate the fractional calculus operator. Firstly, the
frequency range to be approximated is selected, and the
approximating frequency band is equally divided into n
equal intervals. ,e equal points are called characteristic
points. On one characteristic point, the difference be-
tween the frequency characteristic function of the ideal
calculus operator and the approximating function is
solved. ,en, the sum of the frequency differences at n+1
points is added. ,e expression of the sum only contains
quadratic and first-order terms. ,e expression of the sum
is optimized by quadratic programming. ,en, the co-
efficients of the rational expression of the approximation
function are obtained, and the optimal approximation
expression is obtained. ,is quadratic programming
problem can be solved by quadprog command in MAT-
LAB. Compared with the previous methods, the method
proposed in this paper has obvious improvement in ap-
proximation accuracy, precision, and algorithm encap-
sulation and can arbitrarily select the approximation
frequency band, which makes the algorithm highly flex-
ible and has great advantages.

2. Basic Knowledge of Fractional Calculus

2.1.Definition of Fractional Calculus. ,e general expression
of fractional calculus is [15]

D
α
t f(t) �

dα

dt
α f(t), Re(α)> 0,

f(t), Re(α) � 0,


t

0
f(τ)(dτ)

− α
, Re(α)< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Dα
t is a fractional differential or integral operator, 0

and T are the upper and lower limits (the default initial
condition is 0) of calculus, and α can be a real number or a
complex number.

Different mathematicians give different definitions of
fractional calculus. ,e three definitions of fractional cal-
culus which are widely used in control field include
Grünwald–Letnikov (GL), Riemann–Liouville (RL), and
Caputo.

2.1.1. Grünwald–Letnikov (GL) Definition. Suppose that the
function f(t) has n+1 derivative in the interval [0, t]. For
any real number (the lower limit of integration at the initial
time of 0 is 0), the α-order calculus of function f(t) is
defined as

D
α
t f(t) � lim

h⟶0
h

− α


[t/h]

j�0
(− 1)

j
α

j
 f(t − jh), (2)

where [·] represents the number of approximate recurrence
terms, in which

α

j

⎛⎝ ⎞⎠ �
α(α + 1) . . . (α + j − 1)

j!
�

α!

j!(α − j)!
, (3)

is the coefficient of recursive function.

2.1.2. Riemann–Liouville (RL) Definition. RL definition is
based on the definition of GL by simplifying the calculation
process. For any real number n − 1< α< n, n ∈ N, the RL
fractional order is defined as

D
α
t f(t) �

1
Γ(n − α)

d
dt

 

n


t

0

f(τ)

(t − τ)
α− n+1 dτ, (4)

where Γ(·) is a gamma function.
RL fractional integral is defined as

I
α
t f(t) �

1
Γ(− α)


t

0

1
(t − τ)

α− n+1 dτ, t> 0, α ∈ R
+
. (5)

2.1.3. Caputo Definition of Fractional Calculus. Caputo
fractional calculus is defined as

D
α
t �

1
Γ(m − α)


t

0

f
(m)

(τ)

(t − τ)
α− m+1 dτ. (6)

Among them, m − 1< α<m. It can be seen from
equation (5) that Caputo definition requires the first
m-order derivative of the function to be integrable.

3. Construction of Frequency-Domain
Error Function

,e principle diagram of approximation of fractional order
calculus operator by using the frequency-domain error
minimization principle [16] is shown in Figure 1. Among
them, r is the order of the ideal fractional calculus operator,
G(s) represents the best approximate rational expression of
(jω)r, and e(jω) is the error between rational approxi-
mation function G(jω) and ideal fractional calculus oper-
ator (jω)r in frequency domain.Φ[·] means to use some
optimization algorithm for error e(jω), such as genetic
algorithm, linear programming, model reduction method,
and so on. Φ[e(t)] represents the optimized frequency-
domain error function.,e parameter of G(s) is obtained by
calculating the partial derivative of each parameter of
Φ[e(t)]. Different from other methods, in this paper, G(s)

(fractional transfer function model to be optimized) is
changed into the frequency-domain model of fractional
order calculus operator (jω)r(sr|s�jω), reducing the time and
complexity of the program.

For the fractional calculus operator sr to be approxi-
mated, it can be expanded into the following form:
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s
r

� (jω)
r

� ωr
e

j
π
2

r
⎛⎝ ⎞⎠ � ωr cos

π
2

r + j sin
π
2

r 

� ωr cos
π
2

r + j sin
π
2

r.

(7)

After optimization by some optimization algorithm, the
rational approximation function G(jω) is obtained. Its form
is shown in the following formula:

G(jω) �
dm(jω)

m
+ dm− 1(jω)

m− 1
+ · · · + d1(jω) + d0

cn(jω)
n

+ cn− 1(jω)
n− 1

+ · · · + c1(jω) + c0
�

N(ω)

D(ω)

(8)

�
Re(ω) + jIm(ω)

Re′(ω) + jIm′(ω)
, (9)

where ci, di(i � 1, 2, 3 . . .) are the coefficient parameters of
approximation expression G(jω). Re and Im represent the
real and imaginary parts of the expressions. Within the
specified approximation frequency band, the equidistant
frequency sampling points are taken as ωi(i � 1, 2, 3 . . .).
Suppose that l + 1 characteristic frequency points are se-
lected in the approximation frequency range. Among them,

Δωi �
ωh − ωb

l
(1≤ i≤ l + 1), (10)

and at these points, the transfer function is approximated:

G jωi(  �
Re ωi(  + jIm ωi( 

Re′ ωi(  + jIm′ ωi( 
. (11)

For each frequency point ωi:

s
r
i � ωr

i cos
π
2

r + jωr
i sin

π
2

r

≈
Re ωi(  + jIm ωi( 

Re’ ωi(  + jIm’ ωi( 
,

(12)

and at each characteristic frequency point, the frequency
error is εi. ,en,

εi � ωr
i cos

π
2

r + jωr
i sin

π
2

r  · Re′ ωi(  + jIm′ ωi( ( 

− Re ωi(  − jIm ωi( 

� ωr
i cos

π
2

rRe′ ωi(  − ωr
i sin

π
2

rIm′ ωi(  − Re ωi( 

+ j ωr
i cos

π
2

rIm′ ωi(  + ωr
i sin

π
2

rRe′ ωi(  − Im ωi(  ,

(13)

and b � 1≤ i≤ l + 1 � h.

4. Transformation of Quadratic Programming

To solve the problem of minimizing the frequency-domain
error, Levy proposed a method [16]. In this method, an
original transfer function model of a fractional order linear

time invariant continuous system is considered, as shown in
the following equation:

G(s) �
b0s

β0 + b1s
β1 + b2s

β2 + · · · + bms
βm

a0s
α0 + a1s

α1 + a2s
α2 + · · · + ams

αn
, (14)

and the frequency-domain error is

ε(ω) � G(jω) −
N(ω)

D(ω)
. (15)

Let

E(ω) � ε(ω)D(ω) � G(jω)D(jω) − N(ω)

� [Re(G) + jIm(G)] Re′(ω) + jIm′(ω)( 

− (Re(ω) + jIm(ω))

� Re(G)Re′(ω) − Re(ω) + j Re(G)Im′(ω)(

+ Im(G)Re′(ω) − Im(ω),

(16)

|E(ω)|
2

� [Re(G)σ − Im(G)τ − α]
2

+[Re(G)τ + Im(G)σ − β]
2
.

(17)

In order to get the minimum value of the frequency-
domain error, |E(ω)|2 needs to find the partial derivatives of
parameters ci and di, respectively. Let the partial derivative
be zero and solve the system of equations; we can get the
minimum value of |E(ω)|2.

For the above traditional optimization methods, it is
necessary to calculate the partial derivative of each pa-
rameter and solve large-scale equations, which is very
cumbersome and takes a long time to solve. Moreover, the
programming is cumbersome, which is not conducive to the
algorithm encapsulation. In order to overcome these
shortcomings, an error-based quadratic programming
method is proposed.

For equation (13), take another treatment:

εi



2

� ωr
i cos

π
2

rRe′ ωi(  − ωr
i sin

π
2

rIm′ ωi(  − Re ωi(  
2

+ ωr
i cos

π
2

rIm′ ωi(  + ωr
i sin

π
2

rRe′ ωi(  − Im ωi(  
2
,

(18)

and then

εi



2

� ω2r
i Re′2 ωi(  + Im′2 ωi(   + Re2 ωi(  + Im2 ωi( 

+ 2ωr
i sin

π
2

r Re ωi( Im′ ωi(  − Im ωi( Re′ ωi( ( 

− 2ωr
i cos

π
2

r Re ωi( Re′ ωi(  + Im ωi( Im′ ωi( ( .

(19)

Let X � [c0c1 . . . c2Kd0d1 . . . d2N]T, and X≠ 0
→
, where

Mathematical Problems in Engineering 3



Re′ ωi(  � 
K

m�0
(− 1)

m
c2mω

2m
i , (20)

Im′ ωi(  � 
K

m�1
(− 1)

m− 1
c2m− 1ω

2m− 1
i , (21)

Re ωi(  � 
N

m�0
(− 1)

m
d2mω

2m
i , (22)

Im ωi(  � 
N

m�0
(− 1)

m− 1
d2m− 1ω

2m− 1
i , (23)

K, N � 0, 1, 2 . . . . . . . (24)

Equation (19) is the quadratic form of the frequency-
domain error obtained. ,e sum of the squares of the errors
of each frequency sampling point in the approximate fre-
quency band is ε; then,

ε � 
l+1

i�1
εi



2
, (25)

and (19)–(23) and (25) can be arranged into the following
matrix form:

ε � X
TQX,

Q �

0 0 1 0 . . . 0

⋮ ⋮ 0 ω1 . . . ωl+1

0 0 − ω2
1 0 . . . 0

1 0 0 − ω3
1 . . . − ω3

l+1

0 ω1 ω4
1 0 . . . 0

− ω2
1 0 ⋮ ⋮ . . . ⋮

0 − ω3
1 (− 1)

K ω1( 
2K 0 . . . 0

ω4
1 0 0 0 . . . 0

⋮ ⋮ ⋮ ⋮ . . . ⋮

(− 1)
N ω1( 

2N 0 0 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

A1 · · · 0

⋮ ⋱ ⋮

0 · · · Al+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

0 0 1 0 . . . 0

⋮ ⋮ 0 ω1 . . . ωl+1

0 0 − ω2
1 0 . . . 0

1 0 0 − ω3
1 . . . − ω3

l+1

0 ω1 ω4
1 0 . . . 0

− ω2
1 0 ⋮ ⋮ . . . ⋮

0 − ω3
1 (− 1)K ω1( 

2K 0 . . . 0

ω4
1 0 0 0 . . . 0

⋮ ⋮ ⋮ ⋮ . . . ⋮

(− 1)N ω1( 
2N 0 0 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

� CACT
,

Ai �

1 0 − ωr
i cos

π
2

r ωr
i sin

π
2

r

0 1 − ωr
i sin

π
2

r − ωr
i cos

π
2

r

− ωr
i cos

π
2

r − ωr
i sin

π
2

r ω2r
i 0

ωr
i sin

π
2

r − ωr
i cos

π
2

r 0 ω2r
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1≤ i≤ l + 1).

(26)
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Obviously, the Q-matrix is only related to the approx-
imation frequency segment, the order of the approximated
fractional calculus operator, the number of sampling points,
the denominator of the approximation function, and the
order of the numerator.

For fractional calculus operator f � s±r, 0< r< 1, there is
an optimal rational approximation function in s domain
because under the premise of the same calculation amount
and calculation time, the approximation expression obtained
by a rational function with the same order of numerator and
denominator is much better than that obtained by polynomial
approximation method. When constructing the rational
approximation expression (i.e., transfer function), m single
negative real zeros and n single negative real poles are used,
and n − m � 0, 1{ }; thus, better approximation properties of
fractional calculus operators can be obtained [17]. In this
paper, the simulation example part adopts the case that the
denominator of the approximation transfer function is the
same as the numerator order and is 6.

,us, the approximation problem of fractional calculus
operator is transformed into the quadratic programming
problem of frequency error. For linear quadratic pro-
gramming problems [18]:

min

x

1
2
x

T
Qx + f

T
x⟶ yields

A · x≤ b,

Aeq · x � beq,

lb≤x≤ ub,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)

where Q is a symmetric matrix, A · x≤ b is a linear constraint
condition, Aeq · x � beq is equality constraint, and lb≤ x≤ ub

is independent variable definition domain.

x � quadprog H, f, A, b, Aeq, beq, lb, ub, x0, options .

(28)

,e command in formula (28) can be used to solve the
problem.

5. Algorithm Sensitivity Analysis

Sensitivity analysis refers to the sensitivity analysis of the
system or surrounding things due to changes in the sur-
rounding conditions. If the market conditions change, the
value will change. ,is paper mainly discusses the influence
of the parameter vector X � [c0c1 . . . c2Kd0d1 . . . d2N]T on
the approximation effect.

Parameters such as the approximation frequency seg-
ment, the order of the approximated fractional calculus
operator, the number of sampling points, the denominator
of the approximation function, and the order of the nu-
merator are set in advance, so they are not sensitive to the
approximation algorithm. ,e only sensitive quantity is X.
Next, we analyze the sensitivity caused by the change of
parameters in the X vector.

Firstly, the value of nonsensitive quantity is determined:
assuming that the frequency band of approximation is
[1, 100] rad/s, the value of c is 0.5, the frequency sample
point is taken as 40, and the denominator of the approxi-
mation transfer function is the same as the numerator order
and is 6. From the previous analysis, the fitting effect of this
method in the initial part of the approximation frequency
band is not ideal, so the sensitivity analysis of the initial
frequency band is carried out.

Approximation function is

G1 �
0.05049s

6
+ 20.03s

5
+ 1663s

4
+ 33590s

3
+ 100000s

2
+ 0.001s + 0.001

0.001s
6

+ 1.269s
5

+ 217.1s
4

+ 9023s
3

+ 79840s
2

+ 36930s + 100000
. (29)

At the initial approximation frequency band, the rational
approximation function can be reduced to

G1′(s) �
33590s

3
+ 100000s

2

79840s
2

+ 36930s + 100000
. (30)

,emain parameters that affect the system (the quantity
that determines the sensitivity) are c0, c1, c2, d2, d3.

When c0, c1, c2, d2, d3 increases or decreases by 10%
alone, the difference between the approximation phase
angle generated by the rational approximation function of
the system and the ideal phase angle is shown in Tables 1
and 2.

Investigate the sensitivity index when each parameter
changes; the following can be obtained:

δ �
α − α′
± 10% · α′




. (31)

,erefore, we can derive the sensitivity when a single
weight parameter changes, as shown in Table 3.

It can be seen from Table 3 that when the parameters that
affect the sensitivity of the algorithm increase by 10%, the
sensitivity of parameter d3 is the lowest; the sensitivity of
parameter d2 is the highest; when the parameters that affect
the sensitivity of the algorithm decrease by 10%, the

r

G^( jω)

( jω)r

e( jω)
– Ф[•]

Ф[e( jω)]

Figure 1: Schematic diagram of approximation of fractional cal-
culus operator by frequency-domain error minimization principle.
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sensitivity of parameter d2 is the lowest and the sensitivity of
parameter d3 is the highest.

6. Algorithm Complexity Analysis

6.1. Time Complexity. ,e time complexity of the proposed
algorithm is dominated by two loop statements, which are

for i� 1:n
A(:,:,i)� [0 0 1 0; 0 0 0Omega(i); 0 0 -Omega(i)̂2 0; 0 0 0
-Omega(i)̂3; 0 0Omega(i)̂4 0; 0 0 0Omega(i)̂5; 0 0
-Omega(i)̂6 0; 1 0 0 0; 0Omega(i) 0 0; -Omega(i)̂2 0 0 0;
0 -Omega(i)̂3 0 0; Omega(i)̂4 0 0 0; 0Omega(i)̂5 0 0;
-Omega(i)̂6 0 0 0];
end
and
for i� 1:n
C(:,:,i)� [1 0 -Omega(i)̂r∗cos(pi∗r/2) Omega(i)̂
r∗sin(pi∗r/2); 0 1 -Omega(i)̂r∗sin(pi∗r/2) -Omega(i)̂
r∗cos(pi∗r/2); -Omega(i)̂r∗cos(pi∗r/2) -Omega(i)̂
r∗sin(pi∗r/2) Omega(i)̂(2∗r) 0; Omega(i)̂r∗sin(pi∗r/2)
-Omega(i)̂r∗cos(pi∗r/2) 0Omega(i)̂(2∗r)];
end

,e number of execution steps of the two loop state-
ments is n and n, respectively, and the remaining assignment

and execution statements of the algorithm are 15 sentences.
,erefore, the total number of execution steps of the al-
gorithm is 2n + 15. ,erefore, the complexity of the pro-
posed algorithm is O(n).

6.2. Spatial Complexity. ,is algorithm does not use re-
cursive algorithm, and the number of temporary variables in
the algorithm has nothing to do with the problem size n, so
the space complexity is O(1).

7. Simulation Experiment and Result Analysis

7.1. Pure FractionalDifferentialOperators. ,e expression of
fractional differential operator is G(s) � sc(0< c< 1). In
engineering, the Oustaloup filter is often used to approxi-
mate the fractional calculus operator in a given frequency
band, assuming that the frequency range of interest is
(ωb,ωh); then, a set of broken lines can be used to ap-
proximate the linear characteristics of fractional calculus.
Based on this idea, French scholar Professor Oustaloup [12]
put forward the design method of CRONE filter. All these
broken lines are generated alternately by zeros and poles of
integer order so that the slope of the amplitude frequency
characteristic asymptote changes alternately between 0 dB/
dec and − 20 dB/dec, and the frequency-domain response
itself will be very close to an oblique line.

,e standard form of Oustaloup filter is shown in for-
mula (29):

G(s) � K 
N

k�1

s + ωk
′

s + ωk

, (32)

where k� 1,2, . . ., N, and zeros ωk
′, poles ωk, and gain K can

be calculated as follows:

ωk
′ � ωbω

(2k− 1− c)/N
u , (33)

ωk � ωbω
(2k− 1+c)/N
u , (34)

K � ωc

h, (35)

ωu �

���ωh

ωb



, (36)

where ωu is called unit gain frequency or transition fre-
quency. Assuming that the frequency band of approxima-
tion is [10, 100] rad/s, the value of c is 0.5, and the number of
iterations is 5; then, using the Oustaloup filter method [12],
the approximation function can be obtained as follows:

GOustaloup(s) �
10s

5
+ 1726s

4
+ 107800s

3
+ 3039000s

2
+ 38650000s + 177800000

s
5

+ 217.4s
4

+ 17090s
3

+ 606300s
2

+ 9709000s + 56230000
. (37)

Table 1: ,e change of each index after the parameters increase by
10% (α′ is the approximate phase angle of the parameters’ changed
value at 2 rad/s and α − α′ is the difference between the phase angle
of ideal fractional differential operator and the approximate phase
angle after the parameters change).

,e original cost Increase by 10 percent α′ (°) α − α′ (°)
c0 100000 110000 36.3 8.7
c1 36930 40623 38.3 6.7
c2 79840 87824 36.1 8.9
d2 100000 110000 33.5 11.5
d3 33590 36949 38.8 6.2

Table 2: ,e change of each index after the parameters decrease by
10% (α′ is the approximate phase angle of the parameters’ changed
value at 2 rad/s and α − α′ is the difference between the phase angle
of ideal fractional differential operator and the approximate phase
angle after the parameters change).

,e original cost Decrease by 10 percent α′ (°) α − α′ (°)
c0 100000 90000 36.2 8.8
c1 36930 33237 34.3 10.7
c2 79840 71856 36.1 8.9
d2 100000 90000 39.3 5.7
d3 33590 30231 33.4 11.6

6 Mathematical Problems in Engineering



Using the quadratic programming method based on
frequency-domain error, the frequency sample point is taken

as 40, and the new approximation function is obtained as
follows:

Gnew(s) �
0.05053s

6
+ 20.08s

5
+ 1668s

4
+ 33730s

3
+ 100000s

2
+ 0.001s + 0.001

0.001s
6

+ 1.271s
5

+ 217.7s
4

+ 9057s
3

+ 80130s
2

+ 35630s + 100000
. (38)

,e amplitude phase characteristic curve is obtained by
MATLAB simulation.

It can be seen from Figure 2 that the quadratic pro-
gramming method based on the frequency-domain error
can approach the pure fractional differential operator well in
the specified frequency band. For the approximation of
phase angle, it can be seen from Table 1 that the approxi-
mation effect of the quadratic programming method based
on the frequency-domain error is better than that of the
Oustaloup method, and it is closer to the theoretical value.

According to the sample standard deviation, we can
measure the dispersion of the sample data. ,e formula is
shown in (36):

s �

����������������

1
N − 1



N

i�1
xi − x( 

2




, (39)

where N represents the sample population, xi represents the
sample, x represents the sample mean. According to the
results of sample standard deviation in Table 4, the proposed
method has smaller standard deviation, more concentrated
data, and better approximation effect. ,e mean value is also
closer to the ideal value.

With the increase of the number of sample points, the
quadratic programming method based on frequency error
can obtain the amplitude frequency characteristic curve
which basically coincides with the theoretical curve. In
general, the quadratic programming method based on fre-
quency error is better to approximate pure fractional dif-
ferential operators.

,e frequency-domain characteristics of fractional
differential operators with different orders are compared as
shown in Figure 3 (assuming that the approximation

frequency segment is [1, 100] rad/s, the sampling frequency
point is 40, the order of approximation expression is 6, and
the order is 0.1, 0.3, 0.5, 0.7, and 0.9, respectively).

Based on the frequency-domain quadratic programming
method, the fitting effect of fractional order operator is very
good in the middle and high frequency band of approaching
frequency band, and the fractional order differential oper-
ator of each characteristic order has no large amplitude
fluctuation in the frequency band. When the order is smaller
(close to 0), the effect of approximation is better, and the
amplitude and phase characteristics almost have no
oscillation.

7.2. Pure Fractional Integral Operator. ,e expression of
fractional integral operator is G � s− c (0< c< 1). Assuming
that the approximation frequency segment is [1, 100] rad/s
and the sampling frequency is 40, the order of approxi-
mation expression is 6 and the order is − 0.5. ,e amplitude
phase characteristic curve is obtained (as shown in Figure 4)
by using the Oustaloup method and quadratic programming
method based on the frequency-domain error proposed in
this paper.

Both the Oustaloupmethod and the method proposed in
this paper can approach the fractional integral operator well.
,e Oustaloup method cannot fit the amplitude charac-
teristics of fractional integral operators well in the high
frequency band. For the fitting of phase frequency charac-
teristics, refer to the data comparison in Table 5 (the ideal
amplitude and phase characteristic curve of integral operator
s− 0.5 is selected as the reference value).

From the data in Table 5, we can see that the phase
frequency characteristics obtained by using this method to
approximate the fractional order integral operator are
consistent with the ideal phase frequency characteristics in

Table 3: Sensitivity of algorithm with single parameter change.

δ1(increase by 10%) δ2(decrease by 10%)

c0 2.397 2.431
c1 1.749 3.120
c2 2.324 2.465
d2 3.433 1.450
d3 1.619 3.473

Table 4: Phase angle of characteristic frequency in approximation frequency band of different rational implementation methods.

10 (rad/s) 40 (rad/s) 70 (rad/s) 100 (rad/s) x (sample mean) S (standard deviation)
Ideal 45.0° 45.0° 45.0° 45.0° 45.0° 0°
Oustaloup 19.7° 45.0° 45.0° 19.6° 32.3250° 14.6359°
,is paper 45.6° 41.23° 45.1° 45.0° 44.2325° 2.0188°
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the range from 34 rad/s to100 rad/s. ,e mean and standard
deviation of the proposed method are smaller, the data are
more stable, and the mean value is closer to the ideal value,
so the approximation method proposed in this paper can
more accurately approximate the ideal value, and the ap-
proximation data are more stable. It can be seen from
Figure 4 that the phase frequency characteristic curves
obtained by this method coincide with the ideal phase
frequency characteristic curves in the middle and high
frequency range. A better approximation effect is obtained.

,e frequency-domain characteristics of different order
fractional integral operators are compared as shown in
Figure 5 (assuming that the approximation frequency band
is [1, 100] rad/s, the sampling frequency point is 40, and the
order of approximation expression is 6, the integral char-
acteristic order is − 0.1, − 0.3, − 0.5, − 0.7, − 0.9).

It can be seen from Figure 5 that the new method
proposed in this paper can well approximate the charac-
teristic fractional integral operator without oscillation in the
approximation frequency range. ,e smaller the absolute
value of integral order is, the better the approximation effect
is.

7.3. Fractional Order System Model. Some common frac-
tional order system models are simulated. For example, the
fractional order model of PMSM is given as [19]

G(s) �
9098.5417s

1.7781
+ 397316.2297s

0.8371
+ 1393070.1646

s
3.7915

+ 127.38s
2.8834

+ 9995.678s
1.8834 .

(40)

Original system cutoff frequency ωc � 40.8 rad/s. ,e
constant parameters in this simulation are the approxima-
tion frequency ([1, 100] rad/s), the sampling frequency point
(40), and the order of approximation expression (6). ,e
results are shown in Figure 6.

It can be seen from the amplitude frequency charac-
teristic curve in Figure 6 that the amplitude frequency
characteristics of the system obtained by the two approxi-
mation methods are close. For the phase frequency char-
acteristics obtained by the two approximation methods, in
the second half of the approximation frequency band, the
quadratic programming method based on the frequency-
domain error can better fit the ideal phase frequency
characteristics of the system than the Oustaloup method.

7.4. Comparison of New Method and Direct Discretization
Method. ,e Muir recursive method is a direct discretiza-
tion method commonly used in engineering. ,is method
was first applied to geophysical scientific data processing and
oil exploitation [10]. Without losing generality, we assume
that the order of calculus operator is c ∈ [− 1, 1]. For sim-
plicity, we only give the recursive formula when c is positive:
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Figure 2: Ideal Bode graph of s0.5 and Bode graph obtained by two approximation methods.

Table 5: Phase angle of characteristic frequency in approximation frequency band of different rational implementation methods.

2 rad/s 34 rad/s 67 rad/s 100 rad/s x (sample mean) S (standard deviation)
Ideal − 45.0° − 45.0° − 45.0° − 45.0° − 45.0° 0°
Oustaloup − 32.4° − 35.0° − 27.8° − 22.2° − 29.35° 5.6199°
,is paper − 45.1° − 45.0° − 45.0° − 45.0° − 45.025° 0.05°

8 Mathematical Problems in Engineering



ω z
− 1

  
r

�
2
T

 
r 1 − z− 1

1 + z− 1 

r

�
2
T

 
r

lim
n⟶∞

An z
− 1

, r 

An z
− 1

, − r 
,

(41)

where

A0 z
− 1

, r  � 1, (42)

An z
− 1

, r  � An− 1 z
− 1

, r  − cnz
n
An− 1(z, r), (43)

cn �

r

n
, n is odd,

0, n is even.

⎧⎪⎨

⎪⎩
(44)

MATLAB toolbox was used, and the result is obtained as

s
r ≈

2
T

 
r An z

− 1
, r 

An z
− 1

, − r 
. (45)

When the sampling frequency T is 0.001, the number of
iterations is 3. ,e fractional differential operator s0.5 can be
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directly discretized by the Muir recursive method in the
following form [10]:

G(z) �
44.72z

3
− 22.36z

2
+ 3.727z − 7.454

z
3

+ 0.5z
2

+ 0.8333z + 0.1667
. (46)

Compared with the method proposed in this paper (the
approximation frequency segment is [0.01, 1] rad/s, the
sampling frequency point is 40, and the order of approxi-
mation expression is taken as 6), the Bode diagram as shown
in Figure 7 can be obtained.

As can be seen from the Bode diagram, the amplitude
and phase characteristic curves of the proposed method
almost coincide with the ideal fractional differential op-
erator in the approximation frequency range. ,e am-
plitude and phase characteristics of the approximate
expression obtained by the Muir recursive method are
quite different from the real values, and the high fre-
quency amplitude frequency characteristics are seriously
distorted. ,is method is superior to the Muir recursive
method.
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8. Conclusion

In this paper, a new rational approximation method of
fractional calculus operator is proposed. ,e main idea of
this method is to make the difference between the frequency
characteristic of the approximation transfer function and the
ideal fractional calculus operator in the frequency domain
and then make quadratic programming for the difference
expression to obtain the optimal rational approximation
transfer function coefficients. Compared with the previous
methods, the method proposed in this paper has obvious
improvement in approximation accuracy, precision, and
algorithm encapsulation and can arbitrarily select the ap-
proximation frequency band, which makes the algorithm
highly flexible and has great advantages. When the pa-
rameters of the approximation expression fluctuate by 10%,
the phase angle change of the system is less than 3.473°,
which indicates that the system has strong robustness. By
using different methods to simulate and compare the
fractional calculus operator and model, it is concluded that
this method can effectively fit the frequency-domain char-
acteristics of fractional calculus operator and fractional
order model in any specified frequency range. However, for
the fractional calculus operator whose fractional order is
close to 1, there is a large error with the ideal value in the
initial frequency range, so the initial constraint condition
can be added to reduce the error. When the order is close to
0, the amplitude phase characteristic curve almost coincides
with the amplitude phase characteristic curve of ideal
fractional calculus operator, and a good approximation
effect is obtained. ,is method can only approximate the
fractional order system with pure fractional calculus oper-
ator, but it is difficult to deal with the approximate irrational
fractional order system, such as single-fractal system
H(s) � 1/(1 + s/pT)m. But it is not impossible to deal with it.

We can expand the irrational term into a system with only
pure fractional calculus operator, and then we can use the
method in this paper to approximate it.
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