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(e calculation of an electric field distribution provides the basis for the structural design of the insulation, and an accurate
characterization of conductivity as a function of temperature and electric field forms an important basis for the simulation of the
electric field distribution in HVDC (high-voltage direct current) cables. However, the conductivity functions that describe the
insulating materials used for HVDC cables in different studies are different, and very little has been reported regarding how to
choose the most accurate function. In this work, the conductivity of insulating materials used for HVDC cables is characterized,
and the effects of the conductivity characterization on the simulation of the electric field in HVDC cables are studied. First, eight
common conductivity functions are compared qualitatively. (en, the conductivities of XLPE for different temperatures and
electric fields are measured, and a data fitting technique is used to analyze the coincidence degree between different functions and
the test results. Finally, the steady-state electric field distributions of HVDC cables for different temperature gradients are
simulated in COMSOLMultiphysics.(e results show that the sum of the square of the relative errors of the fitting when using the
original functions is larger than that achieved when using the logarithmic form of the functions.(e deviations in the electric field
caused by taking the logarithm of different functions are smaller.

1. Introduction

Extruded high-voltage direct current (HVDC) cables have
received wide attention since being introduced because of
many advantages such as a simpler production process,
lower loss, longer transmission distance, and the constitu-
tion of an asynchronous interconnection [1–4]. As a result,
many development projects have been launched around the
whole world. (e number and voltage level of HVDC cables
have been increasing continuously in the past 20 years to
meet the transmission capacity demand [5–9]. In research
aiming to improve the voltage level, most scholars have
studied material modifications and cable structural design.
(e electric field in the insulation is also a main reference
standard and needs to be calculated for structural design
[10, 11]. It is well known that the electric field distribution in

the insulation of HVDC cables is determined by the con-
ductivity of the insulating material, which is known to be
dependent on the electric field and temperature [12–14].
(erefore, obtaining accurate testing data and a charac-
terization function for conductivity is essential for precisely
calculating the electric field in the insulation of HVDC
cables.

As for the relationship between the conductivity, tem-
perature, and electric field strength of insulating materials,
some specific conductivity functions have been given in the
literature, but the functions in different studies are not
identical [15–20]. Boggs [15] used the characteristic function
of a hopping conductance mechanism to calculate the
electric field in the insulation of HVDC cables and studied
the influence of different dependent coefficients of the
electric field and activation energy on the electric field
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distribution. Mazzanti et al. [16] used two empirical con-
ductivity functions to calculate the electric field in insulation
and studied the relation between the coefficients of the electric
field dependence of the two functions. Liu et al. [17] calculated
the electric field distribution in XLPE insulation of HVDC
cables under time-varying states with a hopping conduction
model and analyzed the relation between the electric field
distribution and the insulation conductivity. Gao et al. [18]
measured the conductivity of an XLPE nanocomposite and
polymer-filled XLPE and calculated the thermal activation
energies according to a hopping conduction model. (e
authors found that the addition of a nanofiller changes the
activation energy less than a polymer filler. Up to now,
scholars have not reached a consensus regarding the con-
ductivity functions. Even when acquiring an exact conduc-
tivity testing value of a material, the electric field will be still
different if it is calculated by using different conductivity
functions. (e difference in the functions and finding the
most accurate characteristic function are worth studying.

(e purpose of the work presented in this paper is to
explore the difference in the conductivity characteristics of
insulation and its effects on the simulation of an electric field
distribution because the simulation of an electric field dis-
tribution provides the basis for the design of an insulation
structure. Cross-linked polyethylene (XLPE), as one of the
commonmaterials used for HVDC cable insulation, is studied
in this paper. (e DC conductivities are measured, and then
the data are fitted by Origin software using different con-
ductivity functions. Finally, a model of an HVDC cable is
constructed in COMSOL Multiphysics, and the electric field
distribution in the cable insulation is calculated according to
the conductivity functions obtained by the fitting.

2. Theoretical Analysis of Conductivity
Characterization Functions

2.1. Conductivity Characterization. According to classic
dielectric physics textbook [21], the conductance mecha-
nisms of solid dielectrics are described by the Poole–Frenkel
model, Schottky model, and hopping conductance model,
and the corresponding conductivity expressions are, re-
spectively [21–23]:
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where T is the temperature in Kelvin, E is the electric field in
V/m, ci are the conductivities for a certain electric field and
temperature in S/m, φ is the thermal activation energy of the
conductivity in eV, q is the electron charge (1.602×10− 19°C),
kb is Boltzmann’s constant (1.38×10− 23 J/K), ε0 is the

permittivity of vacuum (0.85×10− 12 F/m), εr is the relative
permittivity, and d is the jumping distance.

(e above three characterization functions ((1)–(3))
present specific physical mechanisms. According to the
literature, the following five simplified empirical functions
((4)–(8)) are usually used to characterize the conductivity of
an insulating material in engineering applications. In ad-
dition, there might be other characterization formulas that
are not listed here [15, 23–29].
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where t is the temperature in centigrade, a and α are the
coefficients of the temperature dependence, and B, b, and β
are the coefficients of the electric field dependence. (e
meanings of the other physical quantities are the same as
those of the quantities in formulas (1)–(3).

From formulas (4)–(8), it can be seen that the electric
field functions are exponential, hyperbolic sine, and power,
and the temperature functions are only exponential, only
differing in Kelvin or degree centigrade. (ese functions are
simple and indicate that the conductivity increases non-
linearly with the electric field and the temperature. (e
common characteristics of these functions can be expressed
as a product of a temperature function and an electric field
function, that is:

ci(E, T) � ci,0fi(T)gi(E). (9)

For the above formulas:
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(e conductivity can be expressed as a product of a
temperature function and an electric field function, which
also implies that the temperature and the electric field have
no synergistic effects on the conductivity.

2.2. Analysis of the Relationship between Empirical and
6eoretical Formulas. (e above five empirical formulas
((4)–(8)) are obtained by a simplification in the derivation of
the theoretical formulas, and there are some errors between
the empirical and theoretical formulas. (e detailed analysis
of the errors is shown in the following.

Empirical function (4) is more similar to function (3) in
terms of the functional form. (e temperature function of
function (4) is the same as that of function (3), just qd/(2kbT)
is replaced by the variable B in the electric field function.
However, compared with functions (1) and (2), the electric
field functions changes from exponential to hyperbolic sine.
(us, it can be inferred that the error between function (4)
and function (3) is lower than the error between function (4)
and function (1) or (2).

For empirical function (5), its temperature function is
similar to that of functions (1), (2), and (3). (e electric field
function of empirical function (5) is exponential, similar to
functions (1) and (2) but not function (3). (erefore, the
error between function (5) and function (3) is greater than
the error between function (5) and function (1) or (2), which
is different from empirical function (4).

(e electric field functions of empirical function (6) and
function (5) are the same, and their temperature functions
are different in the form of the temperature in Kelvin or
centigrade degree. If the temperature in function (5) is t in
centigrade degree, the temperature function can be written
as follows:

f(t) � exp −
a
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􏼒 􏼓 � exp
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When t2 is ignored,
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where k � exp(− (a/273)) and α � a/2732.
Formula (12) is the temperature function of formula (6).

In the derivation process, it can be seen that formula (6) can
be regarded as a transformation of the basis of formula (5),
and the temperature function is approximately simplified.
(erefore, the error of the formula (6) is larger than that of
formula (5).

(e temperature functions of empirical functions (7) and
(8) have been analyzed, and their electric field functions are
power functions. Compared to a hyperbolic sine or expo-
nential function, a power function has no physical meaning,
leading to larger errors. In addition, the temperature
function of formula (8) is simplified on the basis of the
formula (7).(erefore, the error of formula (8) is larger than
that of formula (7).

3. Analysis of Conductivity Experiment Results

3.1. Specimen Preparation and Conductivity Testing. Type
LD200 LDPE, which is produced by the China Petroleum
and Chemical Corporation, is taken as the basic material.
Type LD200 LDPE is mixed with a certain proportion of
dicumyl peroxide (DCP), which is a crosslinking reagent
produced by Sinopec Shanghai Gaoqiao Petrochemical
Company, in a Bunbury mixer at 383 K for 30min to make
an XLPE blank. (en, a 2.2 g blank is placed into a plate
vulcanization machine to hot press plate samples of XLPE
with a size of 10 ×10mm and a thickness of 0.2mm. After
that, the samples are placed in a plate vulcanizing machine
at 448 K for 30min to crosslink the polymer, and the
samples are removed after naturally cooling down to room
temperature. According to the requirement of a three-
electrode testing system, aluminum electrodes are evapo-
rated on both sides of the XLPE specimens. Finally, the
specimens are short-circuited in a vacuum oven at 353 K
for 24 hours to remove some byproducts and charges in the
specimens.

(e conductivity test system includes a DC high-voltage
power supply (HB-Z103-2AC; its output voltage is con-
tinuously adjustable from 0 to 10 kV), a three-electrode
system, an EST122 electrometer with a testing range from
10− 2 to 10− 14 A, and an oven with a highest working tem-
perature of 473K (temperature fluctuation range of ±1K).
(e conductance currents are measured under nine field
strengths ranging from 10 kV/mm to 50 kV/mm, at 295K,
313K, 328K, 343K, 358K, and 368K. To ensure the ac-
curacy of the conductivity data, the conductivity results are
averaged by testing four different samples, and the test
results in detail are shown in Table 1.

3.2. Fitting by Using Original Conductivity Functions. In
relevant literature reports [15, 18, 19, 28], to obtain the
parameters in the conductivity function, the original con-
ductivity function is used to fit the test data of the con-
ductivity in the software Origin. To thoroughly analyze the
difference in the fitting results of the eight functions above,
after an exposition about the conductivity functions, the
experimental XLPE data are fitted by eight common con-
ductivity functions in the software Origin. (e fitting
principle is the least square principle for minimizing the sum
of the square of the absolute errors. (e fitting results by
using the original conductivity functions are shown in
formulas (13)–(20).
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From formulas (13)–(20), it can be noted that the
temperature functions of c1, c2 and c4, and c3 and c5 are
nearly the same. In addition, the electric field functions of cpf

and cs, c2 and c3, and c4 and c5 are almost the same. (e
fitting results are in good agreement with the theoretical
analysis of the conductivity functions above. Taking formula
(4) as an example, a three-dimensional rendering of the
fitting is shown in Figure 1.

In Figure 1, the black dots represent the measured
conductivity values for different temperatures and electric
fields, and the red surfaces represent the fitted results.
Figure 1 indicates that the conductivity varies nonlinearly
with the temperature and electric field and changes about
two or three orders of magnitude within the range of the
electric field and temperature. (erefore, the test data points
with a large conductivity playing a key role in minimizing
the sum of the square of the absolute errors are very close to
the fitting values, resulting in a large relative error for the low
conductivity data points and a small relative error for the
high conductivity data points.

3.3. Fitting byUsingConductivity Functions after Taking6eir
Logarithms. To reduce the relative errors of all the tested
conductivity data points and fitting points, the variation range
of the conductivity is reduced.(emethod involves taking the
logarithm of the conductivity, and some equivalent trans-
formations are made to narrow the gap between a higher

Table 1: Test data of conductivity of XLPE.

Conductivity (S/m)
T (°C) E (kv/mm) 10 15 20 25 30 35 40 45 50

22

1 3.85×10− 15 4.15×10− 15 4.97×10− 15 6.87×10− 15 9.34×10− 15 1.13×10− 14 1.45×10− 14 2.10×10− 14 3.43×10− 14

2 4.27×10− 15 5.68×10− 15 7.00×10− 15 9.08×10− 15 1.13×10− 14 1.41× 10− 14 1.93×10− 14 2.63×10− 14 4.16×10− 14

3 4.54×10− 15 4.52×10− 15 6.17×10− 15 7.97×10− 15 1.01× 10− 14 1.29×10− 14 1.75×10− 14 2.53×10− 14 3.97×10− 14

4 4.63×10− 15 4.74×10− 15 6.43×10− 15 8.39×10− 15 1.02×10− 14 1.33×10− 14 1.97×10− 14 2.71× 10− 14 3.81× 10− 14

Average 4.32×10− 15 4.77×10− 15 6.14×10− 15 8.08×10− 15 1.02×10− 14 1.29×10− 14 1.77×10− 14 2.49×10− 14 3.84×10− 14

40

1 9.05×10− 15 1.21× 10− 14 1.47×10− 14 1.81× 10− 14 2.28×10− 14 2.86×10− 14 3.97×10− 14 5.46×10− 14 7.83×10− 14

2 1.25×10− 14 1.43×10− 14 1.74×10− 14 2.22×10− 14 2.80×10− 14 3.63×10− 14 4.86×10− 14 6.23×10− 14 8.37×10− 14

3 9.99×10− 15 1.26×10− 14 1.58×10− 14 2.00×10− 14 2.49×10− 14 3.28×10− 14 4.38×10− 14 5.81× 10− 14 8.02×10− 14

4 1.15×10− 14 1.32×10− 14 1.61× 10− 14 2.11× 10− 14 2.76×10− 14 3.61× 10− 14 4.65×10− 14 5.94×10− 14 8.22×10− 14

Average 1.08×10− 14 1.31× 10− 14 1.60×10− 14 2.03×10− 14 2.58×10− 14 3.34×10− 14 4.47×10− 14 5.86×10− 14 8.11× 10− 14

55

1 2.47×10− 14 2.81× 10− 14 3.00×10− 14 3.51× 10− 14 4.66×10− 14 6.47×10− 14 8.16×10− 14 1.04×10− 13 1.47×10− 13

2 2.80×10− 14 3.12×10− 14 3.80×10− 14 4.74×10− 14 5.68×10− 14 7.16×10− 14 8.86×10− 14 1.18×10− 13 1.71× 10− 13

3 2.60×10− 14 2.97×10− 14 3.13×10− 14 4.00×10− 14 5.09×10− 14 6.57×10− 14 9.12×10− 14 1.11× 10− 13 1.57×10− 13

4 2.71× 10− 14 3.04×10− 14 3.82×10− 14 4.39×10− 14 5.51× 10− 14 7.05×10− 14 8.79×10− 14 1.16×10− 13 1.71× 10− 13

Average 2.65×10− 14 2.98×10− 14 3.44×10− 14 4.16×10− 14 5.24×10− 14 6.81× 10− 14 8.73×10− 14 1.12×10− 13 1.62×10− 13

70

1 5.31× 10− 14 5.94×10− 14 6.67×10− 14 7.56×10− 14 9.20×10− 14 1.13×10− 13 1.35×10− 13 1.61× 10− 13 2.08×10− 13

2 6.56×10− 14 6.97×10− 14 7.66×10− 14 8.71× 10− 14 1.04×10− 13 1.22×10− 13 1.55×10− 13 1.96×10− 13 2.68×10− 13

3 5.56×10− 14 6.03×10− 14 7.14×10− 14 8.07×10− 14 9.66×10− 14 1.17×10− 13 1.36×10− 13 1.70×10− 13 2.32×10− 13

4 6.45×10− 14 6.63×10− 14 7.33×10− 14 8.46×10− 14 9.92×10− 14 1.21× 10− 13 1.44×10− 13 1.83×10− 13 2.57×10− 13

Average 5.97×10− 14 6.39×10− 14 7.20×10− 14 8.20×10− 14 9.80×10− 14 1.18×10− 13 1.43×10− 13 1.77×10− 13 2.41× 10− 13

85

1 1.05×10− 13 1.09×10− 13 1.22×10− 13 1.36×10− 13 1.59×10− 13 1.82×10− 13 2.17×10− 13 2.87×10− 13 4.09×10− 13

2 1.40×10− 13 1.43×10− 13 1.56×10− 13 1.80×10− 13 2.03×10− 13 2.36×10− 13 2.79×10− 13 3.62×10− 13 4.50×10− 13

3 1.19×10− 13 1.26×10− 13 1.39×10− 13 1.56×10− 13 1.72×10− 13 1.92×10− 13 2.41× 10− 13 3.10×10− 13 4.26×10− 13

4 1.30×10− 13 1.40×10− 13 1.51× 10− 13 1.74×10− 13 1.99×10− 13 2.34×10− 13 2.80×10− 13 3.42×10− 13 4.67×10− 13

Average 1.23×10− 13 1.30×10− 13 1.42×10− 13 1.62×10− 13 1.83×10− 13 2.11× 10− 13 2.54×10− 13 3.25×10− 13 4.38×10− 13

95

1 1.79×10− 13 1.91× 10− 13 2.01× 10− 13 2.18×10− 13 2.61× 10− 13 3.38×10− 13 4.39×10− 13 6.11× 10− 13 8.05×10− 13

2 2.08×10− 13 2.19×10− 13 2.45×10− 13 2.88×10− 13 3.53×10− 13 4.39×10− 13 5.35×10− 13 6.63×10− 13 8.66×10− 13

3 1.91× 10− 13 2.05×10− 13 2.18×10− 13 2.44×10− 13 2.86×10− 13 3.69×10− 13 4.72×10− 13 6.33×10− 13 8.26×10− 13

4 1.99×10− 13 2.11× 10− 13 2.31× 10− 13 2.76×10− 13 3.19×10− 13 3.93×10− 13 5.09×10− 13 6.57×10− 13 8.43×10− 13

Average 1.94×10− 13 2.07×10− 13 2.24×10− 13 2.56×10− 13 3.05×10− 13 3.85×10− 13 4.89×10− 13 6.41× 10− 13 8.35×10− 13
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conductivity and a lower conductivity. Taking formula (4) as
an example, the transformation is shown in the following:

Z � A′ + CX + In[sinh(BY)] − InY, (21)

where Z � Inc1(E, T), A′ � Inc1,0, C � (φ · q/kb), X �

− (1/T), and Y� E.
(e logarithms of the other conductivity functions are all

taken in the same way as formula (4). (e fitting results by
using the functions after taking their logarithms are shown
in formulas (22)–(29).

cpf � 1.63 × 10− 7 exp −
5645.0821
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􏼒 􏼓sinh
2.52303 × 10− 5

E

T
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(24)

c1 �
0.95510

E
exp −

4879.09861
T

􏼒 􏼓sinh 7.55817 × 10− 8
E􏼐 􏼑,

(25)

c2 � 4.62969 × 10− 8 exp
− 4879.10373

T
+ 4.2107 × 10− 8

E􏼒 􏼓,

(26)

c3 � 1.28646 × 10− 15 exp 0.04423 · t + 4.2107 × 10− 8
E􏼐 􏼑,

(27)

c4 � 4.77325 × 10− 15 exp
− 4879.09995

T
􏼒 􏼓E

1.01447
, (28)

c5 � 1.32631 × 10− 22 exp(0.04423 · t)E
1.01448

. (29)

Similar to (13)–(20), formulas (22)–(29) also demon-
strate that the temperature functions of c1, c2 and c4, and c3
and c5 and the electric field functions of cpf and cs, c2 and c3,
and c4 and c5 are almost same. Taking formula (21) as an
example, the three-dimensional rendering of the fitting by
the conductivity function after taking the logarithm is shown
in Figure 2.

(e Z axis and X axis in Figure 2 denote the conductivity
and temperature transformed according to formula (21). Fig-
ure 2 shows that the range of the conductivity after taking the
logarithm is approximately from − 32 to − 28, which is very small
compared to the range of the original conductivity function.

According to the fitting results by the original functions
and the functions after taking their logarithms, we find that if
the forms of the temperature functions or electric field
functions of the formulas are the same, then the coefficients
obtained by the fitting are also the same, and only the co-
efficients ci,0 are different. In addition, fittings by the same
formula that use the original function and the function after
taking the logarithm always lead to different results.

3.4. Analysis and Discussion. (rough the physical meaning
of the theoretical conductivity functions, the activation
energy φ, the permittivity εr, and the jumping distance d are
included in the Schottky, Poole–Frenkel, and hopping
conductance models. (erefore, the three parameters can be
calculated according to the fitting results in formulas
(13)–(15) and formulas (22)–(24). Since the temperature
functions of empirical formulas (4) and (7) are the same as
those of the three theoretical conductivity functions, the
activation energy can also be calculated by formulas (4) and
(7). For formula (5), the temperature-related term can be
viewed as a simplification of temperature-related term in
three theoretical functions (1), (2), and (3), and thus the
activation energy can also be calculated by formula (5).
(erefore, an attempt is made to determine which fitting
function is the most accurate by comparing the calculated
parameters with the actual values of the material properties.
(e properties and parameters are shown in Table 2.

From Table 2, it can be seen that the activation energy of
XLPE calculated by different fitting formulas is in the range
of 0.4–1.1 eV, and the discrepancies caused by different
formulas are very small. (e permittivity calculated by the
Schottky and Poole–Frenkel models for the original and
logarithm functions is 2.05 and 2.52, respectively, and there
is little difference between the real permittivity of XLPE of
2.3. Consequently, it can be concluded that the parameters
calculated by the original function and the function after
taking the logarithm are approximately the same, and all
parameters calculated by different formulas can be accepted.

To further explore the most accurate characterization
function of the XLPE conductivity and analyze the fitting
effects of different original functions and functions after
taking their logarithms, the correlation coefficient R-square
and the sum of the squares of the absolute errors and relative
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Figure 1: (e three-dimensional effect diagram of fitting by for-
mula (4).
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errors as judgment standards are extracted. (e relevant
parameters are shown in Table 3.

Table 3 indicates that the fitting results obtained by
different conductivity functions and fitting methods (orig-
inal or logarithm) are different. According to the R-square
fitting criterion, we find that the best fitting effect achieved
by an original conductivity function is formula (4), and the
best fitting effect achieved by a conductivity function after
taking the logarithm is formula (3); both have been marked
in bold. In addition, according to the sum of the square of
the absolute errors and relative errors, it can be found that
the fitting of the original functions is based on the minimum
sum of the square of the absolute errors, and fitting of the
functions after taking their logarithms is based on the
minimum of the square of the relative errors.

(e deviation of the R-square value between formulas (4)
and (3) is lower than that between formula (4) and formula
(1) or (2), and the deviation of the R-square value between
formulas (5) and (3) is larger than that between formula (5)
and formula (1) or (2). For formulas (4) to (8) after taking
their logarithms, the R-square values decrease from (4) to
(8). (e fitting results are consistent with the above theo-
retical analysis and indicate that the accuracy of the em-
pirical formula decreases due to the simplification of the
formulas. For the original formulas, the R-square value
shows an irregular variation, which is not inconsistent with
the theoretical analysis.

Considering that the sum of the relative errors cannot
reflect the distribution of the relative error, the relative errors
between the testing values and the fitting values by the
original functions and the functions after taking their log-
arithms are described. Taking formula (4) as an example, the
results are shown in Figure 3.

It can be seen from Figure 3 that the relative errors of the
testing values and fitting values by using the conductivity
functions taking their logarithms are evenly distributed in
the whole conductivity range. However, the relative errors
caused by fitting using the original formulas are smaller
when the conductivity is higher and are much larger when
the conductivity is lower, which are clearly larger than the
relative errors caused by fitting using the formulas after
taking their logarithms. (e reason for the difference be-
tween the relative errors of the conductivity for the original
and logarithm functions is that the fitting using an original
function is based on the minimum sum of the squares of the
absolute errors, and the fitting using a function after taking
the logarithm is based on the minimum sum of the squares
of the relative errors. In addition, Figure 3 also shows that
the fitting after taking the logarithm can take into account all
the measured data points of the conductivity, but fitting
using the original functions places more attention on data
points with higher conductivities, indicating that the fitting
method based on the logarithm is more accurate and
applicable.

–0.00330
–0.00308

–0.00286
–0.00264

–32.2

–30.8

–29.4

–28.0

10
20

30
40

50

Electric
 field (kV/mm)

–1/T (1/K)

ln
γ

Figure 2: (e three-dimensional effect diagram of fitting by formula (21).

Table 2: (e permittivity, activation energy, and jump distance calculated by different fitting results.

Formula (1) (2) (3) (4) (5) (6) (7) (8)

Original
Permittivity 2.05 2.05

Activation energy (eV) 1.061 0.543 0.53 0.434 0.435 0.435
Jump distance (nm) 4.49

Logarithm
Permittivity 2.52 2.52

Activation energy (eV) 0.97 0.491 0.49 0.421 0.421 0.421
Jump distance (nm) 4.35
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4. Electric Field Calculation

Combining the theoretical analysis with the experimental
fitting results of the conductivity functions in Sections 2 and
Sections 3, it is found that the most accurate characterization
function is formula (3) taking the logarithm. Besides, the
fitting results of different formulas and methods for con-
ductivity may be all acceptable, although there are some
differences. However, we do not know the effects of the
differences on the simulation of electric field distribution in
insulation. In order to study this problem, the steady electric
field distribution of HVDC cables under different temper-
ature gradients is simulated by using the software COMSOL
Multiphysics.

4.1. Description of the Model. (e typical structure of a
320 kV 500MW HVDC cable is shown in Figure 4.

In this model, the conductor is copper, the permittivity
of the semiconductive shielding layer is 1000, and its con-
ductivity is 0.01 S/m. (e material of the insulation is XLPE
in this paper.(e relative permittivity of XLPE is 2.3, and the
conductivity is described by the fitting results above.

(e temperature of the outside insulation is set to 40°C in
this paper, and the temperature gradient (0–50°C) is
achieved by changing the temperature of the core conductor.
(e steady-state temperature of the cable insulation is de-
termined by

T(r) � Tc +
Inr − InRc( 􏼁 · Tout − Tc( 􏼁

InRout − InRc

, (30)

where Rc and Rout are the radii of the inner edge and outer
edge of the cable insulation, respectively, r is the radial
position in the cable insulation, Tc and Tout are the tem-
peratures of the conductor and outside edge of the cable
insulation, respectively, and T (r) is the temperature at
position r.

4.2. Results and Analysis. (e amplitude of the voltage is set
to 320 kV, and the temperature gradients are set to 20°C,
30°C, and 50°C. (e steady-state electric field in the insu-
lation of XLPE is calculated, and the results are shown in
Figures 5–7, respectively. To make it more conveniently to
see the difference of electric field distribution in insulation
under different temperature gradients, the scale range of Y
axis in Figures 5 to 7 is set up the same.

In addition, it is necessary to apply 1.85U0 DC test
voltage in routine test and type test and 1.45U0 DC test
voltage in prequalification and field installation test.

(erefore, we simulate the electric field under another
voltage amplitudes of 1.85U0 which is equal to 592 kV, and
the temperature gradient is set to 20°C.(e results are shown
in Figure 8.
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Figure 4: (e typical structure of 320 kV HVDC cable.

Table 3: Fitting results of XLPE by using eight conductivity functions (original and logarithm).

Formula (1) (2) (3) (4) (5) (6) (7) (8)

Original
R-square 0.9838 0.9840 0.9930 0.9942 0.9867 0.9885 0.9558 0.9576

Sum of squares of absolute errors (×10− 26) 2.27 2.25 0.978 0.811 1.87 1.62 6.22 5.96
Sum of squares of relative errors 2.29 2.12 1.33 0.83 1.04 2.38 3.21 3.95

Logarithm
R-square 0.9937 0.9938 0.9972 0.9918 0.9880 0.9852 0.9680 0.9652

Sum of squares of absolute errors (×10− 26) 4.43 4.27 1.50 1.92 2.05 4.28 8.36 8.79
Sum of squares of relative errors 0.51 0.50 0.24 0.70 0.91 1.24 2.40 2.80
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Figures 5(a)–8(a) describe the steady-state electric field
distributions calculated by the original conductivity func-
tions, and Figures 5(b)–8(b) describe the steady-state electric
field calculated by the logarithm of the conductivity func-
tion. From Figures 5–8, it can be seen that the electric field
distribution is controlled by the conductivity functions.
Regardless, whether the temperature gradient is 20°C, 30°C,
or 50°C and whether amplitude of the voltage is 320 kV or
592 kV, the electric field distribution in the insulation of
XLPE is always such that the electric field outside the
insulation layer is greater than the electric field inside the

insulation layer. In addition, when a simulation is carried
out for different conductivity functions, the values of the
electric field in the insulation are clearly different.

To quantitatively analyze the difference in the electric
field caused by different conductivity functions, some
characteristic quantities such as the maximum and mini-
mum of the electric field in the insulation are extracted. In
addition, at the same time, taking the electric fields from the
original form of formula (4) and the logarithmic form of
formula (3), which are the most accurate conductivity
functions, as reference values, the relative deviation of the
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Figure 5:(e electric field distribution in the insulation of XLPE by using eight conductivity functions (temperature gradient is 20°C).
(a) Simulation by eight original conductivity functions. (b) Simulation by eight conductivity functions taking logarithm.
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Figure 6:(e electric field distribution in the insulation of XLPE by using eight conductivity functions (temperature gradient is 30°C).
(a) Simulation by eight original conductivity functions. (b) Simulation by eight conductivity functions taking logarithm.

8 Mathematical Problems in Engineering



maximum and the relative deviation of the minimum are
calculated to assess the difference in the electric field. (e
results are shown in Tables 4–7.

In addition, the insulation utilization factor, which is
used to describe the uniformity of the electric field distri-
bution in insulation [29], defined as formula (31), can also be
taken as a characteristic quantity to describe the electric field
difference.(us, the insulation utilization factor and relative

deviation from the reference values are also calculated. (e
results are also shown in Tables 4–7.

η �
Eav

Emax

�
U/Rout − Rc( 􏼁

Emax
.

(31)
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Figure 7:(e electric field distribution in the insulation of XLPE by using eight conductivity functions (temperature gradient is 50°C).
(a) Simulation by eight original conductivity functions. (b) Simulation by eight conductivity functions taking logarithm.
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Figure 8: Electric field distribution in the insulation of XLPE by using eight conductivity functions (the voltage amplitude is 592 kV and
temperature gradient is 20°C). (a) Simulation of eight original conductivity functions. (b) Simulation of eight conductivity functions after
taking their logarithms.
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From formula (31), it can be found that the insulation
utilization factor is determined by the average and maxi-
mum of the electric field in insulation. (e maximum value
of the insulation utilization factor is one, and the larger the
insulation utilization factor is, the more uniform the electric
field distribution in the insulation is.

In Tables 4–7, the reference values marked in italics are
determined by the formula with the best fitting effects, and

the maximum relative deviations of the characteristic
quantities are marked in bold.

From Tables 4–7, it can be found that the conductivity
functions also produce large effects on the results of the
insulation utilization factor. (e insulation utilization fac-
tors are smaller when using the conductivity function with
better fitting effect and larger when using the conductivity
function with worse fitting effect. (erefore, the most

Table 4: (e deviation of the electric field in the insulation of XLPE by using eight conductivity functions (original and logarithm)
(temperature gradient is 20°C).

Formula (1) (2) (3) (4) (5) (6) (7) (8)

Original

Insulation utilization factor 0.8841 0.8869 0.8633 0.8875 0.9054 0.9506 0.9334 0.9659
Relative deviation of the insulation utilization factor (%) − 0.39 − 0.07 − 2.73 0.00 2.02 7.11 5.17 8.83

Relative deviation of the maximum (%) 0.39 0.07 2.81 0.00 − 1.98 − 6.64 − 4.92 − 8.11
Relative deviation of the minimum (%) − 1.57 − 1.20 − 4.47 0.00 2.62 8.11 6.66 10.30

Logarithm

Insulation utilization factor 0.8959 0.8966 0.8836 0.8989 0.9125 0.9284 0.9286 0.9444
Relative deviation of the insulation utilization factor (%) 1.40 1.47 0.00 1.73 3.27 5.07 5.08 6.88

Relative deviation of the maximum (%) − 1.38 − 1.45 0.00 − 1.70 − 3.16 − 4.83 − 4.84 − 6.43
Relative deviation of the minimum (%) 1.55 1.60 0.00 2.78 4.82 6.11 7.01 8.35

Table 5: (e deviation of the electric field in the insulation of XLPE by using eight conductivity functions (original and logarithm)
(temperature gradient is 30°C).

Formula (1) (2) (3) (4) (5) (6) (7) (8)

Original

Insulation utilization factor 0.7866 0.7897 0.7515 0.7738 0.8053 0.8564 0.8578 0.8971
Relative deviation of the insulation utilization factor (%) 1.66 2.06 − 2.87 0.00 4.08 10.68 10.86 15.94

Relative deviation of the maximum (%) − 1.64 − 2.02 2.96 0.00 − 3.92 − 9.65 − 9.80 − 13.75
Relative deviation of the minimum (%) − 0.38 0.12 − 6.90 0.00 6.79 13.82 17.06 21.87

Logarithm

Insulation utilization factor 0.7955 0.7964 0.7735 0.7891 0.8136 0.8304 0.8438 0.8583
Relative deviation of the insulation utilization factor (%) 2.84 2.96 0.00 2.02 5.19 7.36 9.09 10.97

Relative deviation of the maximum (%) − 2.77 − 2.88 0.00 − 1.98 − 4.93 − 6.86 − 8.33 − 9.88
Relative deviation of the minimum (%) 3.47 3.44 0.00 4.69 10.25 10.25 17.22 17.38

Table 6: (e deviation of the electric field in the insulation of XLPE by using eight conductivity functions (original and logarithm)
(temperature gradient is 50°C).

Formula (1) (2) (3) (4) (5) (6) (7) (8)

Original

Insulation utilization factor 0.6442 0.6471 0.6029 0.6205 0.6607 0.7098 0.7368 0.7798
Relative deviation of the insulation utilization factor (%) 3.81 4.28 − 2.83 0.00 6.47 14.38 18.74 25.67

Relative deviation of the maximum (%) − 3.67 − 4.10 2.91 0.00 − 6.08 − 12.57 − 15.78 − 20.42
Relative deviation of the minimum (%) − 3.8 − 3.32 − 12.59 0.00 15.91 22.08 41.33 45.33

Logarithm

Insulation utilization factor 0.6494 0.6498 0.6247 0.6389 0.6698 0.6788 0.7106 0.7195
Relative deviation of the insulation utilization factor (%) 3.96 4.02 0.00 2.28 7.22 8.66 13.76 15.18

Relative deviation of the maximum (%) − 3.81 − 3.87 0.00 − 2.23 − 6.74 − 7.97 − 12.09 − 13.18
Relative deviation of the minimum (%) 2.24 1.55 0.00 9.38 23.40 15.14 33.41 36.62

Table 7: (e deviation of the electric field in the insulation of XLPE by using the original and logarithm forms of eight conductivity
functions (the voltage amplitude is 592 kV and temperature gradient is 20°C).

Formula (1) (2) (3) (4) (5) (6) (7) (8)

Original

Insulation utilization factor 0.9253 0.9275 0.9183 0.9226 0.9272 0.9625 0.9334 0.9659
Relative deviation of the insulation utilization factor (%) 0.29 0.53 − 0.47 0.00 0.50 4.32 1.17 4.69

Relative deviation of the maximum (%) − 0.29 − 0.53 0.47 0.00 − 0.50 − 4.14 − 1.16 − 4.48
Relative deviation of the minimum (%) 0.07 0.35 − 1.21 0.00 0.069 5.12 1.70 5.21

Logarithm

Insulation utilization factor 0.9348 0.9354 0.9313 0.9316 0.9326 0.9433 0.9286 0.9464
Relative deviation of the insulation utilization factor (%) 0.37 0.46 0.00 0.0302 0.14 1.29 − 0.29 1.6199

Relative deviation of the maximum (%) − 0.37 − 0.43 0.00 − 0.03 − 0.14 − 1.27 0.29 − 1.59
Relative deviation of the minimum (%) 0.62 0.67 0.00 0.98 0.66 1.19 0.32 1.57
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accurate conductivity functions should be used to calculate
the electric field when designing the structure and materials
of HVDC cables. Otherwise, the insulation utilization factor
could be larger or smaller than its true value when using
inaccurate conductivity functions, which may lead one to
misjudge the uniformity of the electric field distribution and
then affect the design of the structure and material.

Comparing and analyzing the simulation results in
Tables 4–6, it is observed that the deviations of the insulation
utilization factor and the maximum and minimum of the
electric field increase with the temperature gradient. (is
result indicates that if the cable temperature gradient is
higher, the effects of using different conductivity functions
on the electric field of the insulation will also be larger. From
the results in Tables 4–7, it could be known that with the
increase of the voltage amplitude, the insulation utilization
factor increases, and the deviations of the insulation utili-
zation factor and the maximum andminimum of the electric
field decrease. (e reason is that the higher amplitude of
voltage will increase the conductivity nonlinearity of insu-
lating materials, leading to the distribution of the electric
field in the insulation more uniform, which is same with the
results reported in the literature [30].

In addition, the deviations caused by different loga-
rithmic formulas are smaller than that those caused by the
original formulas. And the largest deviations in the electric
field in the insulation of XLPE occur for formula (8), whose
fitting effects are the worst among the eight formulas. When
the temperature gradient is 50°C, the relative deviations of
the insulation utilization factor and maximum and mini-
mum of the electric field calculated by using the original
functions are up to 25.67%, − 20.42%, and 45.33%, respec-
tively. By using the logarithmic functions, the relative de-
viations of the insulation utilization factor and maximum
andminimum of the electric field are up to 15.18%, − 13.18%,
and 36.62%, respectively. When the temperature gradient is
20°C, the relative deviations of the insulation utilization
factor and the maximum and minimum of the electric field
calculated by using the original functions are still up to
8.83%, − 8.11%, and 10.30%, respectively. (e deviations of
the insulation utilization factor and the maximum and
minimum caused by different logarithmic formulas are still
up to 6.88%, − 6.43%, and 8.35%, respectively.(e deviations
of the electric field caused by different formulas deserve
attention when designing HVDC cables or other DC
structures. (erefore, it is suggested to use the logarithmic
form of formula (3) as the conductivity characterization
function when simulating the electric field in the insulation
of XLPE cables.

5. Discussion

In the present work, it is noteworthy that fitting using the
original functions is based on the minimum sum of the
squares of the absolute errors, and fitting using the loga-
rithmic functions is based on the minimum sum of the
squares of the relative errors. (is can be proved by the
following derivation. (e principle of data fitting is the least
square, that is, the minimum sum of the squares of the

absolute errors is used to obtain the parameters in con-
ductivity functions. (erefore, the sum of the squares of the
absolute error Q (a, b, c) is

Q(a, b, c) � 􏽘
N

i�1
fi(a, b, c) − ci􏼂 􏼃

2

� 􏽘
N

i�1
Δri( 􏼁

2
� min ,

(32)

where N is the total number of test points and fi (a, b, c) and
ci are the fitting value and testing value of the point i,
respectively.

(e sum of the squares of the relative error is

Qr(a, b, c) � 􏽘
N

i�1
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When the fitting formulas and the measured value of
conductivity use the logarithmic forms, the sum of the
squares of the absolute error becomes

Q(a, b, c) � 􏽘
N

i�1
Infi(a, b, c) − Inci􏼂 􏼃

2

� 􏽘
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.

(34)

According to the property of the logarithmic function
y� lnx, y� 0 when x� 1. (erefore, when the sum of the
squares of the absolute error 􏽐

N
i�1 [In((Δri/ci) + 1)]2 is

minimum, the value of In((Δri/ci) + 1) tends to 0 and
(Δri/ci) tends to 0. In addition, if the sum of the squares of
the relative error 􏽐

N
i�1 (Δri/ci)

2 is minimum, (Δri/ci) also
tends to 0. (erefore, essentially, the fitting method using
logarithmic functions is based on the minimum sum of the
squares of the relative error.

As shown in the Table 1, the conductivity of XLPE
changes greatly in the entire range of the test electric field
and temperature (by about two orders of magnitude). (us,
the data points with larger conductivity play a major role in
fitting, resulting in a smaller relative error of the fitting
values and tested values. (e data points with lower con-
ductivity contribute little to the sum of the squares of the
absolute errors, resulting in larger relative errors. In contrast,
the conductivity of XLPE changes much less after taking the
logarithm; the data points with larger or lower conductivities
contribute equally in the fitting, and the relative errors are
evenly distributed in the whole conductivity range, as shown
in Figure 3. (e most important insight from the fitting
results is that the logarithmic form of the conductivity is
more accurate because the fitting is based on the minimum
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sum of the squares of the relative errors; we should employ
the logarithm of the conductivity when obtaining the
conductivity functions by fitting in future study.

On the basis of the fitting results and the above analysis, it
is important to emphasize that to obtain an accurate con-
ductivity characterization function, the conductivity of the
material at different temperatures and field strength should be
measured first. (en, the logarithmic forms of some common
formulas should be selected to fit the tested results. Finally,
according to the correlation coefficient of the fitting and the
material parameters calculated from the fitting results, the
most accurate formula should be selected. Generally, the
theoretical formulas are more accurate than empirical for-
mulas. For the XLPE selected in this paper, the most accurate
conductivity function is based on the hopping conductance
model because of the good fitting result. For other materials,
the conductivities are different, which may cause the most
accurate characterization formula to be different.

(e simulation results of the electric field distribution of
HVDC cables with different conductivity formulas show that
when calculating the field distribution in the insulation of
HVDC cables or other DC insulation structures, it is nec-
essary to select the most accurate conductivity character-
ization formula and calculate the electric field with the
logarithmic form of the formula. If the characterization
formula is inaccurate, the distribution of the electric field in
the theoretical calculation may be very different from the
actual electric field distribution, especially for an insulation
structure with a high temperature gradient. (erefore, it is
essential to choose an accurate conductivity characterization
formula when calculating the electric field.

6. Conclusions

(e conductivity of a dielectric is a function of temperature
and the electric field, which is usually characterized by the
eight functions given in this paper. In the present paper, the
source and relationship between eight functions have been
expounded. Taking XLPE as an example, the conductivity
functions of XLPE are obtained by fitting using the original
and logarithmic forms of the eight functions. (e electric
fields in the insulation are simulated to explore the effects of
different fitting functions and methods for the simulation of
the electric field. (e following conclusions are obtained:

(e nonlinear conductivity of insulating materials is
characterized by many functions: some are theoretical
formulas and have definite physical meanings, while
some are empirical formulas, and the theoretical for-
mulas are more accurate than empirical formulas.
(e conductivity varies over a range, and fitting using a
logarithmic function is more reasonable than using the
original function. Fitting using a logarithmic function
is based on the minimum squared sum of the relative
error, and fitting using an original function is based on
the least square of the sum of the absolute errors, which
causes a larger relative error for lower conductivity test
data points.

(ere are great differences existing in the electric filed
distribution of HVDC cable insulation calculated by
different characteristic conductivity functions. (e
deviations of the electric field simulated by different
logarithmic conductivity functions are smaller than
those simulated by the original conductivity functions.
In addition, with an increase in the temperature gra-
dient of the insulation layer or with an decrease in the
amplitude of voltage, the deviations of the electric field
caused by different conductivity formulas are also
larger.

For the insulation materials of XLPE, the most accurate
characterization function that can be used to characterize its
nonlinear conductivity is the logarithmic form of formula
(3). (erefore, it is suggested to use the logarithmic form of
formula (3) as the conductivity characterization function
when simulating the electric field in the insulation of XLPE
cables.
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