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Larger array aperture is provided by sparse arrays than uniform ones, which can improve the angle estimation resolution and
reduce the cost of system evidently. However, manifold ambiguity is introduced due to the array sparsity. In this paper, a Power
Estimation Multiple-Signal Classification (PE-MUSIC) algorithm is proposed to solve the manifold ambiguity of arbitrary sparse
arrays for uncorrelated sources in Multiple-Input Multiple-Output (MIMO) radar. First, the paired direction of departure (DOD)
and direction of arrival (DOA) are obtained for all targets by MUSIC algorithm, including the true and spurious ones; then, the
well-knownDavidon–Fletcher–Powell (DFP) algorithm is applied to estimate all targets’ power values, among which the value of a
spurious target trends to zero.*erefore, the ambiguity of sparse array inMIMO radar can be cleared. Simulation results verify the
effectiveness and feasibility of the method.

1. Introduction

Multiple-Input Multiple-Output (MIMO) radar employs
multiple transmit and receive elements and has the ability to
plan transmissions and process received signals jointly. It
has been the focus of research owing to its significant
performance improvement compared to the conventional
phased-array radar [1–3]. Sparse array MIMO radar has
more degrees of freedom, larger effective array aperture, and
more effective elements than uniform array MIMO radar
[4–6]. Usually, larger effective array aperture produces more
accurate direction of departure (DOD) and direction of
arrival (DOA) estimation. Moreover, sparse sensor config-
uration can sharply reduce system cost and ease
implementation.

However, array sparsity will cause ambiguity owing to
the increased space between sensors. A lot of methods have
been proposed to solve the ambiguity of conventional sparse
arrays. Abramovich proposed a direct augmentation method
which costs a high computational complexity [7–10]. A
linear prediction approach was presented by Tufts but noise
sensitive [11]. Vasylyshyn proposed a multiscale approach
[12]. *e main idea is using coarse estimation to disam-
biguate the fine estimation. However, the method is only

suitable for some specific arrays. A virtual interpolation
technique [13] was introduced to solve the ambiguity, but it
is difficult to be applicable in practical applications. *e
power estimation approach was presented in lecture [14].

Few methods have been proposed to clear the ambiguity
in sparse array MIMO radar. ESPRIT spectral search and
ESPRITpolynomial root finding algorithm was presented in
lecture [15], yet it is only applicable to the arrays with even
number of transceiver elements. *e idea of virtual inter-
polation was used for sparse array MIMO radar in [16]. Like
the conventional sparse array, the same problem also exists.
In [17], Alternating Least Squares (ALS) algorithm for tensor
decomposition was developed to obtain the parameters of
multitargets which is only suitable to the minimum re-
dundant array. In [18, 19], the angle estimation algorithms
were proposed for nested array and coprime array in MIMO
radar. However, the method of [17–19] cannot be applicable
to arbitrary sparse array.

In this paper, we present a method to solve the ambiguity
of sparse array MIMO radar. It is separated into two steps by
utilizing MUSIC and Davidon–Fletcher–Powell (DFP) al-
gorithms, respectively. First, the paired DODs and DOAs of
all targets, including real ones and spurious ones, are esti-
mated by traditional MUSIC; thereafter, the power values of
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all targets are obtained through DFP algorithm by
substituting the estimated DODs and DOAs into a pre-
defined cost function.*e power value of any spurious target
is very small or trends to zero. Consequently, we can
eliminate all the spurious targets and thus the ambiguity of
the array is cleared.

*e rest of the paper is arranged as follows. Section two
presents the system model, and the algorithm is extensively
explained by Section three. Detailed simulations are carried
out in Section four to verify themethod. Finally, we conclude
the paper in Section five.

2. System Model

A bistatic MIMO radar system consists of a transmit array of
M antenna elements and a receive array of N antenna ele-
ments, respectively. Both arrays are configured sparsely. *e
transmit elements are located at the position of dt

m(m �

1, 2, . . . , M) and the receive elements located at
dr

n(n � 1, 2, . . . , N)measured in half-wavelength unit with
dt
1 � dr

1 � 0 for convenience. *e targets are assumed to be
far-field. At the transmit site, P different temporally or-
thogonal narrowband signals are emitted simultaneously
with identical bandwidth and center frequency. *ere are P
noncoherent targets located in the same range bin.*eDOD
and DOA of the pth target with respect to the transmit array
normal and the receive array normal are denoted by θp and
φp. *e output of the entire matched filters at the receiver
can be expressed as

x(t) � A(φ, θ)s(t) + n(t), (1)

the MN × 1 noise vector n(t) is assumed to be independent,
zero-mean complex Gaussian distribution. A(φ, θ) is the
array manifold matrix, which can be expressed as

A(φ, θ) � a1 φ1, θ1( , . . . , aP φP, θP(  , (2)

where ap(φp, θp) is the Kronecker product of the receive and
the transmit steering vectors for the pth target

ap φp, θp  � ar φp ⊗ at θp , (3)

where p � 1, . . . , P and

at θp  � 1, e
j2π dt

2/λ( )( cos θp , . . . , e
j2π dt

M
/λ( )cos θp 

T

, (4)

ar φp  � 1, e
j2π dr

2/λ( )cosφp , . . . , e
j2π dr

N
/λ( )cosφp 

T

, (5)

where (•)T is the transpose operation. *e MN × 1 vector
s(t) consists of the phases and amplitudes of all the P sources
at time t. It is denoted as

s(t) � s1(t), s2(t), . . . , sP(t) 
T
, (6)

E s(t)s(t)
T

  � diag q1, q2, . . . qP , (7)

where E[•] is the expectation operator and qp � E[s2p(t)] is
the power of the pth source. *e sources are independent,
identically distributed Gaussian random variables with zero
means.

3. PE-MUSIC Algorithm

Covariance matrix of x(t) can be calculated by

R �
1

L 
L
l�1 x(t)xH

(t)
, (8)

where L is the snapshot; (•)H is the conjugate transpose
operator. *e MUSIC spectrum can be denoted as

fMUSIC �
1

aH
(φ, θ)En

E
H

n a(φ, θ)
, (9)

where En is the estimation value of noise subspace, involving
the eigenvectors corresponding to the last MN − P eigen-
values by singular decomposition of R. According to (9), the
paired DODs and DOAs of target can be obtained by two-
dimensional search.

Generally, P+K sources will be obtained by traditional
MUSIC method when a nontrivial ambiguity occurs for the
abovementioned P sources. *erefore, we can indicate
[(φ1′, θ1′), . . . , (φP

′, θP
′), . . . , (φP+K

′ , θP+K
′ )] as the DODs and

DOAs of the estimated targets and denote
Q′ � [q1′, . . . , q1′ . . . , qP+K

′ ]T as the corresponding estimated
power values.

*e entry of the covariance of x(t) is

E xi(t)xk(t)  � E 
M

m�1


P

p�1
αpe

j2πτ φp,θp,i,m( 
+ 

M

m�1
nim

⎛⎝ ⎞⎠ 

M

m′�1


P

p′�1
αp′

e
j2πτ φp

′
,θp
′
,k,m′ 

+ 
M

m′�1
nkm′

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 

M

m�1


P

p�1
e

j2π τ φp,θp,i,m( +τ φp,θp,k,m(  
qp + 

M

m�1
E nimnkm ,

(10)

where i, k � 1, 2, . . . , Nandτ(φp, θp, i, m) � (dt
m/λ)cos θp +

(dr
i /λ)cos φp.
E[xi(t)xk(t)] can be estimated by averaging xi(t)xk(t)

over the totalNs snapshots, i.e.,

E xi(t)xk(t)  �
1

Ns

  

Ns

t�1
xi(t)xk(t). (11)

Define a cost function as
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f q′(  � 
N

k≤i

i�1



M

m�1


P+K

p�1
e

j2π τ φp
′,θp
′,i,m( +τ φp

′,θp
′,k,m(  

qp
′ − E xi(t)xk(t) 

����������

����������

2

s.t. q′ > � 0. (12)

Substituting equation (10) into (12), we get

f q′(  � 
N

k≤ i

i�1



M

m�1


P+K

p�1
e

j2π τ φp
′,θp
′,i,m( +τ′ φp

′,θp
′,k,m(  

qp
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M

m�1


P

p�1
e
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M
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E NimNkm 
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����������
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N
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M
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P
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(13)

*e necessary and sufficient condition for minimization
of function f(q′) in equation (13) is
qp
′ � qp, p � 1, 2, . . . P, and qp

′ � 0, p � P + 1, . . . ,

P + K. *e power values of the true targets are much larger
than the power values of the spurious targets which must be
zero theoretically. So, we can distinguish between the true
targets and the spurious ones by estimating the power values
of all targets.

*e DFP algorithm [20] that is one of the quasi-Newton
methods is applied to the optimization of equation (9). It is
much faster and more efficient than the Newton method.
DFP requires only the gradient, not the second derivatives of
the cost function.

*e PE-MUSIC algorithm to solve the ambiguity for a
sparse array in MIMO radar can be summarized as below:

Step 1. Obtain the paired direction of DODs and DOAs
for all targets by traditional MUSIC, including the true
targets and the spurious ones.
Step 2. Substitute all the paired DODs and DOAs es-
timated by Step 1 into the cost function equation (9) to
estimate the power values related to all targets through
the DFP algorithm. *e estimated power value of the
spurious target trends to zero. So, we can distinguish
between the true target and the spurious target.

4. Simulation

Simulations have been done to verify the feasibility and
effectiveness of the proposed method.

Simulation 1. *e transmit array is a sparse array located at
[0 1 2 4]; the receive array is also a sparse array located at [0 2

4 6]. *ere is 1 source with the DOD and DOA as (28.67,
69.45°). *e number of snapshots is 100. Set the power of the
source as 10 dB.

Figure 1 illustrates the result of Simulation 1; the hor-
izontal axis represents the DOA of a target, and the vertical
axis depicts both DOD and power value of the target. In
Figure 1, the solid squares are the paired DODs and DOAs of
the targets; the circles refer to the corresponding estimated
power values of the targets. As Figure 1 shows, there are a
total of two targets estimated: (28.67°, 69.45°) and (28.67°,
130.47°). *e true target has been obtained by MUSIC al-
gorithm correctly, but spurious one also appears due to the
manifold ambiguity. It is difficult to distinguish between the
true target and the spurious one by MUSIC algorithm.
Substituting the estimated angle value of the two targets into
equation (12), we can get the power values of all the targets as
shown in Table 1 through DFP algorithm. From Table 1, we
can know that (28.67°, 69.45°) is the true target and another
one is the spurious one. *erefore, we conclude that there
are P � 1 true target and 1 spurious target. *e effectiveness
of the proposed method has been verified by Simulation 1
where there is only one spurious target. More than one
spurious target will be studied in Simulations 2 and 3.

Simulation 2. *e transmit array is a sparse array located at
[0 2 4 6 12]; the receive array is also a sparse array located at
[0 2 4 9]. *ere are 3 sources with the DODs and DOAs as
(10.12°, 15.23°), (70.32°, 25.28°), and (100.56°, 110.22°), re-
spectively. *e number of snapshots is 100. Set the power of
all sources as 10 dB.

As what has been shown in Figure 2, the horizontal axis
represents the DOD of a target, and the vertical axis depicts
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both DOA and power value of the target. It denotes that
there are a total of six targets estimated: (10.12°, 15.23°),
(90.9°, 15.23°), (70.32°, 25.28°), (131.56°, 25.28°), (35.25°,
110.22°), and (100.56°, 110.22°). All the true targets and the
spurious ones are obtained by MUSIC algorithm. Adopting
the proposed method, we can get the power values of all the
targets as Table 2. By comparing the estimated power value
of all targets, we can know that (10.12°, 15.23°), (70.32°,
25.28°), and (100.56°, 110.22°) are the true targets and the
remaining three are spurious ones. We can draw the con-
clusion that there are P � 3 true targets and 3 spurious ones.

Simulation 3. *e sparse transmit array is located at [0 1 2 3
6 9], and the sparse receive array is at [0 2 4 6]. *e DODs
and DOAs of the true targets are (18.26°, 25.32°), (35.18°,
60.69°), (72.38°, 15.36°), (120.78°, 100.58°), and (150.35°,
45.56°). *e number of snapshots is also 100. *e power
values of all sources are 10 dB as well.

As Figure 3 indicates, there are a total of ten targets
obtained by MUSIC algorithm. According to our proposed
method, we can get the estimated power value as Table 3.
From Table 3, we can know that (72.38°, 15.36°), (18.26°,
25.32°), (150.35°, 45.56°), (35.18°, 60.69°), and (120.78°,
100.58°) are the true targets; and (120.78°, 35.28°), (72.38°,
92.06°), (18.26°, 95.52°), (150.35°, 107.46°), and (35.18°,
120.70°) are the spurious ones. It is shown that the power
values of the five true targets are much larger than the other
five spurious ones. *erefore, the ambiguities can be easily
cleared from all the targets obtained by MUSIC algorithm.

Simulation 4. Set the power of the source as 3.4 dB. Other
simulation parameters are the same as in Simulation 1.

As Figure 4 and Table 4 show, we can know that the
estimated accuracy of power is decreased compared with
Simulation 1 when the power of the source is small. But we
can also distinguish between the true target and the spurious
one through our proposed method.

Simulation 5. Set the power of the source differently. *e
power of the first source is 12.39 dB, the power of the second
source is 9 dB, and the power of the third source is 7.74 dB.
Other simulation parameters are the same as in Simulation
2.

From Figure 5 and Table 5, we can get that (10.12°,
15.23°), (70.32°, 25.28°), and (100.56°, 110.22°) are the true
targets; (90.9°, 15.23°), (131.56°, 25.28°), and (35.25°, 110.22°)
are the spurious targets. *e result is the same as in Sim-
ulation 2. It is shown that the proposed method still works
well when the power of every source is different.

Simulation 6. Set the power of the source differently. *e
power of the first source is 11.7 dB, the power of the second
source is 10 dB, the power of the third source is 8.1 dB, the
power of the fourth source is 7.7 dB, and the power of the
fifth source is 9.5 dB. Other simulation parameters are the
same as in Simulation 3.
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Figure 1: *e result of Simulation 1.

Table 1: *e data of Simulation 1.

DOD and DOA Estimated power Result
(28.67°, 69.45°) 9.3 dB True
(28.67°, 130.47°) 1.75 dB Spurious
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Figure 2: *e result of Simulation 2.

Table 2: *e data of Simulation 2.

DOD and DOA Estimated power Result
(10.12°, 15.23°) 9.72 dB True
(90.9°, 15.23°) −1.98 dB Spurious
(70.32°, 25.28°) 9.73 dB True
(131.56°, 25.28°) −2.23 dB Spurious
(35.25°, 110.22°) 1 dB Spurious
(100.56°, 110.22°) 9.42 dB True
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Figure 3: *e result of Simulation 3.

Table 3: *e data of Simulation 3.

DOD and DOA Estimated power Result
(72.38°, 15.36°) 9.89 dB True
(18.26°, 25.32°) 9.77 dB True
(120.78°, 35.28°) 0.21 dB Spurious
(150.35°, 45.56°) 9.88 dB True
(35.18°, 60.69°) 9.76 dB True
(72.38°, 92.06°) −6.15 dB Spurious
(18.26°, 95.52°) −2.88 dB Spurious
(120.78°, 100.58°) 9.52 dB True
(150.35°, 107.46°) −5.56 dB Spurious
(35.18°, 120.70°) −2.78 dB Spurious
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Figure 4: *e result of Simulation 4.

Table 4: *e data of Simulation 4.

DOD and DOA Estimated power Result
(28.67°, 69.45°) 1.56 dB True
(28.67°, 130.47°) −1 dB Spurious
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Figure 5: *e result of Simulation 5.

Table 5: *e data of Simulation 5.

DOD and DOA Estimated power Result
(10.12°, 15.23°) 12.22 dB True
(90.9°, 15.23°) −1.9 dB Spurious
(70.32°, 25.28°) 8.66 dB True
(131.56°, 25.28°) −2.4 dB Spurious
(35.25°, 110.22°) 0.69 dB Spurious
(100.56°, 110.22°) 6.78 dB True
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Figure 6: *e result of Simulation 6.
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As what have been shown in Figure 6 and Table 6, the
true targets are (72.38°, 15.36°), (18.26°, 25.32°), (150.35°,
45.56°), (35.18°, 60.69°), and (120.78°, 100.58°); the others are
the spurious targets.*e result is the same as in Simulation 3.
It is demonstrated that the proposed method still performs
well when the number of targets is more than the number in
Simulation 5 and the power of every source is different.

5. Conclusion

Aiming at solving the manifold ambiguities in MIMO radar,
a new PE-MUSIC algorithm has been proposed in this
paper. In order to eliminate the spurious targets, a new cost
function is used to estimate the power values of all targets
obtained by MUSIC. *e extra computation expense
brought by the DFP algorithm is much trivial. From the
simulation results, it is easy to clear the ambiguities or
spurious targets from all the estimates by the proposed
method. Different kinds of arrays, different-source power
values, and different number of targets are analyzed in the
simulations. *e feasibility and the effectiveness of the
proposed method are verified.
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