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+e main contribution of this work is to develop a linear exponential loss function (LINEX) to estimate the scale parameter and
reliability function of the inverse Weibull distribution (IWD) based on lower record values. We do this by merging a weight into
LINEX to produce a new loss function called weighted linear exponential loss function (WLINEX). We then use WLINEX to
derive the scale parameter and reliability function of the IWD. Subsequently, we discuss the balanced loss functions for three
different types of loss function, which include squared error (SE), LINEX, and WLINEX. +e majority of previous scholars
determined the weighted balanced coefficients without mathematical justification. One of the main contributions of this work is to
utilize nonlinear programming to obtain the optimal values of the weighted coefficients for balanced squared error (BSE),
balanced linear exponential (BLINEX), and balanced weighted linear exponential (BWLINEX) loss functions. Furthermore, to
examine the performance of the proposed methods—WLINEX and BWLINEX—we conduct a Monte Carlo simulation. +e
comparison is between the proposed methods and other methods including maximum likelihood estimation, SE loss function,
LINEX, BSE, and BLINEX. +e results of simulation show that the proposed models BWLINEX and WLINEX in this work have
the best performance in estimating scale parameter and reliability, respectively, according to the smallest values of mean SE. +is
result means that the proposed approach is promising and can be applied in a real environment.

1. Introduction

Statistics related to record values are of interest for many
real-life applications. For instance, they allow prediction of
the possible time of earthquakes, floods, extreme weather
events, and life-testing studies. Many scholars have
researched record values and associated statistics, including
generalized extreme value distribution [1], Lomax distri-
bution [2], Weibull distribution [3]; Yang et al [4, 5], log-
normal distribution [6], ratio of Weibull random variables
[7], power Lindley model [8], exponential distribution [9],
generalized Rayleigh model [10], and inverse Weibull dis-
tribution (IWD) [11–16]. In this work, we will investigate
IWD based on record values.

IWD is one of the most widely used probability distri-
butions with many real environment applications. +is re-
fers to the ability of IWD to model a variety of failure

characteristics, such as wear-out periods, useful life, infant
mortality, and engineering discipline. +e probability den-
sity function (PDF) and cumulative distribution function
(CDF) of IWD are given as follows, respectively:

f(x) � λθ exp − λx
− θ

􏽨 􏽩, x≥ 0 λ, θ> 0, (1)

F(x) � exp − λx
− θ

􏽨 􏽩, x≥ 0, λ, θ> 0. (2)

+e reliability function is given as follows:

R(t) � 1 − exp − λt
− θ

􏽨 􏽩, t≥ 0, λ, θ> 0. (3)

Here, λ and θ are scale and shape parameters,
respectively.

To estimate the parameters and reliability of IWD,
scholars use many approaches including Bayesian and non-
Bayesian. Many researchers attempt to estimate parameters
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and reliability depending on squared error (SE) loss func-
tion. +e main criticism of this approach is that SE gives
overestimation and underestimation equal importance.
+us, an alternative loss function is needed. One of these
alternatives is the linear exponential (LINEX) loss function,
which many authors have discussed, including Calabria and
Pulcini [17], Gencer and Saraçoğlu [18], Khatun and Matin
[19], and Parsian and Kirmani [20].

A new type of loss function called balanced loss function
appeared with the aim to utilize the positive criteria of two
methods. Balanced loss functions habitually consist of the
sum of two estimationmethods with different weights.+ese
include balanced squared error (BSE) loss function and
balanced linear exponential (BLINEX) loss function [21–23].

2. Methodology

+e weighted coefficients (ω1 and ω2) in balanced loss
functions are routinely determined by arbitrary choice
without depending upon any mathematical justification.
+is motivated us to propose a justifiable mathematical
approach to determine these coefficients. +e proposed
approach is the nonlinear programming by minimizing the
mean square error (MSE) function with conditions related to
weighted coefficients.

Furthermore, we developed a new loss function, which
we named weighted linear exponential (WLINEX), by
weighting LINEX. We then derived scale parameter and
reliability function of the IWD depending on WLINEX. In
addition, we employed WLINEX to produce the balanced
weighted linear exponential loss function (BWLINEX).

2.1. Record Values and Maximum Likelihood Estimation.
Let X1, X2, X3, . . . . . . be a sequence of independent and
identically distributed random variables with CDF F(x) and
PDF f(x). Set Yn � min(X1, X2, X3, . . . , Xn), n≥ 1, and say
that Xj is a lower record and denoted by XL(i) if
Yj <Yj− 1, j> 1. Suppose we observe the first n lower record
values XL(1), XL(2), XL(3), . . . , XL(n) from the IWD whose
PDF and CDF are given by (1) and (2), respectively. Based on
those lower record values, we have the joint density function
of the first n lower record values X ≡ (xL(1), xL(2), xL(3),

. . . . . . , xL(n)) as given by Sultan [24]:

f1,2,3,......,n xL(1), xL(2), xL(3), . . . . . . , xL(n)􏼐 􏼑

� f xL(n)􏼐 􏼑 􏽙

n− 1

i�1

f xL(i)􏼐 􏼑

1 − F xL(i)􏼐 􏼑
,

0≤xL(1) <xL(2) < xL(3), . . . . . . < xL(n) <∞.

(4)

Here, f(.) and F(.) are given by (1) and (2), respectively,
after replacing x by xL(i). +e likelihood function based on
the n lower record values x is given as follows:

ℓ(λ, θ|X) � (λθ)
n
u exp − λTm􏼂 􏼃, u � 􏽙

n

i�1
x

− θ− 1
L(i) , Tm � x

− θ
L(n).

(5)

We obtain that the log-likelihood function may be
written as follows:

L(λ, θ|X) � ln(ℓ) � n ln(λ) + n ln (θ) − λTm − (θ + 1) 􏽘
n

i�1
ln xL(i)􏼐 􏼑.

(6)

Assuming that the shape parameter θ is known, using
equation (6), the maximum likelihood estimator (MLE) 􏽢λML
of the scale parameter λ can be shown to be of the following
form:

􏽢λML �
n

x
− θ
L(n)

. (7)

If λ is replaced by 􏽢λML in equation (3), we can obtain the
MLE of reliability function 􏽢RML(t) of R (t) depending on the
invariance property:

􏽢RML(t) � 1 − exp − 􏽢λMLt
− θ

􏽨 􏽩. (8)

2.2. Loss Functions. In the following sections, we present the
four main types of loss functions under investigation in this
work.

2.2.1. Squared Error Loss Function. +e SE loss function can
be expressed as

L( 􏽢φ ,φ) � (􏽢φ − φ)
2
. (9)

+e Bayes estimator of φ based on SE loss function can
be obtained as follows:

􏽢φSE � Eπ(φ|X). (10)

2.2.2. Linear Exponential Loss Function. Varian [25] intro-
duced the LINEX loss function. LINEX is an asymmetric loss
function that can be expressed as

L(Δ)∝ [exp[cΔ] − cΔ − 1], c≠ 0, (11)

where Δ � (􏽢φ − φ). +e sign and magnitude of c reflect the
direction and degree of asymmetry, respectively. +e Bayes
estimator relative to LINEX loss function, denoted by
􏽢φLINEX, is given as follows:

􏽢φLINEX � −
1
c
Ln Eφ exp[− cφ]􏽨 􏽩, c≠ 0, (12)

provided that Eφ � (e− cφ) exists and is finite, where Eφ
denotes the expected value.

2.2.3. Weighted Linear Exponential Loss Functions. +e
researcher proposes this loss function depending on WLI-
NEX loss function as follows:

L
⋆
(Δ) � L

⋆
(􏽢φ − φ)∝w(φ)[[exp[cΔ] − cΔ − 1]], c≠ 0.

(13)
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Here, 􏽢φ represents the estimated parameter that makes
the expectation of loss function by equation (13) as small as
possible. +e value w(φ) represents the proposed weighted
function, which is equal to the following:

w(φ) � exp[− zφ]. (14)

Depending on the posterior distribution of the param-
eter φ and using the proposed weighted function as in
equation (14), we can attain the estimated weighted Bayes of
the parameter φ as follows:

E L
⋆
w(􏽢φ,φ)􏼂 􏼃 � 􏽚

∀φ
Lw(􏽢φ,φ)f(φ |X) dφ � 􏽚

∀φ
w(φ)[exp[c(􏽢φ − φ)] − c(􏽢φ − φ) − 1]f(φ |X) dφ

� 􏽚
∀φ
exp[− zφ]exp[c(􏽢φ − φ)]f(φ |X) dφ − 􏽚

∀φ
exp[− zφ]c(􏽢φ − φ)f(φ |X)dφ − 􏽚

∀φ
exp[− zφ]f(φ |X) dφ

� exp[c􏽢φ]􏽚
∀φ
exp[− φ(z + c)] f(φ | X) dφ − c􏽢φ􏽚

∀φ
exp[− zφ]f(φ | X) dφ

+ c􏽚
∀φ
φ exp[− zφ]f(φ |X) dφ − 􏽚

∀φ
exp[− zφ]f(φ |X) dφ

exp[c􏽢φ]Eφ(exp[− φ(z + c)|X]) − c􏽢φEφ(exp[− zφ |X])

+ c Eφ(φ exp[− zφ |X]) − Eφ(exp[− zφ |X]).

(15)

It is known that, to find the value of 􏽢φ that minimizes
EL⋆w(􏽢φ,φ), we have to perform the following two steps:

(i)(zEφL⋆w(􏽢φ,φ)/z􏽢φ) � 0

zEφL
⋆
w(􏽢φ,φ)

z􏽢φ
� c exp[c􏽢φ]Eφ(exp[− φ(z + c)|X])

− c Eφ(exp[− zφ |X]) � 0.

(16)

+erefore, we can find the following:

c � exp[c􏽢φ]Eφ(exp[− φ(z + c)|X]) � cEφ(exp[− zφ |X ]).

(17)

Consequently, the Bayesian estimation of the pa-
rameter φ using WLINEX will be

􏽢φWLINEX �
1
c
Ln

Eφ(exp[(− zφ|X)])

Eφ(exp[(− φ(z + c)|X)])
􏼢 􏼣, z + c≠ 0.

(18)

(i) Eφ � (e− zφ) and Eφ � (e− (z+c)φ) exist and are finite,
where Eφ denotes the expected value.

(ii )(z2EφL⋆w(􏽢φ,φ)/z􏽢φ2)> 0 at the minimum value
computed by (i):

z
2
EφL
⋆
w(􏽢φ,φ)

z􏽢φ2 �
z

z􏽢φ
zEφL
⋆
w(􏽢φ,φ)

z􏽢φ
􏼢 􏼣 � c

2 exp[c􏽢φ]Eφ[exp[− φ(z + c)]]> 0.

(19)

Because 􏽢φWLINEX satisfies conditions (i) and (ii), it fol-
lows that 􏽢φWLINEX is the minimum value. Note that the

WLINEX loss function is a generalization of the LINEX loss
function, where LINEX is a special case of WLINEX when
z � 0 in equation (18).

2.2.4. Balanced Loss Function. According to AbdEllah [22],
the class of balanced loss function (BLF) can be written in the
form

L
k
ρ,ω,τ0(ξ(φ), τ) � ω1k (φ)ρ τ0, τ( 􏼁 + ω2k (φ) ρ(ξ(φ), τ),

ω1 + ω2 � 1,

(20)

where τ represents an estimator of parameter ξ(φ), τ0 is a
chosen prior estimator of ξ(φ) that can be obtained by
several methods such as maximum likelihood (ML) or least
squares, ω1 and ω2 represent weighted coefficients belonging
to [0, 1), ρ(ξτ0, τ) is an arbitrary loss function when ξ(φ) is
estimated by τ, and k(φ) is a suitable positive weight
function. In this work, we discuss three types of BLF in-
cluding BSE loss function, BLINEX loss function, and
WBLINEX loss function, which is proposed in this work.

1 Balanced Squared Error Loss Function. BSE loss
function is obtained by choosing ρ(τ0, τ) � (τ − ξ
(φ))2 and k(φ) � 1 in equation (20) as follows:

Lω,,τ0(ξ(φ), τ) � ω1 τ − τ0( 􏼁
2

+ ω2(τ − ξ(φ))
2
, (21)

+e Bayes estimation of ξ(φ) under Lω,,τ0(ξ(φ), τ) is
given by

τω,ξ(X) � ω1τ0(X) + ω2E(ξ(φ)|X). (22)

Note that SE loss function is a special case of BSE loss
function when ω1 � 0.
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2 Balanced Linear Exponential Loss Function. +e
BLINEX is obtained by choosing ρ(τ0, τ) � exp[c (τ −

ξ(φ))] − c(τ − ξ(φ)) − 1 and k(φ) � 1 in equation (20)
as follows:

L
∗
ω ,τ0(ξ(φ), τ) � ω1 exp c τ − τ0( 􏼁􏼂 􏼃 − c τ − τ0( 􏼁 − 1􏼂 􏼃

+ ω2 [exp[c (τ − ξ(φ))] − c(τ − ξ(φ)) − 1].

(23)

+e Bayes estimation ξ(φ) under L∗ω,τ0
(ξ(φ), τ) is

given by

τ∗ω,ξ(X) � −
1
c
Log ω1 exp − cτ0(X)􏼂 􏼃 + ω2 E(exp[− cξ(φ)]|X)􏼂 􏼃.

(24)

Note that when ω1 � 0, then BLINEX is exactly LINEX
loss function.

3 Balanced Weighted Linear Exponential (BWLINEX)
Loss Function. +e BWLINEX is obtained by choosing

ρ τ0, τ( 􏼁 � exp[− zφ]exp[c (τ − ξ(φ))] − c(τ − ξ(φ))

− 1 and k(φ) � 1,

(25)

in equation (20) as follows:

L
∗ ∗
ω,τ0

(ξ(φ), τ) � ω1 exp[− zφ] exp c τ − τ0( 􏼁􏼂 􏼃 − c τ − τ0( 􏼁 − 1􏼂 􏼃

+ ω2 exp[− zφ][exp[c (τ − ξ(φ))] − c(τ − ξ(φ)) − 1].

(26)

and the Bayes estimation ξ(φ) under L∗ ∗ω,τ0
(ξ(φ), τ) is given by

τ∗∗ω,ξ(X) �
1
c
Log ω1 exp − cτ0(X)􏼂 􏼃 + ω2

E(exp[− z ξ(φ)]|X)

E(exp[− (z + c) ξ(φ)]|X)
􏼢 􏼣.

(27)

Note that when ω1 � 0, the BWLINEX loss function is
exactly WLINEX loss function.

2.3. Bayes Estimation. In this section, we derive Bayes esti-
mates of the scale parameter λ and the reliability R(t) of the
IWD. We use six different loss functions, including SE, LINEX,
WLINEX, BSE, BLINEX, and BWLINEX. Under the assump-
tion that the shape parameter θ is known, we assume a gamma
(conjugate prior) for density for λ with parameters ] and η:

g(λ) �
]η

Γ(η)
λη− 1 exp[− ]λ], λ, ], η> 0. (28)

Combining the likelihood function in equation (5) with
the prior PDFof λ in equation (28), we get the posterior of λ as

π(λ|X) �
L(λ, X)g(λ)

􏽒
∞
0 L(λ, X)g(λ)dλ

�
D

n+η

Γ(n + η)
λn+η− 1 exp[− λD],

λ, ], η> 0,

(29)

where X � ( xL(1), xL(2), xL(3), . . . . . . , xL(n)),

D � ] + Tm( 􏼁. (30)

2.3.1. Estimates Based on Balanced Squared Error Loss
Function. Based on BSE and using equation (21), the Bayes
estimation of a parameter c (which can be the scale pa-
rameter λ or the reliability function R(t)) is given by

cBSE � ω1􏽢cML + ω2E(c|X), (31)

where 􏽢cML is the ML estimate of c and E(c|X) can be
obtained using

E(c|X) � 􏽚
∞

0
cπ(λ|X) dc. (32)

Note 1. When c � λ in equation (31), the Bayes estimation
under BSE loss function of λ and denoted by 􏽢λBSE is given by

􏽢λBSE � ω1
􏽢λML + ω2E(λ|X), (33)

where 􏽢λML is the ML estimate of λ, which can be obtained
using equation (7). E(λ|X) can be obtained using

E(λ|X) � 􏽚
∞

0
λ

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD] dλ �

n + η
D

,

(34)

and D is given by equation (28).

Note 2. When c � R(t) in equation (29), the Bayes esti-
mation under BSE loss function of R(t) and denoted by
􏽢RBSE(t) is given by

􏽢RBSE(t) � ω1
􏽢RML(t) + ω2E(R(t)|X), (35)

where 􏽢RML(t) is theML estimate of R(t) and can be obtained
using equation (8), and E(R(t)|X) can be obtained using the
following:

E(R(t)|X) � 􏽚
∞

0
1 − exp − λt

− θ
􏽨 􏽩

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD] dλ

� 1 −
D

D + t− θ􏼒 􏼓
n+η

, t≥ 0.

(36)

+e main contribution of this work is to use nonlinear
programming to find the optimal values of ω1 and ω2 to
compute 􏽢λBSE and 􏽢RBSE(t) in equations (33) and (35), re-
spectively. To achieve this target, we minimize the MSE as
follows:

Minimize : MSE 􏽢cBSE( 􏼁 � E 􏽢cBSE − c( 􏼁
2

� E ω1􏽢cML + ω2E(c|X) − c( 􏼁􏼂 􏼃
2

subject to ω1 + ω2 � 1, 0≤ω1 < 1, 0≤ω2 < 1.

(37)
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2.3.2. Estimates Based on BLINEX Loss Function. Based on
BLINEX and using equation (24), the Bayes estimation of a
parameter c (which can be the scale parameter λ or the
reliability function R(t)) is given by

􏽢cBLINEX � −
1
c
Log ω1 exp − c􏽢cML􏼂 􏼃 + ω2 E(exp[− cc]|X)􏼂 􏼃,

(38)

where 􏽢cML is the ML estimate, and E(exp[− cc]|X) can be
obtained using

E(exp[− cc]|X) � 􏽚
∞

0
exp[− cc]π(λ|X) dc. (39)

Note 1.When c � λ in equation (38), the Bayes estimation under
BINEX loss function of λ and denoted by 􏽢cBLINEX is given by

􏽢λBLINEX � −
1
c
Log ω1 exp − c􏽢λML􏽨 􏽩 + ω2 E(exp[− cλ]|X)􏽨 􏽩,

(40)

where 􏽢λML is the ML estimate of λ and can be obtained using
equation (7), and E(exp[− cλ]|X) can be obtained using

E(exp[− cλ]|X) � 􏽚
∞

0
exp[− cλ]

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD] dλ

�
D

c + D
􏼒 􏼓

n+η
.

(41)

Note 2. When c � R(t) in equation (38), then the Bayes
estimation under BINEX loss function of R(t), which is
denoted by 􏽢RBLINEX(t), is given by

􏽢RBLINEX(t) � −
1
c
Log ω1 exp − c􏽢RML(t)􏽨 􏽩 + ω2 E exp − c 1 − exp − λt

− θ
􏽨 􏽩􏼐 􏼑􏽨 􏽩|X􏼐 􏼑􏽨 􏽩,

(42)

where 􏽢RML(t) is theML estimate of R(t) and can be obtained
using equation (8), and E(exp[− c (1 − exp[− λt− θ])]|X) can
be obtained using

E exp − c 1 − exp − λt
− θ

􏽨 􏽩􏼐 􏼑􏽨 􏽩|X􏼐 􏼑 � 􏽚
∞

0
exp − c 1 − exp − λt

− θ
􏽨 􏽩

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD] dλ􏼠 􏼡􏼢 􏼣

� e
− c

+ e
− c

D
n+η

􏽘

∞

i�1

(c)
i

i!
D + it

− θ
􏼐 􏼑

− (n+η)
⎡⎣ ⎤⎦.

(43)

Again, we use nonlinear programming to find the op-
timal values ofω 1 andω 2 to compute 􏽢λBLINEX and 􏽢RBLINEX(t)

in equations (41) and (43), respectively. To achieve this
target, we minimize the MSE as follows:

Minimize : MSE 􏽢cBLINEX( 􏼁 � E 􏽢cBLINEX − c( 􏼁
2

� E ω1􏽢cML + ω2 E(exp[− cc]|X) − c( 􏼁􏼂 􏼃
2

subject to ω1 + ω2 � 1, 0≤ω1 < 1, 0≤ω2 < 1.

(44)

2.3.3. Estimates Based on Weighted Balanced Loss Function.
Based on WBLINEX and using equation (26), the Bayes
estimation of a parameter c (which can be the scale pa-
rameter λ or the reliability function R(t)) is given by

􏽢cWBLINEX �
1
c
Log ω1 exp − c􏽢cML􏼂 􏼃 + ω2

I1

I2
􏼢 􏼣, (45)

where 􏽢cML is the ML estimate of c and I1 and I2 can be
obtained by

I1 � E(exp[− zc]|X) � 􏽚
∞

0
exp[− zc]π(λ|X) dλ,

I2 � E(exp[− (c + z ) c]|X) � 􏽚
∞

0
exp[− (c + z )]π(λ|X) dλ.

(46)

Note 1. When c � λ in equation (45), the Bayes estimation
under WBINEX loss function of λ and denoted by 􏽢λWBLINEX
is given by

􏽢λWBLINEX �
1
c
Log ω1 exp − c􏽢λML􏽨 􏽩 + ω2

I3

I4
􏼢 􏼣, (47)

where 􏽢λML is the ML estimate of λ and can be obtained using
equation (7) and I3 and I4 can be obtained as follows,
respectively:

I3 � E(exp[− zλ]|X) � 􏽚
∞

0
exp[− zλ]

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD]dλ �

D

z + D
􏼒 􏼓

n+η
, (48)

I4 � E(exp[− (z + c ) λ]|X) � 􏽚
∞

0
exp[− (z + c )λ]

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD]dλ �

D

(z + c) + D
􏼠 􏼡

n+η

. (49)
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Note 2. When c � R(t) in equation (45), then the Bayes
estimation under WBINEX loss function of R(t), which is
denoted by 􏽢RBLINEX(t), is given by

􏽢RWBLINEX(t) �
1
c
Log ω1 exp − c􏽢RML(t)􏽨 􏽩 + ω2

I5
I6

􏼢 􏼣, (50)

where 􏽢RML(t) is the ML estimate of R(t), which can be
obtained using equation (8), and I5 and I6 can be obtained as
follows, respectively:

I5 � E exp − z 1 − exp − λt
− θ

􏽨 􏽩􏼐 􏼑􏽨 􏽩|X􏼐 􏼑 � 􏽚
∞

0
exp − z 1 − exp − λt

− θ
􏽨 􏽩

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD]dλ􏼠 􏼡􏼢 􏼣

� e
− z

+ e
− z

D
n+η

􏽘

∞

i�1

(z)
i

i!
D + it

− θ
􏼐 􏼑

− (n+η)
⎡⎣ ⎤⎦,

I6 � E exp − (z + c) 1 − exp − λt
− θ

􏽨 􏽩􏼐 􏼑􏽨 􏽩|X􏼐 􏼑 � 􏽚
∞

0
exp − (z + c) 1 − exp − λt

− θ
􏽨 􏽩

D
n+η

Γ(n + η)
λn+η− 1 exp[− λD] dλ􏼠 􏼡􏼢 􏼣

� e
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+ e
− (z+c)

D
n+η

􏽘

∞

i�1

(z + c)
i

i!
D + it

− θ
􏼐 􏼑

− (n+η)
⎡⎣ ⎤⎦.

(51)

As in equations (37) and (44), we minimize the MSE to
compute 􏽢λWBLINEX and 􏽢RWBLINEX(t) in equations (47) and
(49) as follows, respectively:

Minimize : MSE 􏽢cWBLINEX( 􏼁 � E 􏽢cWBLINEX − c( 􏼁
2

� E ω1􏽢cML + ω2
I1

I2
− c􏼠 􏼡􏼢 􏼣

2

subject to ω1 + ω2 � 1, 0≤ω1 < 1, 0≤ω2 < 1.

(52)

2.4. Simulation Study and Comparisons. In this section, we
conduct a Monte Carlo simulation study to compare the
performance of the MLE and Bayes estimation under several
loss functions, including SE, LINEX,WLINEX, BSE, BLINEX,
and BWLINEX to estimate the scale parameter and reliability
function of IWD when the shape parameters are known.

Before beginning the simulation, we had to choose some
parameters, including c and z. We selected the values of (c) as
− 0.5, 0.5, and 1. We selected the positive and negative values
to represent both cases of upper estimate and lower estimate,
respectively, while the chosen values of z are 3 and − 3.

We conducted the simulation according to the following
steps:

(1) For the given values (η � 2, ] � 1), we generated a
random value λ � 1.383 from the prior PDF as in
equation (27).

(2) By using the value λ � 1.383 from Step 1 with se-
lected values of θ � 3, we generated data of lower
record values from IWD (equation (1) for different
sizes n(n � 3, 4, 5, 6) and 7).

(3) We computed the estimates of λ, R(t) at a chosen
time of t � 0.7 using the estimations under the study.

(4) We repeated Steps 1–3 10,000 times and calculated
the MSE for each estimate (say φ) using

MSE �
1

10000
􏽘

10000

i�1
􏽢φi − φ( 􏼁

2
, (53)

where φ can be λ or R(t) and 􏽢φi is the estimate at the ith run.

3. Results and Discussion

+e results of the simulation are listed in Tables 1–4.
In this paper, we employed nonlinear programming to

obtain the best values of weighted coefficients (ω1 and ω2) of
the balanced loss function. +e estimates of the parameter λ
and reliability function R (t) follow the IWD.+e estimation
methods under study include ML, SE, LINEX, WLINEX,
BSE, BINEX, and BWLINEX.We conducted the estimations
depending on lower record values.

+e main observations of the results are stated in the
following points:

(1) Tables 1–4 reveal that the proposed estimator
BWLINEX is the absolute best method to estimate
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scale parameter λ and reliability R(t) according to
the smallest values of MSEs compared with the es-
timators of all other methods under study.

(2) For unbalanced loss functions, Tables 1 and 3
showed that the proposed estimator WLINEX is
the best method to estimate scale parameter λ and
reliability R(t) according to the smallest values of
MSEs compared with the estimators of ML, SE, and
LINEX.

(3) +e results show that the values of all MSEs decrease
as n increases. +is means that there is an inverse
relationship between the evaluation functions and
the number of recorded values.

(4) It is clear from Table 1 that the ML method has the
worst performance in estimating the scale parameter
λ, especially at the small-size samples.

(5) +e results show that estimators of the different
methods are closer to each other as the sample size
increases.

(6) Tables 1 and 2 show that the lower estimate
(c � − 0.5) of the scale parameter λ is better than the
upper estimate (c � 0.5 and c � 1) when estimating
by WLINEX. However, the upper estimate is better
than the lower estimate when estimating by LINEX.

(7) +e Bayesian estimators relative to LINEX, WLI-
NEX, and BWLINEX are sensitive to the values of the
corresponding shape parameter c.

(8) +e balanced Bayesian estimator’s performance is
consistently better than the corresponding unbal-
anced Bayesian estimator.

4. Conclusion

In this work, we developed LINEX to estimate the scale
parameter and reliability function of IWD depending on
lower record values. +e development occurred through
merging a weight into LINEX to produce a new loss function
called WLINEX. We used WLINEX to derive the scale

Table 4: MSEs of the estimates of R(t) under balanced loss functions at z � − 3.

n 􏽢RBSE(t)
􏽢RBLINEX(t) 􏽢RBWLINEX(t)

c � − 0.5 c � 0.5 c � 1 c � − 0.5 c � 0.5 c � 1

3 0.00191 0.00202 0.00229 0.00241 0.00099 0.00110 0.00115
4 0.00148 0.00160 0.00172 0.00188 0.00085 0.00091 0.00099
5 0.00114 0.00127 0.00139 0.00154 0.00072 0.00078 0.00086
6 0.00078 0.00092 0.00104 0.00106 0.00054 0.00061 0.00062
7 0.00051 0.00065 0.00073 0.00075 0.00039 0.00044 0.00045

Table 1: MSEs of the estimates of λ under unbalanced loss functions at z � 3.

n 􏽢λML
􏽢λSE

􏽢λLINEX 􏽢λWLINEX

c � − 0.5 c � 0.5 c � 1 c � − 0.5 c � 0.5 c � 1

3 4.74099 0.67399 1.23171 0.40932 0.27093 0.28015 0.35097 0.38773
4 1.79242 0.54569 0.89238 0.38813 0.26938 0.23260 0.28800 0.31639
5 1.12725 0.49252 0.74656 0.33540 0.24535 0.19347 0.23869 0.26409
6 0.79418 0.42079 0.60421 0.29610 0.23787 0.16385 0.20625 0.22221
7 0.52376 0.33702 0.46391 0.25716 0.19196 0.13900 0.17125 0.18800

Table 2: MSEs of the estimates of λ under balanced loss functions at z � 3.

n 􏽢λBSE
􏽢λBLINEX 􏽢λWBLINEX

c � − 0.5 c � 0.5 c � 1 c � − 0.5 c � 0.5 c � 1

3 0.65811 1.13177 0.40829 0.27092 0.28014 0.35097 0.38773
4 0.53206 0.81009 0.38725 0.26938 0.23257 0.28800 0.31639
5 0.48036 0.67664 0.33463 0.24535 0.19300 0.23867 0.26409
6 0.40974 0.54245 0.29541 0.23786 0.16236 0.20606 0.22213
7 0.32708 0.41068 0.25649 0.19196 0.13664 0.17069 0.18782

Table 3: MSEs of the estimates of R(t) under unbalanced loss functions at z � − 3.

n 􏽢RML(t) 􏽢RSE(t)
􏽢RLINEX(t) 􏽢RWLINEX(t)

c � − 0.5 c � 0.5 c � 1 c � − 0.5 c � 0.5 c � 1

3 0.00301 0.00215 0.00202 0.00229 0.00241 0.00103 0.00113 0.00118
4 0.00202 0.00168 0.00160 0.00172 0.00188 0.00089 0.00094 0.00102
5 0.00140 0.00133 0.00127 0.00139 0.00154 0.00076 0.00081 0.00090
6 0.00091 0.00096 0.00092 0.00104 0.00106 0.00058 0.00065 0.00065
7 0.00058 0.00068 0.00066 0.00073 0.00076 0.00043 0.00047 0.00049
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parameter and reliability function of the IWD. +e majority
of earlier researchers have determined the weighted bal-
anced coefficients by arbitrarily providing the summation
equal to one. In this work, we depended on justifiable
mathematical methods to determine these coefficients,
where we utilized nonlinear programming to obtain the
optimal values of the weighted coefficients for each of BSE,
BLINEX, and BWLINEX.

Furthermore, we conducted aMonte Carlo simulation to
examine the performance of the proposed methods: WLI-
NEX and BWLINEX. We then compared the proposed
methods with the other methods, including ML, SE, LINEX,
BSE, and BLINEX.+e results of the simulation showed that
the developed estimators in this work (BWLINEX and
WLINEX) have the best performance in estimating scale
parameter and in estimating reliability according to the
smallest values of MSE, respectively. +is result shows that
the approach followed is promising and can be applied in a
real environment.
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