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Nowadays, it is well known that global warming is a great hazard to the planet, and the carbon emissions are a principal source of
global warming. For this reason, the customers have become more environment and quality conscious than before, and as a result,
they request the firms to be ecofriendly. In this context, it is desirable that companies develop and implement inventory models
which consider sustainability issues. Furthermore, the companies face problems of shortages and setting prices in order to persist
in a competitive and challenging business. Besides, there exists a kind of items different than the traditional products that it is
necessary to feed them until a target weight is reached in order to slaughter and sell to customers. /ese are named as growing
items. In this sense, this research work proposes an inventory model for growing items with imperfect quality when the demand is
price sensitive under carbon emissions and shortages. /e shortages are fully backordered. /e demand is price sensitive
according to a polynomial function. /e proposed inventory model determines jointly the optimal policy for the selling price of
perfect-quality growing items, the order quantity, and the backordering quantity whichmaximize the expected total profit per unit
of time. Some numerical examples are resolved in order to illustrate the use and the applicability of the inventory model. Finally, a
sensitivity analysis is conducted and some managerial insights are given.

1. Introduction

Inventory management is a valued function for all firms./e
main purpose of the inventory management department is
to control the materials from the acquisition to sale, taking
decisions of how much and when to buy the items avoiding
excess or unplanned stockout.

Since the introduction of the classical economic order
quantity (EOQ) inventory model proposed by Harris [1],
industries have shown great interest in the development of
inventory control models with new features. For example,
Ghosh et al. [2] built an inventory model for a deteriorating
production system when there are random machine
breakdowns considering that there exists a selling price
discount. Manna et al. [3] studied the impacts of inspection

errors on an imperfect production-inventory model when
the demand rate depends on both selling-price discount and
warranty time. Khan et al. [4] and Shaikh et al. [5] intro-
duced a two-warehouse inventory model for instantaneously
deteriorating goods considering an advance payment
agreement. In the same research direction, Khan et al. [6]
investigated the effects of noninstantaneous deterioration on
the ordering decisions for a two-warehouse inventory sys-
tem taking into consideration an advance payment scheme.
Shaikh et al. [7] developed an EOQ inventory model for
deteriorating goods with stock-dependent demand when
there exists a price discount facility.

It is well known that the EOQ determines the optimal
order quantity to minimize total inventory costs. Although
this inventory model has the groundwork for inventory
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systems, it has unrealistic assumptions. For that reason,
many researchers have incorporated different characteristics
in order to model real world applications such as imperfect
quality, carbon emissions reduction, growing items, short-
ages, and pricing, among others.

Harris’s [1] inventory model assumes that all items are of
perfect quality. However, this assumption not always occurs
because the majority of the manufacturing processes generate
a portion of imperfect quality items. So, Salameh and Jaber [8]
formulated an EOQ inventory model considering that the
ordered lot contains imperfect-quality items and these items
are sold as a single batch at a lower price. Cárdenas-Barrón [9]
identified and corrected an error in the inventory model
presented by Salameh and Jaber [8]. Wee et al. [10] extended
Salameh and Jaber’s [8] inventory model by incorporating
shortages with full backordering. Afterwards, Maddah and
Jaber [11] detected and rectified one flaw in Salameh and
Jaber’s [8] inventory model. /e flaw is in the manner of
determining the expected total profit per unit of time
(E[TPU]). Salameh and Jaber [8] utilized the equation
E[TPU] � E[TP/T] which is not exact. /e research work of
Wee et al. [10] contains the same flaw. It is important to
remark that the process of producing the profit is a renewal
process with renewal points at order placement periods.
/erefore, in order to calculate the expected total profit per
unit of time, it is needed to apply the well-known elementary
renewal reward theorem given by Ross [12]. For this reason,
the expected total profit per unit of time must be computed
with the following equation: E[TPU] � E[TP]/E[T]. Chang
and Ho [13] revisited and rescued Wee et al.’s [10] inventory
model by applying the well-known elementary renewal re-
ward theorem to get the expected total profit per unit time.
Cárdenas-Barrón [14] derived closed-form expressions to
determining the optimal solution to an EOQ inventory model
considering items with imperfect quality. Ghiami and
Beullens [15] developed a production-inventory model for a
deteriorating product with partial backordering using a cash-
flow net present value analysis. /ey generated managerial
insights related if it is convenient financially to have planned
shortages with partial backordering and lost sales. Zhou et al.
[16] developed an economic-order quantity model consid-
ering shortages, imperfect quality, and inspection errors.
Taleizadeh et al. [17] studied an inventory model when the lot
contains imperfect-quality items, and these cannot be
replaced with perfect-quality ones immediately, but these are
repaired and then they are sold at lower price. In this line of
research, Rezaei [18] introduced an inventory model con-
sidering imperfect-quality items. Sampling inspection plans
are designed so the buyer would be able to decide regarding
the next step.

At the present time, as we know, global warming is a big
threat to the world and carbon emissions are a leading cause
of global warming. For this reason, the sustainability is an
extremely significant concern for all people that desire to
maintain the planet healthy. It is well known that industries
generate large amounts of carbon emissions. Furthermore,
the transportation of goods through the supply chains
produces carbon emissions too. Consequently, these damage
the environment and cause global warming at the same time.

In this context, the governments of the countries have
imposed strict policies that limit the amounts of carbon
emissions with the aim of having a sustainable environment
free of pollution. /e regulations related to avoid pollution
impose additional costs to firms; thus, it is convenient for
these to adapt and obey the regulations. In this direction,
several companies have adopted inventory models that
consider reducing carbon emissions. For example, Hua et al.
[19] investigated how companies manage carbon emissions
in an inventory management. Arslan and Turkay [20] in-
tegrated sustainability features into the design of an in-
ventory model and proposed different policies that include
environmental and social criteria. Battini et al. [21] intro-
duced a sustainable EOQ inventory model integrating fac-
tors that have a great impact on the environment. Lin and
Sarker [22] presented an inventory model that considers
carbon tax policy and imperfect-quality items avoiding
shortages and incorporated and evaluated some carbon tax
systems. Tiwari et al. [23] investigated an integrated vendor-
buyer inventory model for deteriorating goods with im-
perfect quality, taking into account that all processes in the
supply chain cause carbon emissions. /e target of their
inventory model is to decrease the ecological effects. Kazemi
et al. [24] proposed an inventory model with imperfect
quality from a sustainable point of view, and the aim is to
know the impact of emission costs into the total profit.
Modak et al. [25] addressed a manufacturer-retailer supply
chain inventory model by considering that there is a cost of
GHG emission of the production system and determined the
optimal pricing policies. Afterwards, Sinha and Modak [26]
presented an economic production quantity (EPQ) inven-
tory model taking into account aspects of carbon emissions
and carbon trading. Li and Hai [27] studied an inventory
system for a warehouse with multiple retailers considering
carbon emissions. Manna et al. [28] constructed a pro-
duction-inventory model for controlling the GHG emissions
when the pollution parameters are fuzzy. Later, Manna et al.
[29] studied the effects of carbon emissions on an imperfect
production-inventory model. Huang et al. [30] proposed an
inventory model for a two-echelon supply chain considering
that all operations within the chain produce carbon emis-
sions. /eir inventory model helps companies to determine
the optimal production quantity and delivery quantity which
minimize the total costs under different carbon emission
policies. Recently, Mishra et al. [31] revised the standard
EOQ inventory model to integrate sustainability matters and
developed three inventorymodels with and without shortage
situations. Medina-Santana and Cárdenas-Barrón [32]
formulated an inventory model considering a discontinuous
transportation cost function and carbon emissions function.
/e most recent investigation about carbon emissions be-
longs to the authors Modak and Kelle [33]./ey proposed to
apply the social work donation as a scheme of corporate
social responsibility into a closed-loop supply chain, taking
into consideration the carbon emission tax and that demand
is uncertain.

In recent years, a new topic, that is, inventory man-
agement for growing items, has also been included in the
derivation of inventory models. A growing item is a kind of
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product which is capable of growth during time like
farmyard animals, unlike inert products that do not increase
in weight during storage. Growing items are incorporated
for first time in an EOQ inventory model by Rezaei [34].
Here, the weight increment of items is the main difference
between the inventory models proposed by Rezaei [34] and
Harris [1]. Rezaei [34] developed an EOQ for growing items
for different types of animals, specifically for a kind of
poultry. Zhang et al. [35] revisited and extended the research
work of Rezaei [34] by creating an inventory model for
growing items reducing the carbon emissions in operations.
Sebatjane [36] presented three inventory models for growing
items. Afterwards, Khalilpourazari and Pasandideh [37]
worked with growing items too. /ey formulated a math-
ematical model for multi-item economic order quantity
subjected to some operational constrains. Nobil et al. [38]
derived an EOQ inventory model for growing items when
the shortages are allowed, and these are fully backordered.
/ey argued that their inventory model helps poultry in-
dustries. Under an environment of a two-echelon supply
chain composed by one supplier and one farmer, Mal-
ekitabar et al. [39] developed an inventory model for
growing mortal items considering both the growth function
and the mortality rate for the items. Recently, Sebatjane and
Adetunji [40] presented an EOQ inventory model for
growing items with imperfect quality. It is assumed that a
certain fraction of the growing items has lower quality than
desired. /ey mentioned that it is necessary to define the
growth function of the items in order to calculate the feeding
cost. In this context, Sebatjane and Adetunji [40] considered
three growth functions: logistic, linear, and split linear. In
the same year, Sebatjane and Adetunji [41] introduced an
economic-order quantity inventory model for growing items
with incremental quantity discounts. /ey proposed an
optimal inventory policy to minimize the total inventory
cost in both the owned and rented facilities. Sebatjane and
Adetunji [42] continued working with growing items, but in
this case, they formulated an inventory control model more
realistically, considering that the items need to be trans-
formed and packaged into a consumable form before cus-
tomer demand is met. /e next year, Sebatjane and Adetunji
[43] built a model for managing inventory in a perishable
food products supply chain that begins with farming op-
erations where growing items live and finishes with the
consumption of processed inventory. Sebatjane and Ade-
tunji [44] derived an inventory model for a four-echelon
supply chain with farming, processing, screening, and retail
operations. Gharaei and Almehdawe [45] provided an
economic growing quantity (EGQ) inventory model to
determine the optimal economic growth and slaughter
period and the economic growing quantity to minimize the
total cost of the inventory system. Hidayat et al. [46] pre-
sented an EOQ inventory model with a capacitated ware-
house facility and limited budget for growing products when
the seller provides an incremental quantity discounts
scheme. Mokhtari et al. [47] addressed a production-in-
ventory model for growing goods which deteriorate through
time. Nishandhi [48] studied an EOQ inventory model with
budget-capacity constraint for growing items when a

portion of the items are of imperfect quality. Pourmo-
hammad-Zia and Karimi [49] determined the optimal re-
plenishment and breeding policies for growing products.
Afzal and Alfares [50] and Alfares and Afzal [51] developed
EOQ inventory models for growing items considering
shortages with full backordering. Recently, Sebatjane and
Adetunji [52] created an inventory model for growing items
under a three-echelon supply chain environment taking into
account farming, processing, and retail echelons. Table 1
shows the inventory models related with growing items.

/e organizations need to determine the optimal selling
prices for the products in order to encourage that the
customers buymore andmore products, and therefore, these
organizations can survive in the competitive business en-
vironment. In this context, the academicians and researchers
are modelling the demand rate as dependent of price. For
example, Khan et al. [53] analyzed two supply chain in-
ventory systems when the demand rate depends on price.
Khan et al. [54] proposed an inventory model for deterio-
rating merchandises when the demand is price sensitive, and
there exists a discount policy according all-units arrange-
ment. Khan et al. [55] developed inventory models for
perishable products when the demand rate is dependent on
both price and advertisement. On the one hand, Khan et al.
[56] examined the effects of an advance payment with
discount facility on ordering decisions for perishable items
taking into account that the demand rate is both price and
stock dependent. On the other hand, Panda et al. [57] dealt
with a two-warehouse system for deteriorating items when
the demand rate is dependent on both price and stock;
however, the price is not optimized. Sinha et al. [58] for-
mulated an entropic-order quantity inventory model when
the demand of the product is dependent on selling price and
there is an inspection process to split the imperfect-quality
products from the perfect ones. Modak [59] and Modak and
Kelle [60] introduced omni- and dual-channel supply chain
models, respectively, by considering that there exists a price-
and delivery-time-sensitive stochastic demand.

Nowadays, the firms face problems of shortages and
setting the selling price in order to survive in a com-
petitive business, which is becoming more challenging day
by day. Moreover, the customers are more quality and
environmental conscious than before, and therefore, they
demand products of perfect quality and request firms to
minimize the carbon emissions to the environment.
However, the firms always face problems of process
quality and contaminate the planet. Besides, there exists a
type of goods different than the conventional products
which requires feeding until a target weight is reached in
order to slaughter and sell to customers. /ese are named
as growing items (chickens, cows, pigs, goats, fish,
shrimps, etc.). In this direction, this research work de-
velops an inventory model for growing items with im-
perfect quality when the demand is price sensitive under
carbon emissions and shortages. /e shortages are fully
backordered. /e demand is price sensitive according to a
polynomial function. /e proposed inventory model
determines jointly the optimal policy for the selling price
of perfect-quality growing items, the order quantity, and

Mathematical Problems in Engineering 3



Table 1: Inventory models with growing items.

Authors
Price-

dependent
demand

Type of price-
dependent
demand

Allowed
shortages

Type of
backordering

Imperfect
quality

Carbon
tax

Type of
objective
function

Optimize

Rezaei [34] No — No — No No Max. profit Order quantity and
slaughter time

Zhang et al. [35] No — No — No Yes Min. cost Order quantity and
slaughter time

Sebatjane [36]

No — No — Yes No Max. profit Order quantity and
cycle time

No — No — No No Min. cost Order quantity and
cycle time

No — No — No No Min. cost Order quantity and
cycle time

Khalilpourazari and
Pasandideh [37] No — No — No No Max. profit Order quantity and

slaughter time

Nobil et al. [38] No — Yes Full No No Min. cost

Order quantity,
backordering

quantity, and cycle
time

Malekitabar et al.
[39] Yes Linear No — No No Max. profit Selling price and

cycle time
Sebatjane and
Adetunji [40] No — No — Yes No Max. profit Order quantity and

cycle time
Sebatjane and
Adetunji [41] No — No — No No Min. cost Order quantity and

cycle time

Sebatjane and
Adetunji [42] No — No — No No Min. cost

Order quantity,
cycle time, and
number of
shipments

Sebatjane and
Adetunji [43] Yes Exponential No — No No Max. profit

Selling price, order
quantity, cycle time,
and number of

shipments

Sebatjane and
Adetunji [44] No — No — Yes No Max. profit

Order quantity,
cycle time, and
number of
shipments

Gharaei and
Almehdawe [45] No — No — No No Min. cost Order quantity and

cycle time

Hidayat et al. [46] No — No — No No Min. cost Order quantity and
cycle time

Mokhtari et al. [47] No — No — No No Max. profit Order quantity and
slaughter time

Nishandhi [48] No — Yes Full Yes No Min. cost

Order quantity,
backordering

quantity, and cycle
time

Pourmohammad-
Zia and Karimi [49] No — No — Yes No Min. cost Order quantity and

cycle time

Afzal and Alfares
[50] No — Yes Full Yes No Min. cost

Order quantity,
backordering

quantity, and cycle
time

Alfares and Afzal
[51] No — Yes Full Yes No Min. cost

Order quantity,
backordering

quantity, and cycle
time

Sebatjane and
Adetunji [52] No — No — No No Max. profit

Order quantity,
cycle time, and
number of
shipments

/is paper Yes Polynomial Yes Full Yes Yes Max. profit

Selling price, order
quantity,

backordering
quantity, and cycle

time
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backordering quantity which maximize the total profit per
unit of time.

/e remaining parts of this research work are described
as follows: Section 2 introduces the notation defining
symbols for the parameters, decision variables, decision-
dependent variables, and functions. Section 3 states the
assumptions under which the inventory model is built.
Section 4 formulates the inventory model with shortages for
growing items with imperfect quality when the demand is
price sensitive considering carbon emissions. Section 5
determines some theoretical results, develops the solution
procedure to determine the optimal solution to the inven-
tory problem, and identifies some inventory models as
special cases. Section 6 solves some numerical examples.
Section 7 provides a sensitivity analysis and somemanagerial
insights. Section 8 gives some conclusions and summaries
several research points that can be addressed in the near
future.

2. Notations

With the aim of having a standard notation for the inventory
models with growing items, the nomenclature of Sebatjane
and Adetunji [40] is used and extra symbols are defined too.
/erefore, the following notations are adopted in order to
develop the inventory model for growing items with im-
perfect quality, carbon emissions, and planned shortages.

2.1. Parameters. π: Scale parameter for the price-de-
pendent demand

ρ: Sensitivity parameter for the price-dependent demand
n: Demand power index
v: Selling price of imperfect items (currency symbol/
unit of weight)
K: Setup cost (currency symbol/cycle)
h: Holding cost (currency symbol/unit of weight/unit of
time)
b: Shortage cost (currency symbol/unit of weight/unit
of time)
c: Feeding cost (currency symbol/unit of weight)
p: Purchasing cost (currency symbol/unit of weight)
z: Inspection cost (currency symbol/unit of weight)
θ: Carbon tax rate (currency symbol/amount of carbon
emissions)
Ec: Carbon emissions cost (currency symbol)
K
⌢
: Amount of carbon emissions produced during the

setup process (unit of weight/unit of time)
h
⌢

: Amount of carbon emissions caused by holding
items in the warehouse (unit of weight/unit of time)
c
⌢: Amount of carbon emissions generated during the
feeding period (unit of weight/unit of time)
p
⌢: Amount of carbon emissions made during the
purchasing activity (unit of weight/unit of time)

z
⌢: Amount of carbon emissions created during the
inspection process (unit of weight/unit of time)
r: Inspection rate (unit of weight/unit of time)
α: Asymptotic weight of each item (unit of weight)
β: Integration constant (numeric value)
λ: Growth rate (numeric value/unit of time)
x: Percentage of slaughtered items that are of imperfect
quality (0≤x≤ 1)

E[x]: Expected value of the percentage of imperfect
items (0≤E[x]≤ 1)

1 − E[x]: Expected value of the percentage of perfect
items (0≤ 1 − E[x]≤ 1)

w0: Weight of a newborn item (unit of weight)
w1: Target weight of a grown item (unit of weight)
wt: Weight of an item at time t (unit of weight)
t1: Growing period (unit of time)
t2: Inspection period for the backordering quantity (B)

(unit of time)
t3: Inspection period for yw1 − B units of weight (unit
of time)
t4: Consumption period of perfect items after inspec-
tion time (unit of time)
t5: Shortages accumulation period (unit of time)
Decision variables:
y: Order quantity of newborn items (units)
B: Backordering quantity (unit of weight)
s: Selling price of perfect items (currency symbol/unit
of weight)
Decision-dependent variables:
T: Cycle time (unit of time)
Q0: Total weight at the beginning of the growing period,
Q0 � yw0 (unit of weight)
Qt1

: Total weight at the end of the growing period t1,
Qt1

� yw1 (unit of weight)
Functions:
D(s): Price-dependent demand function (unit of
weight/unit of time)
wt(t): Growth function
g(x): Probability density function of the percentage of
imperfect items
TPU(y, B, s): Total profit (currency symbol/unit of
time)

3. Assumptions

/e inventory model is based on the following assumptions:

(1) /e planning horizon is infinite and a single kind of
items is purchased, and these are capable of growing
before the slaughter process.

(2) /e shortages are permitted, and these are com-
pletely backordered.
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(3) /e items are slaughtered and are immediately
inspected in order to sell them to consumers.
Firstly, the backordering quantity is inspected in
order to cover the shortages of the previous cycle.

(4) /ere exists an inspection process that is 100%
effective.

(5) A random percentage of the slaughtered items is of
imperfect quality.

(6) Imperfect-quality items are not reworked or
replaced.

(7) All imperfect-quality items are salvaged and sold as
a single lot at the end of the inspection process.

(8) /e feeding cost for growing the items is directly
related to weight gained by these.

(9) /e holding cost to keep a weight unit of the
slaughtered item in storage is incurred during both
the inspection process and the consumption period.

(10) /e demand rate D(s) is a polynomial function of
selling price of the perfect-quality items. It is as
follows: D(s) � π − ρsn.

(11) /e selling price of perfect-quality items is opti-
mized, and it must be greater than that of the
imperfect-quality items.

(12) Carbon emissions are taken into account, and these
occur in all operations of the inventory system,
except in the shortage period.

4. Inventory Model Development

/e inventory model for growing items with imperfect
quality, carbon emissions, and shortages is depicted in
Figure 1. Consider a situation where a company orders y

newborn growing items from an outside supplier at the
beginning of the growing period t1. Each newborn growing
item has an initial weight of w0. In this moment, the total
initial weight of the inventory is Q0 � yw0. /e growing
items are fed, and eventually, they grow through time until
an objective weight of w1 is attained. /en, the growing
items are slaughtered at the end of the growing time t1. At
this point, the final weight of the inventory is Qt1

� yw1, and
this total weight contains a percentage x of imperfect items.
/e portion of imperfect items is a random variable with a
known probability density distribution f(x), and its ex-
pected value is E[x]. /e shortages are permitted, and these
are fully backordered. /erefore, immediately, the inspec-
tion process starts to screen the items to complete the
backordering quantity (B) at a rate of r units of weight per
unit of time during the period t2 in order to satisfy im-
mediate shortages from the previous cycle. So, at the end of
the inspection period t2, the inventory model diminishes
vertically by B units of weight. It is important to remark that
the items continue to be inspected at the same rate r during
the period t3 till the total weight is screened. /e length of
the inspection time is t2 + t3. It is worth mentioning that, for
the duration of t3, the on-hand inventory declines by both
removing the imperfect items and current demand rate. At

the end of period t3, the imperfect items are salvaged and
sold as a single lot with a less price. Consequently, the on-
hand inventory drops vertically by xyw1 units of weight. On
the other hand, in the course of t4, the on-hand inventory
decreases due to the current demand rate. /e inventory
level continues gradually consuming until it reaches zero at
the end of period t4 and the shortages period starts. As a final
point, during t5, the shortages are accumulated at the current
demand rate which are eventually satisfied in the next cycle.
Without loss of generality and with the purpose to make the
mathematical expressions more tractable, the cycle time is
determined as follows: T � t3 + t4 + t5.

/roughout t1, the items are growing according to a
logistic growth function which relates the weight of items
with time using three input parameters. /ese input pa-
rameters are the asymptotic weight of the items, the inte-
gration constant, and the growth rate, which are represented
by α, β, and λ, respectively./us, the logistic growth function
of the items is mathematically expressed by

wt(t) �
α

1 + βe
− λt

. (1)

As it was mentioned above, the growing items are
slaughtered when their weight attains the objective weight of
w1 which occurs at the end of the growth period t1. Hence,

w1 � wt t � t1( 􏼁 �
α

1 + βe
− λt1

. (2)

/e duration of the growth period (t1) is calculated by
solving equation (2) for t1. /us,

t1 � −
ln (1/β) α/w1( 􏼁 − 1( 􏼁􏼂 􏼃

λ
. (3)

/e inventory must be inspected before being sold in
order to avoid to vend imperfect quality as good ones;
therefore, firstly, the backordering quantity (B) of the
previous cycle must be screened at an inspection rate r.
/erefore, the duration of the inspection period (t2) is
computed as follows:

t2 �
B

r
. (4)

After the inspection of the backordering quantity is
conducted, the screening process continues until the total
weight is screened due to the fact that there are pending
yw1 − B units of weight to be inspected. /is is performed
during the inspection time t3 which is given as follows:

t3 �
yw1 − B

r
. (5)

After the inspection time t3, the imperfect-quality items
are withdrawn from the storage and sold. Now, the on-hand
inventory contains only perfect-quality items, and these are
consumed during t4. /e time t4 is determined as follows:

E t4􏼂 􏼃 �
yw1 − B − Dt3 − E[x]yw1

D(s)
. (6)

/e shortages accumulation period (t5) is obtained with
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t5 �
B

D(s)
. (7)

With the aim to have more manageable equations and
without loss of generality, it is defined that the expected cycle
time T is computed by the sum of t3, t4, and t5. From
equations (5)–(7), the expected cycle time E[T] is calculated
as

E[T] � t3 + E t4􏼂 􏼃 + t5 �
yw1(1 − E[x])

D(s)
. (8)

/e main goal of the inventory model for growing items
with imperfect quality, carbon emissions, and shortages is to
determine the optimal values for the selling price, order
quantity, and backordering quantity that maximize the total
profit of the company. /e total profit is obtained by the
difference between the total revenue and the total cost of the
inventory system. /e details of how to calculate each
component of the total revenue and the total cost are given
below.

4.1. Expected Revenue per Period. Due to the fact that the
company vends both perfect- and imperfect-quality items,
for that reason, the expected total revenue E[TR] is cal-
culated by the sum of total sales of imperfect and perfect
items. /e perfect-quality items are sold at a price of s per
unit of weight, while at the end of the inspection period t3,
the imperfect-quality items are vended as a single batch with
a less price of v per unit of weight. As a result, the expected
total revenue E[TR] per period is given by

E[TR] � syw1(1 − E[x]) + vyw1E[x]. (9)

4.2. Total Cost per Period. /e expected total cost E[TC] per
period includes the purchasing cost, setup cost, feeding cost,
expected holding cost, inspection cost, backordering cost,
and expected carbon emissions cost. One has

E[TC] � Pc + Sc + Fc + E[Hc] + Zc + Bc + E[Ec]. (10)

/e objective of this inventory model is to maximize the
expected total profit E[TP] which is obtained by subtracting
the expected total cost per period E[TC] from the expected
total revenue E[TR] per period. /en,

E[TP] � E[TR] − Pc − Sc − Fc − E[Hc] − Zc − Bc − E[Ec].

(11)

/e following section provides a detailed discussion of
the calculations of the aforesaid costs.

4.3. Purchasing Cost per Period. At the beginning of each
period, the company buys y newborn items at a cost of p per
unit of weight; each one with a weight of w0. /us, the
purchasing cost per period is obtained with

Pc � pyw0. (12)

4.4. Setup Cost per Period. At the commencement of each
period, a setup cost of K is carried out. So, the setup cost per
period is determined as

Sc � K. (13)

4.5. Feeding Cost per Period. /e growing items are fed
during t1, and a feeding cost is incurred by the company at c

per unit of weight. As the growing items become older and
bigger, they need more food. For that reason, the quantity of
food consumed by the items depends on the age (weight) of
the items according to the growth function wt(t). /e
feeding cost per period is calculated with

Fc � cy 􏽚
t1

0
wt1

(t)dt � cy 􏽚
t1

0

α
1 + βe

− λt
⎛⎝ ⎞⎠dt

� cy αt1 +
α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼒 􏼓.

(14)

4.6. Expected Holding Cost per Period. /e company incurs
in a holding cost for maintaining in good conditions the
items in storage during the cycle time T. /e expected
holding cost is determined by multiplying the holding cost
(h) per unit of weight per unit of time by the inventory
carried out during t2 + t3 + t4. /e whole inventory held is
calculated as the sum of the areas A1 + A2 + A3 + A4 + A5
(see Figure 5 in Appendix A). So, the expected holding cost is
given by

E[Hc] � h
y
2
w

2
1E (1 − x)

2
􏽨 􏽩

2D(s)
−

yw1(1 − E[x])B

D(s)
⎡⎣

+
B
2

2D(s)
+

y
2
w

2
1E[x]

r
−

yw1E[x]B

r
+

yw1B

r
􏼣.

(15)

/e detailed derivation of the expected holding cost
(E[Hc]) is given in Appendix A.

4.7. Inspection Cost per Period. /roughout t2 + t3, a 100%
inspection process is performed at a rate of r with the aim of

Time

Q1 = yw1

xyw1

t1 t2 t3 t4 t5

t1 t2 t3 t4 t5

xyw1

Q0 = yw0

BBB

T
T

Figure 1: Inventory behavior for growing items with imperfect
quality and shortages.
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splitting the perfect-quality items from imperfect-quality
items./e company incurs in an inspection cost of z per unit
of weight. In consequence, the inspection cost per period is
expressed as

Zc � zyw1. (16)

4.8. Shortage Cost per Period. During the course of t5, the
shortages are accumulated till these reach the backordering
quantity of B units of weight. /e company has a back-
ordering cost for the management of the accumulation of
shortages. /e backordering cost is computed by multi-
plying shortage cost (b) per unit of weight per unit of time by
area A6 (see Figure 5 in Appendix A). /erefore, the
backordering cost is calculated as

Bc �
bB

2

2D(s)
. (17)

/e detailed derivation of the backordering cost (Bc) is
specified in Appendix B.

/ere are several research works that suppose that the
carbon emissions generated by the companies are due to the
transportation and warehousing activities. But, in fact, there
are a lot of operations that emit carbon emissions. For
example, the operations involved in the following process
also cause carbon emissions: purchasing, setup, feeding,
holding inventory, and inspection, among others. It is im-
portant to mention that some growing items per se generate
carbon emissions (cows, goats, pigs, etc.). /e carbon
emissions caused by these processes are determined as
follows:

4.9. Carbon Emissions Caused by the Purchasing Action.

P
⌢

c � p
⌢

yw0. (18)

4.10. Carbon Emissions Produced by the Setup Activity.

S
⌢

c � K
⌢

. (19)

4.11. Carbon Emissions Generated during the Feeding Process.

F
⌢

c � c
⌢

y 􏽚
t1

0
wt1

(t)dt � c
⌢

y 􏽚
t1

0

α
1 + βe

− λt
⎛⎝ ⎞⎠dt

� c
⌢

y αt1 +
α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼒 􏼓.

(20)

4.12. Carbon Emissions Created in Holding Inventory’s
Operations.

E[H
⌢

c] � h
⌢ y

2
w

2
1E (1 − x)

2
􏽨 􏽩

2D(s)
−

yw1(1 − E[x])B

D(s)
⎡⎣

+
B
2

2D(s)
+

y
2
w

2
1E[x]

r
−

yw1E[x]B

r
+

yw1B

r
􏼣.

(21)

4.13. Carbon Emissions Made by the Inspection Process.

Z
⌢

c � z
⌢

yw1. (22)

Carbon tax (θ) is one of the well-known mechanisms
imposed by government regulations as a penalty./is means
that the companies need to pay a tax on the amount of
carbon emissions. As a result, the carbon emissions cost per
period that the company must pay is

Ec � θ p
⌢

yw0 + K
⌢

+ z
⌢

yw1 + c
⌢

y αt1 +
α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼒 􏼓􏼔

+h
⌢ y

2
w

2
1E (1 − x)

2
􏽨 􏽩

2D(s)
−

yw1(1 − E[x])B

D(s)
+

B
2

2D(s)
+

y
2
w

2
1E[x]

r
−

yw1E[x]B

r
+

yw1B

r
⎡⎣ ⎤⎦⎤⎦.

(23)

4.14.ExpectedTotalProfitFunction. /e expected total profit
E[TP] per period is calculated in the following manner: the
expected total revenue E[TR] per period minus the expected
total cost E[TC] per period. Basically, the expected total

profit E[TP] is formulated by substituting equations (9) and
(12) to (17) and equation (23) into equation (11). /en, the
expected total profit E[TPU] per unit time per period is
determined as E[TPU] � (E[TP]/E[T]). /us,
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E[TPU(y, B, s)] � sD(s) +
vD(s)E[x]

(1 − E[x])
−

pD(s)w0

w1(1 − E[x])
−

KD(s)

yw1(1 − E[x])
−

zD(s)

(1 − E[x])

−
cD(s)

w1(1 − E[x])
αt1 +

α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼔 􏼕

− h
yw1E (1 − x)

2
􏽨 􏽩

2(1 − E[x])
− B +

B
2

2yw1(1 − E[x])
+

D(s)yw1E[x]

r(1 − E[x])
+

D(s)B

r
⎡⎣ ⎤⎦

−
bB

2

2yw1(1 − E[x])
− θ

p
⌢

D(s)w0

w1(1 − E[x])
􏼢 +

K
⌢

D(s)

yw1(1 − E[x])
+

z
⌢

D(s)

(1 − E[x])

+
c
⌢

D(s)

w1(1 − E[x])
αt1 +

α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼔 􏼕

+ h
⌢ yw1E (1 − x)

2
􏽨 􏽩

2(1 − E[x])
− B +

B
2

2yw1(1 − E[x])
+

D(s)yw1E[x]

r(1 − E[x])
+

D(s)B

r
⎡⎣ ⎤⎦⎤⎦.

(24)

Considering that the demand rate depends on selling
price with a polynomial function D(s) � π − ρsn, the ex-
pected total profit E[TPU(y, B, s)] per unit of time becomes

E[TPU(y, B, s)] � s π − ρs
n

( 􏼁 +
v π − ρs

n
( 􏼁E[x]

(1 − E[x])
−

p π − ρs
n

( 􏼁w0

w1(1 − E[x])
−

K π − ρs
n

( 􏼁

yw1(1 − E[x])

−
z π − ρs

n
( 􏼁

(1 − E[x])
−

c π − ρs
n

( 􏼁

w1(1 − E[x])
αt1 +

α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼔 􏼕

− h
yw1E (1 − x)

2
􏽨 􏽩

2(1 − E[x])
− B +

B
2

2yw1(1 − E[x])
+

π − ρs
n

( 􏼁yw1E[x]

r(1 − E[x])
+

π − ρs
n

( 􏼁B

r
⎡⎣ ⎤⎦

−
bB

2

2yw1(1 − E[x])
− θ

p
⌢ π − ρs

n
( 􏼁w0

w1(1 − E[x])
􏼢 +

K
⌢

π − ρs
n

( 􏼁

yw1(1 − E[x])
+

z
⌢ π − ρs

n
( 􏼁

(1 − E[x])

+
c
⌢ π − ρs

n
( 􏼁

w1(1 − E[x])
αt1 +

α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼔 􏼕

+h
⌢ yw1E (1 − x)

2
􏽨 􏽩

2(1 − E[x])
− B +

B
2

2yw1(1 − E[x])
+

π − ρs
n

( 􏼁yw1E[x]

r(1 − E[x])
+

π − ρs
n

( 􏼁B

r
⎡⎣ ⎤⎦⎤⎦.

(25)

/en, the objective is to maximize the expected total
profit E[TPU(y, B, s)] per unit of time. /erefore, the op-
timization problem is formulated as follows:

Max
(y,B,s)∈Ω

E[TPU(y, B, s)]

whereΩ � (y, B, s): y> 0, 0≤B≤yw1 andp≤ s≤
π
ρ

􏼠 􏼡

(1/n)⎧⎨

⎩

⎫⎬

⎭.

(26)

It is important to remark that the abovementioned
maximization formulation is a nonlinear optimization
problem.

5. Solution Procedure

Firstly, the unconstrained optimization problem is consid-
ered in order to obtain some theoretical results. Secondly, an
algorithm for finding the optimal solution to the constrained
problem given by equation (26) is developed.
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5.1.:eoretical Results. /e aim is to find the optimal values
for order quantity (y), backordering quantity (B), and
selling price (s) that maximize the expected total profit per
unit of time. As the expected total profit per unit of time
function E[TPU(y, B, s)] is continuous and twice differ-
entiable with respect to the three decision variables (y, B, s)

on the interval [0,∞], there exists a global maximum on that
interval.

/e necessary conditions which must be satisfied for the
optimality of solution that maximizes the expected total
profit per unit of time function are
((zE[TPU(y, B, s)])/zy) � 0, (zE[TPU(y, B, s)]/zB) � 0,
and ((zE[TPU(y, B, s)])/zs) � 0.

/e first partial derivative of E[TPU(y, B, s)] given in
equation (25) with respect to y is expressed as follows:

zE[TPU(y, B, s)]

zy
�

K π − ρs
n

( 􏼁

y
2
w1(1 − E[x])

− h
w1E (1 − x)

2
􏽨 􏽩

2(1 − E[x])
−

B
2

2y
2
w1(1 − E[x])

+
π − ρs

n
( 􏼁w1E[x]

r(1 − E[x])
⎡⎣ ⎤⎦ +

bB
2

2y
2
w1(1 − E[x])

− θ −
K
⌢

π − ρs
n

( 􏼁

y
2
w1(1 − E[x])

+ h
⌢ w1E (1 − x)

2
􏽨 􏽩

2(1 − E[x])
−

B
2

2y
2
w1(1 − E[x])

+
π − ρs

n
( 􏼁w1E[x]

r(1 − E[x])
⎡⎣ ⎤⎦⎡⎢⎣ ⎤⎥⎦ � 0.

(27)

/e first partial derivative of E[TPU(y, B, s)] with re-
spect to B is given by

z[TPU(y, B, s)]

zB
� − h − 1 +

B

yw1(1 − E[x])
+

π − ρs
n

( 􏼁

r
􏼢 􏼣 −

bB

yw1(1 − E[x])

− θh
⌢

− 1 +
B

yw1(1 − E[x])
+

π − ρs
n

( 􏼁

r
􏼢 􏼣 � 0.

(28)

/e first partial derivative of E[TPU(y, B, s)] with re-
spect to s is

zE[TPU(y, B, s)]

zs
� π − (n + 1)ρs

n
−

ρns
n− 1

w1(1 − E[x])
vE[x]w1 − (p + θp

⌢
)w0 −

(K + θK
⌢

)

y
⎡⎢⎣

− (z + θz
⌢

)w1 − (c + θc
⌢

) αt1 +
α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼔 􏼕

−
(h + θh

⌢

)

r
yw

2
1E[x] + Bw1(1 − E[x])􏽨 􏽩􏽩 � 0.

(29)

By solving equations (27) and (28) simultaneously for
the decision variables y and B, one has

y �

���������������������������������������������������������������������������������������

2 π − ρs
n

( 􏼁r(K + θK
⌢

)

w
2
1(h + θh

⌢

) rE (1 − x)
2

􏽨 􏽩 + 2 π − ρs
n

( 􏼁E[x]􏽨 􏽩 − (h + θh
⌢

)w1(1 − E[x]) r − π − ρs
n

( 􏼁􏼂 􏼃􏼔 􏼕
2
/((h + b + θh

⌢

)r)􏼠 􏼡

,

􏽶
􏽵
􏽴

(30)

B �
(h + θh

⌢

)yw1(1 − E[x]) r − π − ρs
n

( 􏼁􏼂 􏼃

(h + b + θh
⌢

)r
. (31)
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/e sufficient conditions for the optimality of the so-
lution that maximize E[TPU(y, B, s)] are given in Appendix
C.

5.2. Algorithm for Finding the Optimal Solution. /e fol-
lowing Algorithm 1 is proposed taking into account the
theoretical results and constrains.

5.3. Special Cases. /e proposed inventory model developed
in this research work is a general inventory model because it

contains the following inventory models as special cases:
Sebatjane and Adetunji’s [40] improved inventory model,
Maddah and Jaber [11], Chang and Ho [13], Shih [61], Silver
[62], and the traditional EOQ inventory models with and
without shortages.

(i) When n � 1, it means that the product has a linear
price-dependent demand (π − ρs). It is expressed as
follows:

y �

������������������������������������������������������������������������������������

2(π − ρs)r(K + θK
⌢

)

w
2
1(h + θh

⌢

) rE (1 − x)
2

􏽨 􏽩 + 2(π − ρs)E[x]􏽨 􏽩 − (h + θh
⌢

)w1(1 − E[x])[r − (π − ρs)]􏼔 􏼕
2
/((h + b + θh

⌢

)r)􏼠 􏼡

􏽶
􏽵
􏽴

,
(32)

B �
(h + θh

⌢

)yw1(1 − E[x])[r − (π − ρs)]

(h + b + θh
⌢

)r
, (33)

π − 2ρs −
ρ

w1(1 − E[x])
vE[x]w1 − (p + θp

⌢
)w0 −

(K + θK
⌢

)

y
⎡⎢⎣ − (z + θz

⌢
)w1

− (c + θc
⌢

) αt1 +
α
λ

ln 1 + βe
− λt1􏼐 􏼑 − ln(1 + β)􏽨 􏽩􏼔 􏼕 −

(h + θh
⌢

)

r
yw

2
1E[x] + Bw1(1 − E[x])􏽨 􏽩􏽩 � 0.

(34)

(ii) When shortages and carbon tax rate are not con-
sidered and the demand is not dependent on price
(i.e., b⟶∞, θ⟶ 0 and ρ⟶ 0), then an im-
proved version of Sebatjane and Adetunji’s [40]
inventory model is obtained. It is shown as follows:

y �

����������������������������
2πK

hw
2
1 E (1 − x)

2
􏽨 􏽩 +((2πE[x])/r)􏽨 􏽩

􏽳

. (35)

(iii) When shortages are permitted, carbon tax rate is
not involved, the demand is not dependent on
price, and the products are not of the type of
growing items, and thus, the feeding process is not
incorporated (i.e., b> 0, θ⟶ 0, ρ⟶ 0, and
c⟶ 0), and then, the inventory model of Chang
and Ho [13] is determined. It is given by

y �

������������������������������������������������
2πK

h E (1 − x)
2

􏽨 􏽩 +((2πE[x])/r)􏽨 􏽩 − [h(1 − E[x])]
2/(h + b)􏼐 􏼑

􏽳

, (36)

B �
hy(1 − E[x])

(h + b)
. (37)

(iv) When shortages are not allowed, carbon tax rate is
not taken account, the demand is not dependent on
price, and the products are not of the type of
growing items (b⟶∞, θ⟶ 0, ρ⟶ 0, and
c⟶ 0); then, Maddah and Jaber’s [11] inventory
model is derived. It is presented as follows:

y �

�������������������������
2πK

h E (1 − x)
2

􏽨 􏽩 +((2πE[x])/r)􏽨 􏽩

􏽳

. (38)

(v) When shortages are not tolerable, carbon tax rate is
not considered, the demand does not depend on
price, the goods are not of the type of growing
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items, and inspection rate is sufficiently large (i.e.,
b⟶∞, θ⟶ 0, ρ⟶ 0, c⟶ 0 and r⟶∞);
then, it is converted to the inventory model of Shih
[61] and Silver [62]. It is expressed as

y �

�������������
2πK

h E (1 − x)
2

􏽨 􏽩􏽨 􏽩

􏽳

. (39)

(vi) When shortages are permissible, carbon tax rate is
not incorporated, the demand is not dependent on
price, the products are not of the type of growing
items, and the products are of perfect quality (i.e.,
b> 0, θ⟶ 0, ρ⟶ 0, c⟶ 0, and x � 0); then,
the traditional inventory model with shortages and
with full backordering is found. It is written as
follows:

y �

����
2πK

h

􏽲 �����

h + b

b

􏽳

, (40)

B �
hy

(h + b)
. (41)

(vii) When shortages are not allowable, carbon tax rate is
not taken into consideration, the demand does not
depend on price, the goods are not of type of
growing items, and these are of good quality (i.e.,
b⟶∞, θ⟶ 0, ρ⟶ 0, c⟶ 0, and x � 0);
then, it is transformed to the traditional inventory
model without shortages proposed by Harris [1]. It
is

y �

����
2πK

h

􏽲

. (42)

It is important to remark that the inventory model
developed in this research does not reduce to Salameh and
Jaber’s [8] and Wee et al.’s [10] inventory models because

those inventory models contain a flaw that was identified
and corrected by Maddah and Jaber [11] and Chang and Ho
[13], respectively. Basically, Maddah and Jaber [11] and
Chang andHo [13] proposed improved versions for Salameh
and Jaber’s [8] and Wee et al.’s [10] inventory models, re-
spectively. For this reason, the proposed inventory model
developed in this research work, in fact, converges to
Maddah and Jaber’s [11] and Chang and Ho’s [13] inventory
models as it was mentioned above.

6. Numerical Examples

/is section presents and solves some numerical examples in
order to illustrate the applicability of the proposed inventory
model.

Example 1. /is example considers the input parameters of
Sebatjane and Adetunji [40]. To solve this inventory
problem, it is stated b⟶∞, θ⟶ 0, and ρ⟶ 0. /e
values for the data are π � 1000000, ρ � 0, θ � 0, s � 0.05
ZAR/g, v � 0.02ZAR/g, K � 1000 ZAR/cycle, h � 0.04 ZAR/
g/year, c � 0.2 ZAR/g, p � 0.025 ZAR/g, z � 0.00025 ZAR/
g, r � 5256000 g/year, α � 6870 g, β � 120λ � 40/year,
w0 � 57 g, and w1 � 1500 g, and the percentage of imperfect
growing items follows a uniform distribution (x∼U[c, δ])

with the probability density function g(x) which is given as
follows:

x∼g(x) �

1
δ − c

, c≤ x≤ δ,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(43)

Considering x ∼ U[0, 0.04],

x∼g(x) �
25, 0≤ x≤ 0.04,

0, otherwise.
􏼨 (44)

/en, E[x] and E[(1 − x)2] are computed as follows:

Step 1. Provide the input parameters of the inventory system.
Step 2. Compute the selling price (s′), the order quantity (y′), and the backordering quantity (B′) by solving simultaneously
equations (29)–(31).
Step 3. If the optimality conditions are satisfied, then go to Step 4. Else, go to Step 8.
Step 4. If p≤ s≤ (π/ρ)(1/n), then go to Step 7. Else, go to Step 5.
Step 5. If s> (π/ρ)(1/n), then set s′ � (π/ρ)(1/n), determine the order quantity (y′) with equation (30) and the backordering quantity
(B′) with equation (31), and go to Step 6. Else, set s′ � p and calculate the order quantity (y′) with equation (30) and the
backordering quantity (B′) with equation (31) and go to Step 6.
Step 6. Calculate the expected total profit per unit of time E[TPU(y′, B′, s′)] with equation (25).
Step 7. Report the solution: (y∗, B∗, s∗) � (y′, B′, s′) and E[TPU∗(y∗, B∗, s∗)] � E[TPU(y′, B′, s′)].
Step 8. Stop.

ALGORITHM 1: Algorithm to find the optimal solution.

12 Mathematical Problems in Engineering



E[x] � 􏽚
δ

c
xf(x)dx �

c + δ
2

�
0 + 0.04

2
� 0.02,

E (1 − x)
2

􏽨 􏽩 � 􏽚
δ

c
(1 − x)

2
f(x)dx �

c
2

+ cδ + δ2

3
+ 1 − c − δ,

E (1 − x)
2

􏽨 􏽩 �
02 + 0(0.04) +(0.04)

2

3
+ 1 − 0 − 0.04 � 0.960533333.

(45)

As it was mentioned before, the proposed inventory
model generates an improved version of Sebatjane and
Adetunji’s [40] inventory model. Additionally, the proposed
inventory model also can be used for optimizing the order
quantity (y) and backordering quantity (B) when the selling
price (s) is given. Obviously, it also optimizes the three
decision variables (y, B, s). /erefore, the numerical example
is solved for different values of δ for the four inventory
models: (I) Sebatjane and Adetunji [40] (original version), (II)
Sebatjane and Adetunji [40] (improved version), (III) the
proposed inventory model when selling price (s) is given, and
(IV) the proposed inventory model when the selling price (s)

is optimized. Table 2 shows the comparison of the optimal
solutions among the four inventory models.

From Table 2, it is observed that the expected total profit
of both the proposed inventory models (see columns III and
IV) is greater than that of Sebatjane and Adetunji’s [40]
inventory models (see columns I and II).

Example 2. /is example uses the input parameters of Wee
et al. [10] and Chang and Ho [13]. To solve this inventory
system, the following is established: b> 0, θ⟶ 0, ρ⟶ 0, and
c⟶ 0./e data are as follows: π � 50000, ρ � 0, θ � 0, c � 0,
s � 50 $/unit, v � 20$/unit, K � 100$/cycle, h � 5$/unit/year,
b � 10$/unit/year p � 25$/unit, z � 0.5$/unit,
r � 175200units/year, and x∼U[0, 0.04]. /e optimal solution
is as follows: E[TPU∗(y∗, B∗)] � 1213562$/year,
y∗ � 1751.671 units, and B∗ � 572.2127 units. /is solution is
the same as in the work of Chang and Ho [13].

Example 3. Now, let us consider some dataset of Sebat-
jane and Adetunji [40] which is v � 0.02 ZAR/g,
K � 1000ZAR/cycle, c � 0.2ZAR/g, p � 0.025ZAR/g,
z � 0.00025ZAR/g, r � 5256000g/year, α� 6870g, β� 120,
λ� 40/year, w0 � 57g, w1 � 1500g, and x∼U[0,0.04]. Here,
the holding cost is h � 0.2ZAR/g/year. For the imple-
mentation of the proposed inventory model, additional
information is required. /ese data are related to the type
of the demand function dependent on the price, the
backordering cost, and carbon emissions. /erefore, it is
necessary to state the following data: Assume that the
demand rate of the growing items follows a polynomial
function given by D(s) � π − ρsn with values of π � 135000,
ρ� 1050, and n � 2. /e backordering cost is b � 0.1 ZAR/
g/year. /e relevant input parameters related to carbon

emissions are θ � 0.0045 ZAR/tons, K
⌢

� 2000 tons/year,
h
⌢

� 0.2 tons/year, c
⌢

� 0.65 tons/year, p
⌢

� 0.375 tons/year,
and z

⌢
� 0.005 tons/year. By applying the proposed al-

gorithm, the optimal solution is obtained: E[TPU∗(y∗,

B∗, s∗)] � 584997.4 ZAR/year, y∗ � 34.26474 units of
newborn growing items, B∗ � 33054.63 g, and s∗ � 6
.555838 ZAR/g. Figures 2–4 demonstrate graphically the
concavity property of the expected total profit with re-
spect to pairs of decision variables y and B; y and s; and B

and s, respectively.

7. Sensitivity Analysis

/is section provides a sensitivity analysis in order to in-
vestigate the effects of changing the input parameters on the
expected total profit per unit of time (E[TPU∗]), order
quantity (y∗), backordering quantity (B∗), and selling price
(s∗) of the growing items. /e sensitivity analysis is per-
formed taking into consideration the data of Example 3 when
only one parameter changes at a time and other parameters
are kept at their original values. Specifically, the sensitivity
analysis is performed to study the effect of scale, sensitivity
and power index demand parameters, selling price and ex-
pected value of a percent of poorer-quality growing items,
setup cost, holding cost, backordering cost, feeding cost,
purchasing cost, inspection cost, carbon tax rate, and the
amount of carbon emissions caused by the operations of the
processes in ordering, holding, feeding, purchasing, and
screening. /e results of the sensitivity analysis are given in
Tables 3–5. Based on the behavioral changes as reflected in
Tables 3–5, the following observations are made:

(1) /e value of E[TPU∗] is highly sensitive to the
demand parameters π, ρ, n and less sensitive to other
parameters. On the one hand, the higher the value of
the scale parameter of demand π, the higher the value
of E[TPU∗] due to the fact that demand increases;
therefore, the sales increase, and this leads to high
profits. For this reason, it is suggested for the
manager to apply advertising actions in order to
boost the demand. On the other hand, when the
sensitivity parameter of the demand ρ grows, the
E[TPU∗] declines because this parameter has a
negative impact on the demand, making it drop. For
this reason, it is advisable for the decision maker to

Mathematical Problems in Engineering 13



reduce the selling price. However, a higher value of K

induces higher values of s but a lower value for
E[TPU∗]./is means that as the setup cost increases,
the company must raise selling price s.

(2) /e value of y is more sensitive to the parameters
π, n, K, h, b and less sensitive to other parameters.
/e higher the value of the parameter b, the smaller
the value of y.

(3) /e value of B is more sensitive to the parameters
π, n, K, h, b and less sensitive to other parameters.
/e higher the value of b, the smaller the value of B.
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Figure 2: Concavity of E[TPU(y, B)] w.r.t. y, B

Table 2: A comparison of the optimal solutions of the four inventory models.

I II III IV

Sebatjane and
Adetunji [40]
(original),

b⟶∞, θ � 0,
ρ � 0

Sebatjane and
Adetunji [40]
(improved

inventory model),
b⟶∞, θ � 0,

ρ � 0

/e proposed inventory model,
ρ � 0, s � 0.05 /e proposed inventory model, ρ � 700000

c δ E[x] y∗ E[TPU∗] y∗ E[TPU∗] y∗ B∗ E[TPU∗] y∗ B∗ s∗ E[TPU∗]
0 0.04 0.02 151.5143 34641.73 151.5039 34641.11 167.9070 57103.70 35518.41 138.9623 51818.67 0.6940517 449132.6
0 0.10 0.05 155.2887 35013.46 155.2186 35009.38 171.7566 56624.78 35880.02 142.5000 51509.93 0.6939366 449374.6
0 0.20 0.10 161.8760 35680.21 161.5588 35662.24 178.2198 55663.16 36519.49 148.5423 50865.87 0.6937328 449801.7
0 0.30 0.15 168.8356 36413.78 168.0293 36369.20 184.6550 54469.01 37209.73 154.7091 50032.07 0.6935122 450261.3
0 0.40 0.20 176.1594 37225.05 174.5420 37137.38 190.9380 53009.26 37957.34 160.9085 48973.44 0.6932723 450757.0
0 0.50 0.25 183.8244 38127.53 180.9801 37975.53 196.9174 51252.47 38770.55 167.0178 47653.14 0.6930098 451293.2
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Table 3: Effects of the demand parameters (π, ρ, n), the price of imperfect growing items (v), and the percent of the imperfect growing items
(E[x]) on the optimal solution.

Parameter Value y∗ B∗ s∗ E[TPU∗]

π

85000 27.51468 26714.18 5.205486 291168.5
135000 34.26474 33054.63 6.555838 584997.4
185000 39.64369 37996.92 7.672019 940097.9
235000 44.17254 42062.76 8.645232 1347288
285000 48.10619 45509.16 9.519438 1800598

ρ

650 34.26961 33059.16 8.329802 744653.9
750 34.26828 33057.92 7.755266 692945.8
850 34.26703 33056.76 7.285369 650655.1
950 34.26586 33055.67 6.891773 615231.4
1050 34.26474 33054.63 6.555838 584997.4

n

2 34.26474 33054.63 6.555838 584997.4
5 37.98523 36485.12 1.850223 202864.7
7 38.84940 37274.30 1.490172 170704.7
10 39.54134 37903.96 1.281047 151875.7
14 40.02588 38343.67 1.167557 141757.1

v

0.02 34.26474 33054.63 6.555838 584997.4
0.06 34.26541 33055.26 6.555565 585070.7
0.10 34.26608 33055.88 6.555293 585144.1
0.14 34.26675 33056.50 6.555020 585217.5
0.18 34.26742 33057.12 6.554748 585290.8

E[x]

0.01 33.94088 33076.32 6.555872 584987.5
0.02 34.26474 33054.63 6.555838 584997.4
0.03 34.59095 33028.81 6.555804 585007.0
0.04 34.91934 32998.64 6.555770 585016.4
0.05 35.24975 32963.88 6.555736 585025.6

Table 4: Impacts of the costs of the inventory system (K, h, b, c, p, z, θ) on the optimal solution.

Parameter Value y∗ B∗ s∗ E[TPU∗]

K

1000 34.26474 33054.63 6.555838 584997.4
1200 37.50542 36180.93 6.556512 584656.6
1400 40.48714 39057.41 6.557133 584343.1
1600 43.26350 41735.80 6.557711 584051.2
1800 45.87182 44252.08 6.558254 583776.9

h

0.12 38.34897 30325.67 6.554933 585380.6
0.16 35.88691 31977.51 6.555439 585160.0
0.2 34.26474 33054.63 6.555838 584997.4
0.24 33.09099 33786.80 6.556172 584869.7
0.28 32.18620 34295.59 6.556464 584765.0

b

0.1 34.26474 33054.63 6.555838 584997.4
0.15 30.54445 25267.19 6.556552 584559.0
0.2 28.43147 20585.99 6.557049 584259.0
0.25 27.05971 17420.14 6.557416 584039.2
0.3 26.09415 15121.73 6.557700 583870.6

c

0.05 34.26816 33057.81 6.554445 585372.3
0.1 34.26702 33056.75 6.554909 585247.3
0.15 34.26588 33055.69 6.555374 585122.3
0.2 34.26474 33054.63 6.555838 584997.4
0.25 34.26360 33053.58 6.556302 584872.4

p

0.025 34.26474 33054.63 6.555838 584997.4
0.05 34.26395 33053.90 6.556162 584910.2
0.075 34.26315 33053.16 6.556485 584823.1
0.1 34.26236 33052.42 6.556809 584736.0
0.125 34.26156 33051.68 6.557133 584648.9

z

0.00025 34.26474 33054.63 6.555838 584997.4
0.0005 34.26453 33054.44 6.555923 584974.4
0.00075 34.26432 33054.25 6.556008 584951.5
0.001 34.26412 33054.05 6.556094 584928.6
0.00125 34.26391 33053.86 6.556179 584905.6
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(4) /e value of s is more sensitive to the parameters
π, ρ, n and less sensitive to other parameters. /e
higher the value of the parameter π, the higher the
value of s. /is means that as demand scale pa-
rameter π increases, the company must raise selling
price which will also directly impact positively the
expected total profit. /e higher the value of the
parameters ρ, n, the smaller the value of s.

(5) When the expected value of the defective growing
items E[x] decreases, the expected total profit also
decreases E[TPU∗].

(6) Changes on carbon emission parameters have a regular
influence on the expected total profit E[TPU∗].

With the information of Tables 3–5 is constructed Ta-
ble 6. Table 6 summarizes the sensitivity analysis study in a
visual manner which is more helpful for the decision makers
due to that these can more easily observe how changes in
parameters affect to the decisions variables and the expected
total profit per unit of time in order to take the best decisions
based on numerical facts.

Table 5: Impacts of the carbon emission parameters (K
⌢

, h
⌢

, c
⌢

, p
⌢

, z
⌢

) on the optimal solution.

Parameter Value y∗ B∗ s∗ E[TPU∗]

K
⌢

2000 34.26474 33054.63 6.555838 584997.4
2500 34.30291 33091.45 6.555846 584993.3
3000 34.34103 33128.23 6.555854 584989.3
3500 34.37910 33164.96 6.555862 584985.3
4000 34.41714 33201.65 6.555870 584981.3

h
⌢

0.2 34.26474 33054.63 6.555838 584997.4
0.4 34.23432 33074.31 6.555846 584994.2
0.6 34.20411 33093.81 6.555854 584991.0
0.8 34.17412 33113.15 6.555862 584987.8
1 34.14434 33132.32 6.555870 584984.7

c
⌢

0.65 34.26474 33054.63 6.555838 584997.4
1.3 34.26468 33054.57 6.555865 584990.0
1.95 34.26461 33054.51 6.555892 584982.7
2.6 34.26454 33054.45 6.555919 584975.4
3.25 34.26448 33054.39 6.555947 584968.1

p
⌢

0.375 34.26474 33054.63 6.555838 584997.4
0.75 34.26469 33054.58 6.555860 584991.5
1.125 34.26464 33054.53 6.555882 584985.6
1.5 34.26458 33054.48 6.555904 584979.7
1.875 34.26453 33054.44 6.555925 584973.8

z
⌢

0.005 34.26474 33054.63 6.555838 584997.4
0.015 34.26470 33054.60 6.555853 584993.2
0.025 34.26467 33054.56 6.555869 584989.1
0.035 34.26463 33054.53 6.555884 584985.0
0.045 34.26459 33054.49 6.555899 584980.8

Table 4: Continued.

Parameter Value y∗ B∗ s∗ E[TPU∗]

θ

0.0045 34.26474 33054.63 6.555838 584997.4
0.01 34.41339 33258.23 6.555956 584955.2
0.0155 34.56096 33460.86 6.556074 584913.2
0.021 34.70746 33662.55 6.556192 584871.2
0.0265 34.85293 33863.29 6.556309 584829.3

Table 6: Sensitivity analysis of the key parameters of the inventory
system.

Parameter y∗ B∗ s∗ E[TPU∗]
π↑ ↑ ↑ ↑ ↑
ρ↑ ↓ ↓ ↓ ↓
n↑ ↑ ↑ ↓ ↓
v↑ ↑ ↑ ↓ ↑
K↑ ↑ ↑ ↑ ↓
h↑ ↓ ↑ ↑ ↓
b↑ ↓ ↓ ↑ ↓
c↑ ↓ ↓ ↑ ↓
p↑ ↓ ↓ ↑ ↓
z↑ ↓ ↓ ↑ ↓
θ↑ ↑ ↑ ↑ ↓
K
⌢
↑ ↑ ↑ ↑ ↓

h
⌢

↑ ↓ ↑ ↑ ↓
c
⌢↑ ↓ ↓ ↑ ↓
p
⌢↑ ↓ ↓ ↑ ↓
z
⌢↑ ↓ ↓ ↑ ↓
E[x]↑ ↑ ↓ ↓ ↑
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8. Conclusions and Future Research

/is paper develops an inventory model for growing items
with imperfect quality and carbon emissions in which the
demand rate is price sensitive according to a polynomial
function. Furthermore, the shortages are permissible and
these are fully backordered. To optimize the expected total
profit per unit of time, some theoretical results are derived,
and with these results, an effective and efficient solution
procedure is developed. It is important to state that the al-
gorithm generates the optimal solution to order quantity,
backordering quantity, and selling price which maximizes the
expected total profit per unit of time./e effects of carbon tax
and the amount of carbon emissions are studied. Some im-
portant managerial insights are obtained from numerical
examples and sensitivity analysis. /e results show that
carbon tax has a regular role on the reduction of carbon
emissions. It is important to pay attention to quality and
ensure that the percentage of defective items is kept to a
minimum. Furthermore, if the setup cost increases, the
company must raise selling price s, and when the demand
elasticity parameter increases, the company must raise selling
price which also directly impacts the total profit. Furthermore,
the proposed inventory model is a generalized inventory
model due the fact that several previously published inventory
models are particular cases. It was found that the policy that
permits shortages with full backordering is more economical
that the one that avoids shortages.Moreover, it was also found
that the proposed inventorymodel outperforms the inventory
model of Sebatjane and Adetunji [40].

/ere are several possible extensions of the proposed
inventory model that can be explored. /ese extensions
constitute future research endeavors in the inventory

management of imperfect growing items. For instance,
consider to investigate the effect that only a percentage of
defective items can be reworked, and the others must be
eliminated immediately. Other research studies that can be
conducted are to include new aspects such as stock-dependent
demand, nonlinear holding cost, vendor-managed inventory
(VMI) with consignment stock (CS), inflation, volume dis-
counts, deterioration, trade credit, supply chain environment,
and a vendor-buyer inventory model with multiple ship-
ments, partial backordering, advertising, and multiple
products subject to constrains such as space, budget, and time.
/ese are, among others, some interesting and challenging
subjects of ongoing future investigation that academicians
and researchers would like to study in the future.

Appendix

A. Determination of the Expected Holding
Cost (E[Hc])

/e holding cost is calculated by the multiplication of the
unit holding cost (h) and the total inventory accumulated
during t2 + t3 + t4, and this is the area above level zero in
Figure 5. /is area is computed as the sum of the areas
A1 + A2 + A3 + A4 + A5.

Considering Figure 5, the five areas are defined as
follows.

/e area A1 is obtained as follows:

A1 � t2( 􏼁 yw1( 􏼁 �
B

r
􏼒 􏼓 yw1( 􏼁 �

yw1B

r
. (A.1)

/e area A2 is found as follows:

A2 �
t3( 􏼁(D(s)) t3( 􏼁

2
�

(D(s)) t
2
3􏼐 􏼑

2
�

(D(s)) yw1 − B( 􏼁/r( 􏼁
2

2
�

(D(s)) yw1 − B( 􏼁
2

2r
2 . (A.2)

/e area A3 is determined in the following manner:

A3 � t3( 􏼁 xyw1( 􏼁 �
yw1 − B

r
􏼒 􏼓 xyw1( 􏼁 �

y
2
w

2
1x

r
−

yw1xB

r
.

(A.3)

/e area A4 is defined as follows:

A4 � t3( 􏼁 yw1 − B − D(s)t3 − xyw1( 􏼁

� t3( 􏼁 yw1(1 − x) − B − D(s)t3( 􏼁,

A4 � yw1(1 − x) − B( 􏼁t3 − D(s)t
2
3.

(A.4)

A2
A3

A4 A5

A6 Time

xyw1A1

t1 t2 t3 t4 t5
T

B

Q1 = yw1

Q0 = yw0

yw1 – B
yw1 – B – D(s)t3

yw1 – B – D(s)t3 – xyw1

Figure 5: Inventory behavior through time.
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/e area A5 is given by

A5 �
t4( 􏼁 yw1 − B − D(s)t3 − xyw1( 􏼁

2
�

yw1 − B − D(s)t3 − xyw1
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(A.5)

/e total inventory accumulated (TIA) during t2 + t3 +

t4 is computed as follows:

TIA � A1 + A2 + A3 + A4 + A5. (A.6)

Substituting the corresponding areas,

TIA �
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r
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Simplifying,
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Taking the expected value of the total inventory accu-
mulated (TIA), the following expression is obtained:

E[TIA] �
yw1B(1 − E[x])

r
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Rearranging terms,

E[TIA] �
y
2
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2
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Finally, the expected holding cost (E[Hc]) is given by
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B.Determination of theBackorderingCost (Bc)

/e backordering cost is determined by the multiplication of
the unit backordering cost (b) and the total shortages ac-
cumulated during t5, and this is the area A6 shown below
level zero in Figure 5. /is area (A6) is obtained as follows:

A6 �
t5( 􏼁(B)

2
�

(B/D(s))(B)

2
�

B
2

2D(s)
. (B.1)

/us, the backordering cost (Bc) is given by

Bc �
bB

2

2D(s)
. (B.2)

C. Sufficient Conditions for the Optimality

For the sake of brevity, only the final equations are provided
for the direct and cross second-order partial derivatives.

/e direct second-order partial derivatives are given as
follows.

/e second-order partial derivative of equation (25) with
respect to y is as follows:

z
2
E[TPU(y, B, s)]
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3
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(C.1)

/e second-order partial derivative of equation (25) with
respect to B is expressed as

z
2
E[TPU(y, B, s)]

zB
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⌢

yw1(1 − E[x])
< 0. (C.2)

/e second-order partial derivative of equation (25) with
respect to s is given as follows:
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(C.3)

/e second-order cross partial derivatives are given as
follows.

/e second-order cross partial derivative (z2/zyzB) of
equation (25) is presented as follows:

z
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zyzB
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]

y
2
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/e second-order cross partial derivative (z2/zyzs) of
equation (25) is written in the following manner:
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/e second-order cross partial derivative (z2/zBzy) of
equation (25) is shown in the following way:
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/e second-order cross partial derivative (z2/zBzs) of
equation (25) is given as follows:
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/e second-order cross partial derivative (z2/zszy) of
equation (25) is given as follows:
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/e second-order cross partial derivative (z2/zszB) of
equation (25) is

z
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E[TPU(y, B, s)]
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ρns
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[h + θh
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]

r
. (C.9)

Optimality is given as follows.
To prove the optimality of three decision variables, it is

required to construct the Hessian matrix H, which is given
as follows:
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/e sufficient conditions for optimality through the
Hessian matrix H are as follows:

Det(H1)< 0,Det(H2)> 0, and Det(H3)< 0, where H1,
H2, and H3 are the following matrixes:
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(C.12)

/e abovementioned analysis proves that the function
E[TPU(y, B, s)] is strictly concave and shows that the
Hessian is negative-definite. /erefore, the optimal solution
for the decision variables (y∗, B∗, s∗) exists and maximizes
the expected total profit.
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