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Suppression of milling chatter by disrupting regenerative effect is a well-known method to obtain higher cutting stability domain.
In this paper, a dynamic model of the milling process with variable spindle speed and pitch angle considering helix angle and
process phase difference is presented.)en, an updated semidiscretization method is applied to obtain the stability chart. After the
effectiveness of the proposed method is confirmed by comparisons with the previously published works and the time-domain
simulations, lots of analyses are conducted to deeply evaluate the influence of the helix angle, the process phase difference, and feed
per tooth on milling stability. Results show that the change of helix angle can result in significant stability discrepancies for both
high-speed and low-speed regions. )ough the process phase difference has the randomness and immeasurability in the practical
application, it has an important influence on the stability and will result in a periodic evolution of the stability with a period π.
Also, its recommended values are given for the practical milling process.

1. Introduction

Chatter in metal cutting processes is a form of self-excited
vibration and always causes lower material removal rates,
machining quality, poor accuracy and surface finish, un-
pleasant noise and sound, accelerated tool wear, and so on in
practice. )e most powerful source of chatter is regenera-
tion, which is associated with the surface waviness variation
during successive cuts. )us, in order to avoid chatter and
achieve high productivity in machining, lots of investiga-
tions had been done based on the regeneration mechanism
for optimizing the machining conditions in the past few
decades.

Generally, the regenerative chatter is modeled and an-
alyzed in the frequency domain or time domain. )e most
established method for predicting and preventing regener-
ation chatter is of cutting parameters selection from a sta-
bility lobe diagram (SLD), which can predict the stability

boundary and distinguish the stable and unstable cutting
region. Around this theme, various typical methods, such as
zeroth-order approximation method [1], temporal finite
element analysis [2], multifrequency solution [3], Chebyshev
polynomial approximation [4], semidiscretization method
(SDM) [5–7], full-discretization method (FDM) [8, 9],
spectral element method [10], have been proposed for more
rapidly and accurately predicting the stability chart
successively.

Alternatively, some methods focused on enlarging the
stable cutting region of the stability chart by disrupting the
regenerative effect. One typical example is the utilization of
some special cutters, such as variable pitch cutter (VPC)
suggested by Slavicek [11]. In this case, the modulation in
chip thickness caused by a nonuniform pitch can reduce the
vibration under disturbance. Aiming at predicting the sta-
bility of milling process with VPC, frequency-domain model
[12, 13], the Cluster Treatment of Characteristic Roots [14],
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unified SDM [15], improved FDM [16, 17], and improved
SDM [18] have been proposed successively. Furthermore,
Sims et al. [19], Sims [20], Dombovari and Stepan [21], and
Jin et al. [22, 23] proposed efficient methods to predict the
stability for VPC and variable helix cutter, while Yusoff and
Sims [24] optimized the geometry of variable helix tool to
suppress regenerative chatter. Besides, the use of serrated
cutters [25] also exhibited good capacity and potential for a
higher stable depth of cuts.

Another typical example to achieve regenerative chatter
disruption is the use of variable spindle speed (VSS), which
has a similar mechanism to the use of cutter with variable
pitch/helix cutter. Insperger and Stepan [26] and Zatarain
et al. [27], respectively, used the SDM and frequency-domain
method to construct stability diagrams in the VSS process.
Seguy et al. [28] studied VSS in high-speed milling and
showed its effective suppression on the unstable domain of
the first flip lobe. Long and Balachandran [29] presented a
stability treatment for upmilling and downmilling processes
with a VSS and discussed the benefits of VSS milling oper-
ations. Later, improved SDM [30] and Chebyshev collocation
method [31] are presented to efficiently evaluate the process
stability in milling with VSS, respectively.

Recently, Jin et al. [32] constructed a newdynamicmodel to
investigate the potential of chatter suppression for the milling
process in which the variable pitch cutter and variable spindle
speed (VPCVSS) are considered simultaneously. Results show
that the combined effect of VPC and VSS on improving the
stability region exists and it is more remarkable in certain cases.
Obviously, VPCVSS is not a simple combination of VPC and
VSS. For modeling, the special characteristics caused by the
processes combination, such as time-varying delay, process
phase difference, and time-varying feed, significantly increase
the difficulty of dynamicmodeling, solving, and simulation. For
stability impact, the form of the perturbation of the regener-
ation has realized upgrading to some extent.)is upgrade is not
a simple superposition of the positive effects of VPC and VSS
on system stability but has its own mechanism and phe-
nomenon. However, the research still exists following
deficiencies:

(1) )e actual feature of a tool, helix angle, is not considered
during modeling. However, for a general cutting pro-
cess, the effect of helix angle is crucially important
[33, 34]. )us, the related results cannot reflect the
influence of the helix angle on the stability, and its real
influence is still worthy of exploration and investigation.

(2) )e analysis is based on an assumption that the value
of the process phase difference is equal to 0; however,
it is nonzero usually (note that this will be discussed
in detail in Section Section 2.1.1). )us, its influence
on system stability needs to be explored further.

(3) )e analysis focuses on the influence of the process
parameters, that is, the parameters associated with
variable tooth and variable speed, on the system
stability. However, other important cutting condi-
tions (such as feed rate, feed direction, and helix
angle) are not studied yet.

With the above questions in mind, in this paper, a
dynamical model of milling process of VPCVSS considering
the process phase difference and the helix angle is established
for the first time, and then the influence analyses associated
with process phase angle, helix angle, and feed per tooth are
conducted based on an updated SDM; some relevant en-
gineering suggestions are given. )e structure of the paper is
as follows: in Section 2, the mathematical model and the
method for milling stability are introduced. In Section 3, the
method verification and the stability analysis are conducted.
In Section 4, conclusions are presented in brief.

2. Stability Prediction of Milling with VPCVSS

Generally, the dynamics of the tool-workpiece system in the
milling process is described by the models in the form of
linear delay-differential equations considering regenerative
effect. Based on the number of system modes, these equa-
tions usually are single DOF or two DOFs ones. For the
former, the workpiece is assumed to be more flexible
compared to the rigid tool [5, 35, 36], but the latter models
the tool as a cantilever beam because of the consideration of
rigid workpiece [1–3].

Here, for the convenience of the following analysis, the
single DOF model introduced in [5] is chosen and its
schematic diagram is shown in Figure 1(a), where a helix
tool with radius R, helix angle β, and N unequally spaced
teeth is rotating at a variable velocity Ω(t) in rpm, but the
workpiece is excited by the milling force at the tooltip. )e
mathematical representation of this system is given by

mx €x (t) + cx _x(t) + kxx(t) � − Fx(t), (1)

where x(t) and Fx(t) are the position and cutting force in
the x direction. mx, cx, and kx are the modal mass, damping
coefficient, and spring stiffness, respectively.

2.1. Cutting Force Fx(t). Because of the existence of the
cutter helix angle, the height of the cutter teeth in the cutting
changes all the time. )us, the cutting force acting on the
whole axial cutting height is the integration of differential
force with respect to the differential axial depth dz along the
compliant direction of the workpiece, as shown in
Figure 1(c). If the nonlinear force model suggested in [32] is
considered, the cutting force here can be expressed as

Fx(t) � 􏽘
N

j�1
􏽚

ap

0
dFjx(t, z) � 􏽘

N

j�1
􏽚

ap

0
g ϕj􏼐 􏼑

sin ϕjkt + cos ϕjkr􏼐 􏼑h
q
j(t)dz,

(2)

where q is the nonlinear force coefficient. Influenced by the
judgment function g(ϕj) in equation (2), Fx(t) is piecewise
continuous [37]. As shown in Figure 1(d), each helix tooth
will go through three regions, that is, entry (labeled by①),
middle of the cut (labeled by②), and exit region (labeled by
③) in a milling process. For one case with the same helix
angle and axial depth of cut, there may be two types of such
regions due to the different radial depth of cut, as shown in
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the left and middle graphics of Figure 1(d). Obviously, each
region corresponds to different calculation methods of the
upper and lower limits of integration in equation (2). Here,
function G(ϕj) is introduced instead of the original g(ϕj),
and the unified calculation models for the upper and lower
limits of integration; that is, ϕej(t) � min(ϕj(t, 0), ϕe) and
ϕsj(t) � max(ϕj(t, ap), ϕs) are utilized (for more details, see
[17, 18]). )en, equation (2) can be transformed into

Fx(t) � c 􏽘
N

j�1
G ϕj􏼐 􏼑 􏽚

ϕej(t)

ϕsj(t)
sin ϕjkt + cos ϕjkr􏼐 􏼑h

q
j(t)dϕ,

(3)

where c � R/tan β and G(ϕj(t)) is the new judgment
function which determines whether the tooth is in contact
with the workpiece, defined by

G ϕj(t)􏼐 􏼑 �
1, if ϕs <ϕj(t)< ϕe + ϕhex,

0, otherwise,
􏼨 (4)

where ϕs and ϕe, respectively, are the exit and start angles
which depend on radial immersion ratios aD and milling
style (up- or downmilling), ϕhex is the exit angle difference
caused by the helix angle and is equal to ϕhex � ap tan β/R.

2.1.1. Angular Position ϕj(t). Generally, angular position
ϕj(t) is the function of helix angle and spindle speed. Here, it
is also relevant to the tooth pitch angle. If a linear tooth pitch
variation is shown as

ψ � ψ1,ψ2, . . . ,ψN− 1,ψN􏼂 􏼃 � ψ0,ψ0 + Δψ, . . . ,ψ0 +(N − 1)Δψ􏼂 􏼃,

(5)

where ψ0 � (360/N) − (N − 1)Δψ/2, and a sinusoidal
spindle speed modulation modeled as

Ω(t) � Ω0 +Ω1 sin
2π
Tm

t􏼠 􏼡 � Ω0 1 + RVA · sin RVF ·
2π
60
Ω0t􏼒 􏼓􏼔 􏼕,

(6)

where RVA � Ω1/Ω0 is the ratio of the speed variation
amplitude to the nominal spindle speed and
RVF � 60/(Ω0Tm) is the ratio of the speed variation fre-
quency to the nominal spindle speed, are considered the
same as [32], the angular position ϕj(t) can be defined by

ϕj(t) �

2π
60

􏽚
t

0
Ω(s)ds − zc, if j � 1,

2π
60

􏽚
t

0
Ω(s)ds + 􏽘

j− 1

i�1

2πψi

360
− zc, if 1< j≤N.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

As a spindle rotates in the machining process, the pitch
angle of VPC changes periodically at the rotation period
τ0 � 60/Ω0, whereas the spindle speed varies with the
modulation period Tm � 60/Ω0/RVF. )erefore, when VSS
and VPC are combined, there must be some problems as-
sociated with the phase. As shown in Figure 2, one VPC is
rotating with Ω(t), when its 1-th tooth passes through the
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Figure 1: Schematic mechanical model of a single DOFmilling system (a), regenerative effect (b), and different regions of cutting caused by
the helix angle ((c) and (d)).
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positive direction of Y-axis, that is, the red lines; the value of
its corresponding instantaneous spindle speed is not equal to
Ω0, but the value is between intervals [Ω0 − Ω1,Ω0 +Ω1],
which is depending on the phase of Ω(t) at this moment. In
order to consider this issue, equation (6) is rewritten in a new
form including the initial phase as

Ω(t, η) � Ω0 +Ω1 sin
2π
Tm

t + η􏼠 􏼡, (8)

where η is defined as the process phase difference between
VPC and VSS. Obviously, there are kinds of possible η in
VPCVSS milling process, such as π/4, π, and 5π/4. In other
words, the value of η is a random one between 0 and 2π in
the practical application. As a result, the times to pass
through any pitch angle ψj are different when the teeth is
rotating at Ω(t, η), for example, Cases (1) and (2) shown in
Figure 2. Considering the mechanism of regenerative
chatter, it means that η will affect the time-varying char-
acteristics of time delays in the milling system. Further, η
does make sense for milling stability.

2.1.2. Instantaneous Chip 6ickness hj(t). For a milling
process, the instantaneous chip thickness hj(t) generally
consists of two parts, that is, the static chip thickness hst

j (t)

mainly determined by the feed per tooth and angular po-
sition, and the dynamic displacements vj(t) and vj− 1(t),
respectively, corresponding to the present tooth j and
previous tooth j-1 in the radial direction [1]. )us, hj(t) can
be expressed as

hj(t) � h
st
j (t, η) + vj− 1(t) − vj(t)

� ft,j(t, η)sin ϕj(t) − y t − τj(t, η)􏼐 􏼑sin ϕj(t)

+ y(t)sin ϕj(t),

(9)

whereτj(t, η) represents the time delay between the teeth j
and j− 1, which is mainly affected by the parameters of
VPCVSS, such as spindle speed and pitch angles, and

ft,j(t, η) represents the feed per tooth, which can be de-
scribed by

ft,j(t, η) � vfτj(t, η) � fmϑj(t, η), (10)

where ϑj(t, η) � Nψj(1 − RVA sin(ωmt + η))/360, which is
applied to represent the relationship between nominal feed
per tooth fm and ft,j(t, η).

2.1.3. Time Delays τj(t, η). Generally, time delay is deter-
mined by calculating the rotation time of the tool over the
pitch between two successive teeth except for some special
cases, such as big cutter runout [15, 37]. For VPCVSS
milling, the time delays can be calculated, based on the idea
in [5]. )us, an implicit form including τj(t, η) is conducted
as

􏽚
t

t− τj(t,η)

Ω0 +Ω1 sin ωms + η( 􏼁

60
ds �

ψj

360
. (11)

Substituting equation (6) into equation (11) and rear-
ranging both sides of equation (11), then, τj(t, η) can be
approximately expressed by the following relationship:

τj(t, η) ≈
ψj/κ􏼐 􏼑

6
, (12)

where κ � Ω0 +Ω1 sin(ωmt + η). If Ω1 is small enough
compared with Ω0, that is, RVA is small, equation (12) can
be expanded and then approximated in the form of

τj(t, η) ≈ τ0,j − τ1,j sin ωmt + η( 􏼁, (13)

where τ0,j � ψj/Ω0/6 and τ1,j � τ0,jRVA. Here, it should be
noted that the approximation errors of equation (13) in-
crease with the increase of RVA. For small RVA, for ex-
ample, RVA� 0.2, there are also errors although the effects
of errors on the stability lob may be ignored.

Substituting equations (7) and (9) into equation (3) and
considering equation (1), then linearizing the consequent
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Figure 2: Schematic diagram of process phase difference for VPCVSS system.
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equation on the basis of the ideal in [5], a linear time-
periodic DDE can be given by

mx €x (t) + cx _x(t) + kxx(t) � − ε􏽘
N

j�1
Kj(t) x(t) − x t − τj(t, η)􏼐 􏼑􏽨 􏽩,

(14)

with

ε � cq,

Kj(t) � f
q− 1
t,j (t, η)G ϕj􏼐 􏼑 􏽚

ϕej(t)

ϕsj(t)
ktsin

qϕj(t)cos ϕj(t) + krsin
q+1ϕj(t)􏽨 􏽩dϕ,

(15)

2.2.Updated SDM. SDM is a commonmethod often applied
to the stability analysis of various DDEs where the time
delayed terms are approximated by a piecewise constant
function while the current time terms are left unchanged.
Here, the method is presented for the case of VPCVSS.

However, to ensure that equation (14) is periodic and
applicable to SDM, the ratio of the spindle modulation
period Tm and the rotation period τ0 in the current system
must be a rational number, that is, q1Tm � q2τ0 where q1 and
q2 are relative prime numbers [5].)us, the system periodTc

can be expressed as

Tc � q1Tm

or q2τ0.
(16)

By introducing the system vector U(t) � (x(t), _x(t))T

and using Cauchy transformation, the second-order DDE,
that is, equation (14) can be written as a system of the first-
order DDE:

_U(t) � A(t)U(t) + 􏽘
N

j�1
Bj(t)U t − τj(t, η)􏼐 􏼑,

A(t) � A t + Tc( 􏼁,

Bj(t) � Bj t + Tc( 􏼁,

(17)

with

A(t) �

0 1

− ω2
nx −

εl(t)

mx

− 2ζxωnx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bj(t) �

0 0

ε􏽘
N

j�1

kj(t)

mx

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

l(t) � 􏽘
N

j�1
kj(t),

(18)

where ωnx �
������
kx/mx

􏽰
and ζx � cx/(2ωnxmx) are the angular

natural frequency and the damping ratio.

)e first step of SDM is the construction of the discrete
time interval [ti, ti+1] by dividing its period Tc into k number
with length Δt, that is, Δt � Tc/k. )en, the time-varying
delay τj(t, η) in equation (17) for the interval [ti, ti+1] can be
written in an average form based on the ideal in [5] as

τi,j �
1
Δt

􏽚
ti+1

ti

τj(t, η)dt � τ0,j − τ1,jci, (19)

where
ci �

k]
2π

􏽚
(i+1)2π/k/]+η

i2π/k/]+η
sin(t)dt, i � 0, 1, . . . , k − 1 ] �

Tm

Tc

􏼠 􏼡.

(20)

)en, substituting equation (19) into equation (17),
equation (17) can be approximated in [ti, ti+1] as new form
yields as

_U(t) � AiU(t) + 􏽘

N

j�1
Bi,j αi,jUi− mi,j+1 + χi,jUi− mi,j

􏼒 􏼓 � AiU(t) + Wi,

(21)

with

Ai �
1
Δt

􏽚
ti+1

ti

A(t)dt,

Bi,j �
1
Δt

􏽚
ti+1

ti

Bj(t)dt,

αi,j �
mi,j Δt + Δt/2 − τi,j􏼐 􏼑

Δt
,

χi,j � 1 − αi,j,

Ui− mi,j+1 � U ti− mi,j+1􏼒 􏼓,

Ui− mi,j
� U ti− mi,j

􏼒 􏼓,

mi,j � int τi,j/Δt + 1/2􏼐 􏼑,

(22)

where int (∗) indicates the operation that rounds positive
number towards zero. For the initial value U(ti)�Ui, the
solution of equation (21) is known:
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U(t) � e
Ai t− ti( ) Ui + A− 1

i Wi􏽨 􏽩 − A− 1
i Wi. (23)

Substituting t� ti+1 and U(ti+1) � Ui+1 into the solution
leads to

Ui+1 � QiUi + 􏽘
N

j�1
Mi,j,αUi− mi,j+1 + Mi,j,χUi− mi,j

, (24)

where Qi � eAiΔt, Mi,j,α � (eAiΔt − I)A− 1
i Bi,jαi,j,Mi,j,χ �

(eAiΔt − I)A− 1
i Bi,jχi,j.

Defining the maximum value of mi,j by n � max(mi,j)

and state augmentation of equation (24) results in the 2(n+1)
dimensional discrete map:

Vi+1 � ZiVi, (25)

with

Vi � col Ui,Ui− 1, . . . ,Ui− n+1,Ui− n( 􏼁, (26)

Zi �

Qi 0 · · · 0 0 0
I 0 · · · 0 0 0
0 I · · · 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 · · · I 0 0
0 0 · · · 0 I 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 􏽘
N

j�1

0 · · · Mi,j,α Mi,j,χ · · · 0
0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

)e horizontal position of the discrete input matrices
Mi,j,α and Mi,j,χ in the right side of equation (27) begins
from the column of 2mi,j − 1 and 2mi,j + 1, respectively.
Here, it should be noted that if one reduction about the
matrix Vi is carried out by removing the delayed values of
the velocities, like [7], the size of vector Vi can be decreased
to n + 2, the horizontal position of Mi,j,αand Mi,j,χ will
change from the column of mi,j + 1 and mi,j + 2,
respectively.

)e Floquet transition matrix over the principal period
Tc is approximated by coupling the solutions of k successive
time intervals Δt:

Φ � Zk− 1Zk− 2, . . . ,Z1Z0. (28)

Stability of the investigated system is determined by the
eigenvalues of the transition matrixΦ. )e system is stable if
all eigenvalues of Φ are in modulus less than 1.

)e main advantage associated with the method in this
paper can be summarized as follows:

(1) Compared with the original algorithm [5, 6, 36], the
method in this paper can be applied not only to
variable pitch milling cutter or variable speed milling
process but also to their composite systems. Math-
ematically, it is suitable for the stability solution of
DDEs with multiple variable delays.

(2) Due to the addition of equations (16) and (20), the
method in this paper is also applicable to some
special cases, where number 1 cannot be divisible by
the values of RVF, such as RVF� 0.22, 0.3, or 0.4. For
the above cases, this method is applicable, but the
method in [32] is not.

In addition, it should be noted that the 1-DOF VPCVSS
model is proposed in this paper; however, the milling system
belongs to the 1-DOF model in general. )us, to realize a
conversion from 1-DOF one to 2-DOF one [38], some

modifications need to be carried out as follows: (a) the
system equation (equation (1)) should consider the dy-
namics in both X and Y directions instead of the original X.
(b) Correspondingly, the cutting force model in X and Y
directions (equations (2) and (3)) should be constructed. (c)
)e dynamic cutting force thickness (equation (9)) is
changed to a coupled model considering X and Y directions.
(d) )e system equation (equation (17)) and the corre-
sponding state matrix are changed from two dimensions to
four ones. (e) Equations (25) and (26) change from 2(n+1) to
4(n+1) or 2n+4 if the delayed values of the velocities are
removed, thus, the horizontal position of the discrete input
matrices Mi,j,α and Mi,j,χ in equation (27), respectively,
begins from the column of 4mj,k,i − 3 and 4mj,k,i + 1or
2mj,k,i + 1 and 2mj,k,i + 3.

3. Stability Analysis and Discuss

In this section, the verification of the proposed method is
carried out firstly. )en, the influence of the cutting con-
ditions, that is, the process phase angle, the helix angle, and
the feed per tooth on the stability of the VPCVSS process is
investigated in detail. Note that besides the influence pa-
rameters shown in respective figure names, other parameters
in the following calculation example are as follows:
upmilling, the cutting-force exponent is q � 0.75, the cut-
ting-force coefficients are kt � 107 × 106 N/m1+q and
kr � 40 × 106 N/m1+q, the mode mass is mx � 3.1663 kg, the
natural frequency is ωn � 400Hz, damping ratios are
ζx � 0.02, the number of the cutter teeth is N � 4, the tool
radius is R � 9.525 × 10− 3 m, and pitch angles are
ψ � [75, 85, 95, 105]°). Here, it must be emphasized and
noted that the VPC used in this paper belongs to an
asymmetric cutter. Correspondingly, its dynamic balancing
ability is poor and this will be more significant in high-speed
cutting. However, this problem cannot be considered in the
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following calculation examples, so there may be some
prediction errors associated with cutting stability in the
high-speed region.

3.1. Model Verification. In this section, the validity of the
proposed method will be carried out by comparing with
previous works and the time-domain simulations.

To illustrate the performance of the proposed approach,
the related works on VSS in [5] and on VPCVSS in [32] are
considered first. Based on themain calculation parameters in
[5, 32], the proposed method is utilized to calculate the SLDs
for both VSS and VPCVSS cases with two different helix
angles under two different radial depths of cut. )e related
results are shown in Figures 3(a)–3(h), where (a)–(d) and
(e)–(h), respectively, correspond to VSS andVPCVSS, whilst
the stability boundary labeled by blue and red dotted lines
are, respectively, associated with the cases of helix angle β �

0° and 30°.
If comparing the SLDs marked by blue lines in

Figures 3(a) and 3(b) with those in Figures 5.17(a) and (b) in
[5], and comparing the SLDs marked by the red dotted lines
in Figures 3(e)–3(g) with those in Figures 4(a) and 4(b) and
11(b) in [32], one can see that their calculation results are in
good agreement obviously. )is indicates that the proposed
method has good reliability and accuracy in predicting the
stability for both VSS and VPCVSS processes when the helix
angle is β � 0°.

Comparing all the blue stability boundaries with the red
ones in Figures 3(a)–3(h), it can be found that, no matter for
VSS (Figures 3(a)–3(d)) or VPCVSS (Figures 3(e)–3(h))
milling processes, the change of helix angle can result in
significant stability difference.

In order to effectively verify the above predicting trend of
stability caused by helix angle, one updated time-domain
program (or called time marching solution) is utilized. It
should be noted that this program is mainly crafted on the
basis of [39], and its application range is expanded from the
stability prediction for a single case of VPC to that of
VPCVSS. )e most critical operation is that the rotation
angle is discrete uniformly for one system cycle but time
period. Based on the program, detailed information about
the amplitude of the vibrations can be obtained and the
contour plot of peak-to-peak (PTP) [39] vibration can be
generated for a range of spindle speed and axial depth of cut
combinations. )erefore, the appearance of nonlinear vi-
bration (chatter) can be well grasped by examining the
abrupt change of vibration displacement with the axial depth
of cut increasing uniformly. Remarkably, this program can
take into account teeth jumping out of contact, workpiece
dynamics, regeneration effect, pitch angles, helix angles, and
spindle speed variations simultaneously.

Based on the above program, time-domain simulations
for the plot of PTP are carried out under conditions the same
as those of the red stability boundaries in Figures 3(g) and
3(h), and the related results are shown in Figures 3(i) and
3(j). Obviously, the prediction results based on the proposed
method are in accordance with those by the time-domain
simulations. )is proves the validity and reliability of the

proposed method when the helix angles are considered. On
the other hand, there are also some little differences between
their results. )e reason is that the above time-domain
simulations can consider the effect of loss-of-contact
character on milling dynamics but the proposed method
cannot.

In order to detect the stability difference caused by the
helix angle more intuitively, two special cutting points are
selected, that is, point “A” in Figure 3(g) (Ω0 � 1600 rpm,
ap � 48mm) and point “B” in Figure 3(h) (Ω0 � 13000 rpm,
ap � 27mm). One can see from the associated SLDs that
points “A” and “B” are unstable in the cases of β � 0°;
however, they will turn to the stable ones when the helix
angle changes to β � 30°.

)eir vibration information is simulated in the time
domain and the results associated with the cutting vibration
time history and periodic points, Poincare section, and
nonuniform fast Fourier transform (NuFFT) are shown in
Figure 5. Note that Figures 5(a) and 5(c), respectively,
correspond to points “A” and “B” under β � 0°, but
Figures 5(b) and 5(d) correspond to β � 30°. Consequently,
the associated stability states are as follows:

(i) Figures 5(a) and 5(c) exhibit two unstable processes
due to the fact that the period-doubling (charac-
terized by two points in the Poincare section shown
as the middle graphic in Figure 5(a)) and quasipe-
riodic (characterized by the appearance of a circle
map for Poincare section shown as the middle
graphic in Figure 5(c)) bifurcation occur, respec-
tively. Meanwhile, the large amplitude vibrations
occur at chatter frequency (CF).

(ii) Figures 5(b) and 5(d) exhibit two stable processes
because they are both characterized by the single
fixed point for Poincare mapping (see the middle
graphics in Figures 5(b) and 5(d)). )ere are only
modulation frequency (MF) and its harmonics in
NuFFTs, and the clearly smaller vibration peaks
compared with their counterparts.

Obviously, not to mention CFs, there are so many other
frequencies in Figure 5, especially for Figures 5(a) and 5(b).
)e reason is that the modulated frequency is equal to
Ω0RVF/(60q1) and its harmonics equal to nΩ0RVF/(60q1),
with n � 1, 2, . . . appearing now. As a result, their values are
about 5.33n for Figures 5(a) and 5(b) and 108.33 n for
Figures 5(c) and 5(d), respectively.

All in all, the results based on the theoretical calculation
and the simulations are consistent.

3.2. Influence of the Process Phase Difference. Because the
VPCVSS system is a combination of VPC and VSS, there
must be the process phase differences between VPC and VSS
as shown in Figure 2. In fact, the value of η is almost im-
possible to be zero in practice; therefore, whether the
conclusion based on the assumption of η � 0 in [32] is
universal or not needs further discussion and research.

Starting with above problem, to further evaluate the
effect of η on cutting stability, the SLDs corresponding to
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Figure 3: Stability diagram of VSS and VPCVSS systems under different cutting parameters. (a)–(h): obtained by the analytic method;
(i)-(j): obtained by time-domain simulation.
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four special process phase differences (i.e., η � 0, π/2, π, and
3π/2) under the large and small radial depth of cut, are
calculated and shown in Figures 6(a) and 6(b). It can be seen
that there are only two stability curves with obvious dif-
ference for every SLD: one is the overlapping stability curves
corresponding to η � 0 and π (see the blue line and red
dotted line) and the other corresponding to η � π/2 and 3π/2
(see the blue line and green dotted line). From a more
detailed observation, it can be found that when η changes
from 0 to π/2, the system stability is evolving gradually. At
η � π/2, the evolution difference reaches the peak. )en, η is
increasing from π/2 to π, its stability continues to evolve
gradually; however, the difference decreases on the whole.

Finally, when η � π, its stability is the same as the case of
η � 0. Obviously, there are two kinds of limit shapes of the
SLDs, that is, ones at η � 0 or π and the others at η � π/2 or
3π/2.

In order to evaluate the impact of η in more detail, four
different η are chosen in the interval [0, π/2] corresponding
to Figure 6(a) and the interval [π/2, π] corresponding to
Figure 6(b), respectively, and the related SLDs are calculated
and shown in Figures 6(c) and 6(d). It can be seen that, for
the above intervals, η always plays an important role and
results in a gradual change of SLDs from one limit to an-
other. If this trend is extended to the whole value domain of
η, one can easily know that the limit shapes of the SLDs
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Figure 4: Effect of feed per tooth on milling stability under different situations. (a) aD � 50% , q� 0.75; (b) aD � 10%, q� 0.75; (c) aD � 50%,
q� 0.94.
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under the influence of η, respectively, occur at ηa � nπ − π
and ηb � nπ − π/2 (n� 1, 2, ...), and η obviously leads to the
periodic evolution of system stability whose period is π. )is
is attributed to the following reason. For the VPCVSS
processes described in this article, their time delays exist in
the form of sine waves as shown in Figures 6(c) and 6(d)
(note that they are corresponding to the SLDs in Figures 6(e)
and 6(f ), resp.). When the values of η are varying, the waves
will move along the time axis (shown as the red lines). As a

result, the combinations of the multiple time delays in the
milling system will be altered, the stability nature will also be
changed consequently.

In view of the significant influence of η on cutting
stability, it is necessary to consider it for a VPCVSS process.
However, as shown in Figure 2, it is obvious that the value of
η is random and unmeasured in the actual machining
process. Considering its periodic influence on the cutting
stability region and the variation limit of the SLDs, one can
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Figure 5: )e information associated with the continuous and 1/Tc-sampled time histories of vibration displacement (x), the Poincare
section, and the Fast Fourier Transform for points “A” and “B” in Figures 3(g) and 3(h) under different helix angles β. (a, c) β � 0° � 0°; (b, d)
β � 90°.
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take the median on the interval [ηa, ηb] as the value of η for
obtaining a relatively compromised SLD; thus, the difference
between the predicting SLDs and the actual ones can be
minimized. With this in mind, η can be defined as
ηa + (ηa − ηb)/2, that is, η � 3nπ/4 − π/2.)us, some η, such
as π/4 and 5π/4, are suggested and used in the practical
application.

3.3. Influence of the Feed per Tooth. Feed per tooth is an
important basis for the selection of cutting parameters
[40, 41]. However, in most previous studies concerning
milling chatter, it is ignored usually because it is considered

to have no contribution to the dynamic cutting thickness
and system stability. Also, one cannot get the effects of feed
rate on the stability of milling by a linear cutting force model
through the SMD in general. Here, the influence of feed per
tooth on stability is investigated deeply, based on the method
in this paper. Note that the following will be based on the
nominal feed per tooth fm in equation (10) instead of the
time-varying one ft,j(t, η) for convenience.

To illustrate the performance of feed per tooth on the
dynamic behaviour of the VPCVSS system, SLDs are here
provided for four different feed per tooth (i.e., fm � 0.01, 0.05,
0.1, and 0.2mm/tooth) under two different radial immersion
ratios (10% and 50%), as shown in Figures 4(a) and 4(b). It
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Figure 6: Influence of the process phase difference on cutting stability and time delays. (a–d) the SLDs under different process phase
difference; (e, f ) the variation of the associated time delays.
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can be seen that, with the increasing of fm, the corresponding
stability boundaries exhibit a trend of upward movement for
both big and small radial depth of cut; thus, the limit depth
of cut and stability area increases significantly.)is is mainly
due to the effect of the force-feed nonlinearity, specifically
the nonlinear force coefficient q in equation (2), on chatter in
the milling process. Because the value of q is equal to 0.75,
that is, a number less than 1, a bigger fm will lead to a weaker
nonlinear relationship between the cutting force and the
dynamic displacements.

In order to further investigate the above effects, the SLDs
corresponding to the four examples in Figure 4(a) are cal-
culated under q� 0.94 and shown in Figure 4(c). It can be
seen from Figure 4(c) that the influence of feed per tooth is
the same as that of q� 0.75. However, compared with the
latter, the former results in a more significant increase in
stability.)is is mainly due to the fact that since the values of
q are significantly less than unity, the nonlinear feed effect is
more evident. )e conclusions are consistent with those in
[41], where the machining stability of the nonlinear feed is
investigated for general turning and milling process through
experiments and theoretical analysis. )us, the combination
nature in the VPCVSS system does not change the general
influence mechanism of the feed per tooth on milling
stability.

Here, it must be noted that the above analysis conclu-
sions are based on the premise that the value of q is less than
one, which is suitable for some materials, such as aluminum
alloy and steel [39]. However, if q� 1, the force-feed rela-
tionship in equations (2) and (15) will become linear and the
effect of the force-feed nonlinearity on the system dynamic
mentioned above will vanish. At this time, only if some other
conditions are added, the influence of the feed effect can be
considered again. For example, when the multiple time
delays caused by the tool runout is considered, a smaller feed
will result in a higher stability boundary [15]. For the case of
the variable time delay caused by the tool path, [41] exhibits
a shift of SLDs with the change of feed. Further, if q> 1, the
associated conclusion in this article will be the opposite, that
is, the increase of fm results in the smaller limit depth of cut
and stability area. Obviously, different considerations and
analysis angles will lead to changes in conclusions; this is
understandable.

Next, the simplification of the time-varying character-
istic of the feed per tooth is carried out and its influence on
the stability is investigated. For equation (10), if the VSS
effect is not considered, that is, RVA� 0, it will degenerate to

ft,j(t, η) �
ftmNψj

360
, (29)

if neither the VSS nor VPC effect is considered, it turns to

ft,j(t, η) � ftm. (30)

Figure 7 shows the SLDs corresponding to ft,j(t, η)

respectively defined by equations (10), (29), and (30). It can
be seen that there is a small difference among their stability
boundaries for both the radial immersion ratios of 10% and
50%. )is indicates that no matter the multi-time-varying

characteristics of feed per tooth reflected by equation (10) or
the multiconstant ones by equation (29), their influence on
the stability is very limited. )us, for the related general
calculations, they both can be simplified to a single constant
feed per tooth as shown in equation (30). However, this does
not result in too much error for stability prediction.

3.4. Influence of theHelix Angle. Although many efforts have
been devoted to studying the influence of helix angle on
stability in the past, the related works are almost restricted to
the regular cutter [33, 34] or variable pitch cutter [19]; there
is little work focusing on this topic for VSS milling, let alone
VPCVSS. In this section, the above question will be analyzed
in detail through combining some new calculations with the
ones in Figure 3.

As shown in Figures 3(a)–3(h), the stability limits in-
crease evidently as the helix angle increases from β � 0° to
30°. And this trend is more significant for the small axial
depth of cut. )is is attributed to the fact that larger helix
angle means more obvious system time variation in small
immersion ratios, which is characterized as highly inter-
rupted. Further, it can be found that, for VSS milling the
effect of helix angle is mainly reflected in the high-speed
region (e.g., among 12000–18000 rpm in Figures 3(a)–3(d)),
whereas this effect is relatively small for the low-speed re-
gion. However, the effect of helix angle is very significant in
both high-speed and low-speed regions for VPCVSS milling,
for example, 2000–6000 rpm and 12000–18000 rpm in
Figures 3(e)–3(h). )is may be attributed to the combined
effect of VPC and VSS, that is, the positive effect of VPC
(especially linear pitches case) on the maximum depth of cut
in low speed as shown in [17] and the effective suppression of
period double chatter in the high-speed region for VSS
milling as shown in [28].

RVA = 0.1, RVF = 0.5, fm = 0.1mm/tooth, β = 30°, η = π/6, q = 0.75
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Figure 7: Effect of the different simplified forms of feed per tooth
on milling stability.
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In order to evaluate the stability trend caused by helix
angle in more detail, the calculations are conducted under
four different helix angles (i.e., β � 0°, 15°, 30°, and 45°) and
their results are shown in Figure 8. It can be seen that, with
the increase of the helix angle, the stable cutting area in-
creases significantly. In Figure 8(a), the so-called “stable
islands” [17, 42] gradually appear around 2000 rpm so that
the original unstable region turns to stable, whereas the
sharp appendages around 16000 rpm gradually turn to
“unstable islands” (flip bifurcation region) and disappear
finally when β � 45°. However, it should be noted that, with
the further increase of the helix angle, the influence of the
helix angle on the cutting stability becomes weaker and
weaker, especially in the high-speed area. )is is mainly due
to the smaller influence of the larger helix angle on the time-
varying characteristics for the VPCVSS system.

4. Conclusion

)is paper presents a dynamical model of the milling process
of VPC and VSS considering the helix angle and the process
phase difference. )en, an updated SDM is proposed to gain
the stability chart. After the verification of the proposed
method by comparisons with previously published works
and the time-domain simulations, lots of influence analyses
are conducted deeply. From the stability analysis, the fol-
lowing conclusions can be drawn:

(1) No matter for VSS or VPCVSS milling, the change of
helix angle can result in significant stability differ-
ence for both small and big radial immersion ratios.
However, for VSS milling, the effect of helix angle is
mainly reflected in the high-speed region, whereas

the effect of helix angle is very significant in both
high-speed and low-speed regions for VPCVSS
milling process.

(2) Process phase difference has an important influence
on the cutting stability, especially for the low-speed
domain. Under the influence of the phase difference,
there are two kinds of change limits in SLDs, which
occur in η � (n − 1)π and nπ/2, n� 1, 2, .... )ere-
fore, it is necessary to consider the phase difference
in the stability calculation of VPCVSS or similar
system. Considering the randomness and immeas-
urability of η in the actual process, its recommended
value is η � 3nπ/4 − π/2, such as π/4 and 5π/4.

(3) Due to the effect of the force-feed nonlinearity, as the
feed per tooth is increasing, the stability boundaries
exhibit a trend of upward movement, both for big
and small radial immersion ratios, thus the limit
depths of cut and stability area are increasing
significantly.

(4) )e multi-time-varying characteristic of feed per
tooth in VPCVSS milling has almost negligible in-
fluence on the stability; thus, it can be simplified to a
single constant one for a general calculation.

Nomenclature

A: State matrix for the complete system
ap: Axial depth of cut (m)
aD: Radial immersion ratio
Bj: State matrix for the system delays for the j-th tooth
cx: Damping coefficient
Fx: Cutting force in x direction
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Figure 8: Effect of helix angle on cutting stability.
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fm: Nominal feed per tooth (mm/tooth)
ft,j: Feed per tooth of the system for the j-th tooth
G, g: )e new and traditional functions which determine

whether the tooth is in contact with the workpiece
hj: Instantaneous chip thickness (m)
i: Index denoting flute (tooth) number
j: Index denoting the number of the discrete time

interval
k: Number of discrete time intervals
kr, kt: Tangential and radial directions cutting coefficients
kx: Spring stiffness
mx: Modal mass (kg)
N: Number of teeth
Q: Nonlinear parameter in cutting force
R: Radius of a cutter (m)
RVA: Ratio of the speed variation amplitude to the

nominal spindle speed
RVF: Ratio of the speed variation frequency to the

nominal spindle speed
Tc: Period of the VPCVSS system (s)
Tm: Period of modulation by VSS (s)
x, _x, €x: Displacement, velocity, and acceleration in x

direction
z: Axial position on flute
β: Helix angles (°)
Δt: Time of discrete interval (s)
Δψ: Variation of pitch angles (°)
η: Process phase difference between VPC and VSS

(rad)
τi,j: Approximated time delay in the i-th interval for j-th

tooth (s)
ϕe, ϕs: Exit and start angles (rad)
ϕhex: Exit angle difference caused by the helix angle (rad)
ϕj: Angular position of j-th tooth
ψj: Pitch angle between j-th and (j-1)-th teeth
Ω: Spindle speed of VSS (Rev/min)
Ω0: Foundation speed of VSS (Rev/min)
Ω1: Amplitude variation of spindle speed (Rev/min).
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of the influence of mill helix angle on chatter stability,” CIRP
Annals, vol. 55, no. 1, pp. 365–368, 2006.

[34] B. Balachandran and M. X. Zhao, “A mechanics based model
for study of dynamics of milling operations,” Meccanica,
vol. 35, no. 2, pp. 89–109, 2000.

[35] Y. Sun and S. Jiang, “Predictive modeling of chatter stability
considering force-induced deformation effect in milling thin-
walled parts,” International Journal of Machine Tools and
Manufacture, vol. 135, pp. 38–52, 2018.

[36] L. Zhang, B. Hao, D. Xu et al., “Dynamic milling stability
prediction of thin-walled components based on VPC and VSS
combined method,” Journal of the Brazilian Society of Me-
chanical Sciences and Engineering, vol. 42, p. 6, 2020.

[37] S. Jiang and Y. Sun, “Stability analysis for a milling system
considering multi-point-contact cross-axis mode coupling
and cutter run-out effects,” Mechanical Systems and Signal
Processing, vol. 141, Article ID 106452, 2019.

[38] WA. Yang and C. Huang, “Stability analysis of 2-DOF milling
dynamics for simultaneously varying tooth pitch and spindle
speed with helix angle effect,” International Journal of Ad-
vanced Manufacturing Technology, vol. 110, no. 5-6,
pp. 1163–1177, 2020.

[39] K. B. Powell, “Cutting performance and stability of helical
endmills with variable pitch,” Dissertation, University of
Florida, Gainesville, FL, USA, 2008.

[40] T. Insperger, D. A. W. Barton, and G. Stépán, “Criticality of
hopf bifurcation in state-dependent delay model of turning
processes,” International Journal of Non-linear Mechanics,
vol. 43, no. 2, pp. 140–149, 2008.

[41] R. G. Landers and A. G. Ulsoy, “Nonlinear feed effect in
machining chatter analysis,” Journal of Manufacturing Science
& Engineering-ASME, vol. 130, pp. 11017–11021, 2008.

[42] Q. Guo, Y. Jiang, B. Zhao et al., “Chatter modeling and
stability lobes predicting for non-uniform helix tools,” In-
ternational Journal of Advanced Manufacturing Technology,
vol. 87, no. 1–4, pp. 251–266, 2016.

Mathematical Problems in Engineering 15


