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BBO is one of the new metaheuristic optimization algorithms, which is based on the science of biogeography. It can be used to
solve optimization problems through the migration and drift of species between habitats. Many improved BBO algorithms have
been proposed, but there were still many shortcomings in global optimization, convergence speed, and algorithm complexity. In
response to the above problems, this paper proposes an improved BBO algorithm (DCGBBO) by hierarchical tissue-like P system
with triggering ablation rules. Membrane computing is a branch of natural computing that aims to abstract computational models
(P system) from the structure and function of biological cells and from the collaboration of cell groups such as organs and tissues.
In this paper, firstly, a dynamic crossover migration operator is generated to improve the global search ability and also increase the
species diversity. Secondly, a dynamic Gaussian mutation operator is introduced to speed up convergence and improve local
search capabilities. To guarantee the correctness and feasibility of the mutation, a unified maximum mutation rate is designed.
Finally, a hierarchical tissue-like P system with triggering ablation rules is combined with the DCGBBO algorithm, making use of
evolution rules and communication rules to achieve migration and mutation of solutions and reduce computational complexity.
In the experiments, eight classic benchmark functions and CEC 2017 benchmark functions are applied to demonstrate the effect of
our algorithm. We apply the proposed algorithm to segment four colour pictures, and the results proved to be better compared to
other algorithms.

1. Introduction

Membrane computing is a new field of natural computing
that aims to abstract computing models from the function
and structure of living cells and from the coordination of
tissues and organs [1]. On the basis of DNA research, be-
cause of the inspiration of the protective role played by the
cell membrane when the substance in the cell reacted, the
calculation model of membrane computing was proposed
and called it membrane system or P system [2]. Membrane
calculation models are grouped into three main types: (1)
cell-like P system [2], (2) tissue-like P system [3], (3) spiking
neural P system [4]. Zhang et al. [5] have summarized the
research on the efficiency and computing power of the three
computing models. *e tissue-like P system is applied as the
basis, and a hierarchical tissue-like P system with starting

ablation rules is proposed to assist the variants of intelligent
optimization algorithm BBO to seek out the optimal solu-
tion. Since the organizational P system was proposed,
countless extended systems have been introduced, and the
universality of calculation has been proved, and some are
combined with practical problems. *ere are multiple
channel states with tissue P systems [6], and new evolutional
symport/antiport rules were applied in tissue-like P systems
[7], tissue P systems which carried cooperating rules [8], a
unidirectional organization P system with promoters [9],
timed steady-state tissue-like P systems which introduced
evolutional symport/antiport rules [10], and image seg-
mentation with complex chain P system based on evolu-
tionary mechanism [11]. In the system, objects realize
calculations through evolutionary rules and communication
rules, where the implementation of the rules is uncertain,
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and the number of rules can be maximized simultaneously,
and thereby, the computational efficiency is enhanced
stronger.

Biogeography-based optimization (BBO) [12] is one of
the intelligent optimization algorithms, such as other op-
timization algorithms (particle swarm optimization (PSO)
[13], artificial bee colony (ABC) [14], ant colony optimi-
zation (ACO) [15], differential evolution (DE) [16,17], Grey
Wolf Optimizer (GWO) [18], monarch butterfly optimi-
zation (MBO) [19], earthworm optimization algorithm
(EWA) [20], elephant herding optimization (EHO) [21],
moth search (MS) algorithm [22], slime mould algorithm
(SMA) [23], and Harris hawks optimization (HHO) [24]); a
fixed calculation mode is constructed to solve diverse op-
timization problems. Gaining-sharing knowledge optimi-
zation algorithm (GSK) [25] was proposed, which is based
on the concept of acquiring and sharing knowledge in the
human life cycle. And there have been many research studies
on the combination of metaheuristic algorithms and local
search. *e mutation operator in differential evolution is
introduced into PFA (HPFA) [26]. A new classification for
the source of inspiration for nature-inspired algorithms was
designed too, and it can be classified into four groups:
evolutionary techniques, swarm intelligence techniques,
physics-based techniques, and human-related techniques.
*e BBO algorithm is one of the swarm intelligence tech-
niques, which is essentially due to changes in external en-
vironmental factors, through the evolution of species within
the habitat and the migration and communication between
habitats, to achieve the enrichment of species diversity and
the exploration and exploitation of species, so as to realize
the evolution of habitat. Because the calculation mode of
standard BBO is simple and single, its optimization effi-
ciency is limited. *ence, since BBO was proposed, many
scholars have made improvements to the shortcomings of
the algorithm. For example, a new migration operator called
blended migration was come up with which the feature of
immigration is obtained by another solution [27]. An
ecogeography-based optimization (EBO) was proposed [28],
in which topological structure is introduced and habitat
population was combined with it to form ecosystems. BBO-
M integrates differential evolution (DE) algorithm and chaos
theory to increase the search ability of mutation operators
[29]. Worst opposition learning and random-scaled differ-
ential mutation BBO (WRBBO) was proposed to obtain
global and local search ability [30]. *e replacement of
mutation operators greatly reduces the complexity of the
algorithm. *e fireworks algorithm (FA) and the BBO al-
gorithm were crossed; that is, the advantages of the two
algorithms are integrated to obtain a higher quality solution
[31]. A two-stage biogeography-based optimization which
carried differential (TDBBO) was constructed to solve the
problem of obtaining a local optimal solution due to pre-
mature convergence and reduce the rotation difference [32].
DE/BBO was produced which combined the exploration of
DE with the development of BBO effectively, so as to solve
numerical optimization problems from a global perspective
[33]. For the purpose of strengthening the optimization
performance and reducing the complexity of the calculation

process, a fused and efficient biogeography-based optimi-
zation (EMBBO) algorithm was programmed which utilizes
a new example earning approach [34]. In this paper, a novel
DCGBBO algorithm is designed, the convergence speed of
the algorithm and optimization effect are improved on
account of dynamic crossover migration operator and dy-
namic Gaussian mutation operator, and computational
complexity is reduced through the introduction of tissue-
like P system with ablation rules. *e contributions are
expressed as follows:

(1) Dynamic crossover migration operator is come up
with to strengthen the global search ability and in-
crease the species diversity. A dynamic Gaussian
algorithm is produced, and the algorithm is planned
into two steps, not only speed up the convergence
speed but also increase the local search ability greatly
meanwhile. By way of resolving situations that fall
into local optimum, the opposition-based learning
mechanism is brought in. *e above operation im-
proves the exploitation ability and the exploration
ability of the algorithm.

(2) At the same time, a hierarchical tissue-like P system
with triggering ablation rules designed for DCGBBO
is introduced to reduce the complexity of the cal-
culation process by the execution of rules in the
system.

(3) DCGBBO is tested on 8 classic benchmark functions
and CEC 2017 benchmark functions to terrify the
optimization efficiency, and the Wilcoxon signed-
rank test is employed to verify the optimization
performance of DCGBBO; the results prove that
DCGBBO is more efficient than many state-of-the-
art BBO variants and other algorithms.

(4) At the meanwhile, DCGBBO is applied to segment
colour image; the segmentation results reveal that
DCGBBO is much better than other competitive
algorithms.

*e frame structure of the paper is as follows. Section 2
provides the related work and background knowledge which
contained basic BBO algorithm and tissue-like P system.*e
proposed algorithm DCGBBO and hierarchical tissue-like P
system with triggering ablation rules designed for DCGBBO
are introduced in Section 3. And the experiment and the
analysis of the algorithm are described in Section 4. *e last
Section 5 provides the summary and prospect of this paper.

2. Related Work: BBO Algorithm and Tissue-
Like P System

2.1. BBO Algorithm. Biogeography-based optimization
(BBO) was proposed in 2008 by Simon [12]. According to
the definition of the BBO algorithm, the habitat is used to
represent each individual in the population, that is, the
candidate solution in the optimization problem. *e com-
bination of many habitats (N candidate solutions) consti-
tutes a population. *e fitness index variable (SIV) that
measures the habitability of each habitat corresponds to the
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feature vector (D-dimension) of each candidate solution in
the optimization problem. Habitat fitness value (HSI) is used
to measure the living environment of each habitat and the
fitness function value of each candidate solution in the
optimization problem (f(x)). SIVs can be regarded as con-
trollable independent variables and HSI as dependent var-
iables in algorithms.

In the BBO algorithm, if a habitat is suitable for survival,
then more species would be contained in there. To renew
each habitat, the information between habitats and other
habitats would be exchanged through the migration of
species. And the number of species in each habitat changes
accordingly by calculating the immigration rate, the emi-
gration rate, and mutation rate which are calculated by
equations (1)–(3), respectively, as follows:

λi � I 1 −
Si

Smax
 , (1)

μi � E
Si

Smax
 , (2)

mi � mmax 1 −
Pi

Pmax
 . (3)

where I and E are on behalf of the maximum immigration
rate and maximum emigration rate, respectively, Si denotes
the number of species of habitat Hi, Smax represents the
maximum species numbers of every habitat, when the im-
migration rate and emigration rate have the same value, S0
represents the number of species at this time. mmax is the
maximum mutation probability and its value is ensured by
users, Pi is the probability of species [12], and Pmax is the
maximum probability of species. *e migration operator
and mutation operator are expressed as the following
equations (4) and (5), respectively:

Hi SIVj ⟵He SIVj , (4)

Hi SIVj ⟵lbj + rand∗ ubj − lbj . (5)

In equation (4), Hi is the immigration habitat, He is the
emigration habitat, and the value is obtained via roulette
wheel selection, and Hi(SIVj) denotes the jth SIV of the
habitat Hi. In equation (5), Hi is the mutation habitat, and
ubj and lbj are the maximum and minimum limit values of
the jth SIV of the habitat Hi, respectively.

*e main calculation process of the BBO algorithm is as
follows:

Initialization: randomly initialize the solution pop-
ulation containing N individuals, the maximum
number of iterations (MI), the maximum migration
rate (I), the maximum migration rate (E), the maxi-
mum mutation probability (mmax), and the number of
elite solutions K. Calculate the fitness value of each
solution according to the designed parameter values,
and sort them from the best to the worst.

Iteration process: for each iteration, the migration rate
and mutation rate of each solution are calculated, K
elite solutions are retained, and then migration and
mutation operations are performed according to
equations (4) and (5). *en fitness values are calculated
and solutions are sorted again, the K previously
retained elite solutions are replaced with the worst K
solutions, and finally, these solutions are sorted and the
iteration ends.
Iteration stop condition: before satisfying the iteration
stop condition (usually reaching the designed MI), the
algorithm will execute step “Iteration process” in a
loop. After satisfying the stopping condition, the first-
ranked solution is the optimal solution and the algo-
rithm ends. *is is just the result of the algorithm
running once.

2.2. Tissue-Like P System. *e tissue-like P system [3] is a
calculation model abstracted based on the structure and
function of the cell population in the organization and is an
extension of the cell-like P system. It does not have nonbasic
membranes like the cell-like P system; it only has the basic
membrane and the environment. Information is commu-
nicated by symport/antiport rules and evolutionary rules
through the cell and the environment [7]. Similarly, certain
rules and cell state requirements are satisfied, and objects can
also communicate between cells.

A formal expression of tissue-like P system is as follows:

 � , μ, syn,ω1, . . . ,ωq, R, R′, σ0 , (6)

where  denotes a nonempty finite alphabet of the system; μ
represents the membrane structure of the system;
syn⊆ 1, 2, . . . , q  × 1, 2, . . . , q  means the attach relation-
ship between cells; ω1, . . . ,ωq is a number of multisets
initially existed in the cell; R is the collection of limited
evolution rules; R′ is a series of limited communication
rules; and σ0 � σout, σ0 is the output area that can store the
results.

3. Methods

BBO is a simple optimization algorithm with a single mode.
It can find the best local and global solutions to balance
exploration and exploitation capabilities. However, there are
still shortcomings such as limited exploration capabilities
and slow convergence speed. *erefore, in connection with
the shortcomings of the BBO algorithm, some improve-
ments were made to improve the effect which was DCGBBO.
Later, a hierarchical tissue-like P system with triggering
ablation rules was proposed, and it was combined with
DCGBBO, and the extremely parallel principle of the P
system was used in order to improve the efficiency of the
algorithm, for the reason that the optimal solution could
obtain.
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3.1. Improved BBO (DCGBBO)

3.1.1. Dynamic CrossoverMigration. In order to improve the
local search ability preferably, increase the species diversity,
and enhance the exploitation ability, dynamic crossover
migration operator is designed to replace equation (4) and it
is described as following equations:

Hi SIVj ⟵HR SIVj  + α∗ (1 − 2∗ rand)

∗ Hi SIVj  − HR SIVj  ,

(7)

α � 2∗ 1 −
t

MI
 , (8)

where α is a cross-scaling factor and HR is a habitat that is
worked out by the roulette wheel selection.

*e dynamic crossover migration operator is similar to
[30]. In [30], HR is chosen by the example learning selection
[35] rather than the roulette wheel selection in this paper. In
our opinion, the example learning selection will only choose
migration habitat from good habitats, and the lack of
randomness of selection will increase the possibility of the
algorithm falling into local optimization. Consequently, the
roulette wheel selection is preserved. α is inspired by the
factor in GWO [16], which can adjust dynamically as the
number of iterations changes. *e range of α is 0 to 2, which
is linearly decreased, and the range of (1 − 2∗ rand) values is
from − 1 to 1. In the early step of the iterations, the value of
α∗ (1 − 2∗ rand) is relatively large, so a relatively large
disturbed value can be received, the diversity of charac-
teristics can be increased, and the global search ability can be
enhanced simultaneously. Later in the iteration, α∗ (1 −

2∗ rand) is relatively small, the algorithm will continue to
optimize in the direction of convergence, and the local
ability is strengthened at the same time.

3.1.2. Dynamic Gaussian Mutation. For mutation strategies,
the authors in [36] introduced a novel mutation rule that the
population was divided into the best, better, and worst
groups, one of each partition to implement the mutation
process. In [37], two mutation strategies are introduced and
a hybridization framework is proposed to improve the al-
gorithm performance. Gong et al. [38] introduced Gaussian,
Cauchy, and Levy mutation operators into BBO for real
space. In this paper, we proposed an improved dynamic
Gaussian mutation operator to speed up convergence, re-
duce algorithm complexity, and improve exploration
capability.

*e probability density function of the Gaussian dis-
tribution is described as follows:

f(x) �
1
���
2π

√
σ
exp −

(x − μ)
2

2σ2
 , (9)

where μ is the mean and σ is the standard deviation. *en,
the dynamic Gaussian mutation operator with μ � 0 and σ �

1 is presented in equations (10) and (11), in which a is a user-
delimited parameter and a� 0.02 and ubj and lbj is the

maximum and minimum limit values of the jth SIV of the
habitat Hi, respectively.

Hi SIVj ⟵Hi SIVj  + δ ∗ randn(0, 1), t≤
MI
2

,

Hi SIVj ⟵Hi SIVj  + 1 −
t

MI
 ∗ randn(0, 1), else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

δ � a∗ ubj − lbj . (11)

In the first half of the iteration, δ is a constant value and it
depends on the maximum and minimum limit values of the
feature, so the convergence is accelerated and the global
search capability is enhanced too. As the value of t increases,
the iteration enters the second half, and then (1 − (t/MI))
goes down, disturbed value also goes down, the solution
continues to search for the optimal value along the direction
of convergence in the first stage, and the local search ability
and exploration capability are improved.

*e occurrence of random events is uncertain, so the
HSI of the habitat will abruptly change, so there is a
mutation operator in BBO. *e mutation probability of the
original standard BBO algorithm is obtained from species
count probabilities; there is a relatively low probability for a
small number of species or a large number of species and a
high probability when the number of species approaches
the equilibrium point. However, as the occurrence of
unexpected events is uncertain, obtaining the mutation
probability based on species count probabilities cannot
guarantee the correctness and feasibility of the mutation, so
in this paper, each habitat has the same probability of
mutation, that is, maximum mutation rate mmax.

3.1.3. Opposition-Based Learning Approach. Because the
setting of the initial solution is relatively random, the di-
versity of the population is constrained, and the direction
and degree of migration and mutation of each solution are
different, which could lead the optimization process to get
the local optimum value without jumping out of the limit. As
a result, the optimal solution cannot be found and the
running time of the algorithm is consumed. Some methods
[35,39,40] have been produced to avoid the algorithm falling
into local optima in some respects. And a new operator is
designed in equation (12) where Hl(SIVj) is the last that is
the worst habitat.

Hl SIVj ⟵ lbj + ubj − Hl SIVj  . (12)

If the algorithm finds a better value at a certain moment,
the value of the solution remains unchanged after subse-
quent iterations, but it is not the optimal value. At this time,
equation (12) can be used to obtain a new value. And then
according to the new value, the solution space might be
changed or keep the original order.

*e pseudocode of DCGBBO is described in
Algorithm 1.
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3.2. Hierarchical Tissue-Like P System with Triggering Ab-
lation Rules (HTPTA) for DCGBBO. In this part, the
DCGBBO algorithm based on HTPTA is proposed and
named as DCGBBO-HTPTA. We introduced a new trigger
mechanism, defined ablation rules and replication rules, and
applied the evolutionary rules and communication rules
between membranes. In the algorithm, an individual (po-
tential solution) is an object in the membrane of the P
system. All objects in a membrane can be regarded as a
population, and a cell membrane can be regarded as a
subpopulation. *erefore, the optimization of the algorithm
can be completed by the evolution rules between individuals
(potential solutions) in a membrane and the communication
rules between the membrane and the membrane. Hierar-
chical tissue-like P system with triggering ablation rules with
2q+ 1 cell membranes, which is designed for the DCGBBO
algorithm, is shown in Figure 1. *e P system is constructed
just as the following form:

 � , μ, σ0, σ1, . . . , σ2q+1,ω1, . . . ,ωq, R2/3,q, R1′, R2/3,q
′ ,

R
c
2/3,q, β, Ra, σout,

(13)

where

 is an alphabet of the system, and letters correspond to
objects in the DCGBBO-HTPTA.

μ represents a 3-layer membrane structure, which
contains 2q+ 1 cell membranes.
σ0 represents environment. σ1, σ2, . . . , σ2q+1 are 2q+ 1
cell membranes. σ2q+1 is the global cell membrane,
which store the optimal solution for each subblock after
the algorithm ends.
ω1, . . . ,ωq express the collection of initial objects in q
cell membrane, and ωi denotes the collection of initial
objects in σ2,i.
R2/3,q represents object-based evolution rules within the
membranes. R2/3,i shows the evolutional rule which is
executed in membrane σ2/3,i, and the specific form is
[u]2,i⟶ [v]2,i, which means object u evolved to v in
membrane σ2,i.
R1′, R2/3,q
′ indicate the communication symport rules

from membrane σ2/3,i to membrane σ1/2/3,i, and the
form is [u]2,i[]3,i⟶ []2,i[u]3,i, which means the object
u in the membrane σ2,i entered the membrane σ3,i.
Rc
2/3,q represents copy-rules of the object in membrane

σ2/3,i, and the form is [u]2,i⟶ [uu]2,i, which means
there are two u in the membrane σ2,i after applying the
copy-rules.
β is a trigger which exists in the second and third layer
of cell membranes. When a specific condition is
reached, there are only K objects left in the membrane
σ2/3,q, and the sequence numbers of these K objects are

Algorithm start
Initialization:
Randomly initialize N solutions, and set up I, E, MI, and mmax.
Calculate the value of HSI of every solution and then sort every solution from the best to the worst according to their HSIs.
Compute the immigration and emigration and preserve K elite habitats.
Iteration process:
for t� 1 to MI//iteration stop condition
for i � 1 to N

if i �� N then
for j � 1 to D
Execute the opposition-based learning approach that is equation (12).

end for
else
for j � 1 to D//migration operator
if rand< λi

Carry out the roulette wheel selection to screen out emigration habitat He, and perform equations (7) and (8) to renew
Hi(SIVj).

end if
if rand<mi //mutation operator
Perform equations (10) and (11) to renew Hi(SIVj).

end if
end for

end
end

Compute the fitness (HSI) of every habitat and sort every solution from the best to the worst on the basis of their HSIs again.
Comply the elite operator and perform an exchange of poor solution with elite solution
Sort every solution from the best to the worst via their HSIs finally.
end for
Algorithm finished

ALGORITHM 1: *e main process of DCGBBO.
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(N − k+ 1,N), the trigger β is activated, and the ablation
rules Ra is executed, and the form is [u]2,i⟶ []2,i,
which indicates that the object u in membrane σ2,i is
ablated when certain conditions are met.
σout is the output cell membrane, the optimal solution
in membrane σ1 will be output to the output membrane
σout, and the environment is the output area of the
algorithm.

For μ, there are one cell membrane σ1 in the first layer
and q cell membranes in the second layer and third layer
denoted by σ2,1, . . . , σ2,q and σ3,1, . . . , σ3,q, respectively. *e
cell membrane corresponding to every 3 layers is a subblock,
so there are q subblocks.

Calculation process.
(1) Initialize the number of cell membranes (2q+ 1), the

number of initial solutions (objects) (N), the value of
initial objects in each cell in the second layer, and the
number of elite objects K. Calculate the fitness value
(f(x)) of each object in the initial cell and sort them,
calculate the emigration rate and the immigration
rate, and start the iteration.

(2) Execute the copy-rule, copy the objects with the
serial number 1 − K, and execute the communication
rules to send these K objects to the corresponding
third layer of cells.

(3) Using the extremely parallel rule, update each object
according to formulas (7), (8), and (10)–(12) and sort
again, and then send the object with sequence
number 1 − (N − K) to the corresponding third layer
of cells.

(4) At this time, there are only K worst objects left in the
second layer of cells, and certain conditions are met,
so that the trigger is activated, the ablation rule is
executed, K objects are ablated, and there are no
more objects in the second layer of cells. *ere are N
objects in the third layer of cells. At this point, the
first iteration is over.

(5) *e second iteration in the third layer of cells is
started until the MI is met; otherwise, repeat steps
2–4. When the calculation stops, the optimal object
that is the optimal solution from the membrane will
be sent to the environment.

4. Experiments and Analysis

In order to test the optimal performance of DCGBBO, some
experiments are implemented on a series of classic bench-
mark functions. *e operating system of the experiment was
Microsoft Windows 7 on PC, with 1.70GHz CPU and 4GB
memory. *e experimental environment is MATLAB
R2017b.

4.1. Experiment Setting. *e classic benchmark functions
used to testify the optimization efficiency include the tra-
ditional continuous unimodal functions (f3-f5), which are
implemented to evaluate the exploitation ability of the al-
gorithm, the multimodal functions (f6-f8), which are applied
to evaluate the exploration ability of the algorithm, a step
function, which just obtain one minimum and is discrete
(f1), and a noisy quartic function (f2). *e particular in-
formation of these classic benchmark functions is demon-
strated in Table 1. CEC 2017 contains novel basic problems,
composing test problems, rotated trap problems, graded
level linkages, and many other problems. In order to further
verify the optimization ability of DCGBBO to deal with
complex problems, a large number of experiments were
carried out on CEC 2017 [41] benchmark functions.

4.2. Experiment Results

4.2.1. Experiment Results and Analysis on Classic Benchmark
Functions. *e DCGBBO-HTPTA is compared with stan-
dard BBO [12] algorithm and three BBO variants which
include B-BBO [27], BBO-M [29], and TDBBO [32] on 8
benchmark functions and some CEC 2017 benchmark
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Figure 1: Structure of hierarchical tissue-like P system with triggering ablation rules for DCGBBO algorithm.
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functions to testify the performance of themselves. *e
parameters of the comparison algorithm are shown in Ta-
ble 2. To be fair, the algorithm’s public parameters are set to
the same. For classic benchmarks functions, the number of
independent runs (Num) of all the algorithms is 30, and the
population size is 50 (N� 50). And on the 30D functions, MI
is 2500, maximum number of function evaluation (MNFE) is
MI∗N. On the 50D functions, MI is 3500, andMNFE also is
MI∗N.

In this experiment part, the mean value (Mean) and the
standard deviation value (Std) are used as evaluate indicators
to testify the optimization performance of the algorithms.
For the algorithm, the Mean value represents the optimi-
zation ability and the Std value represents the stability. So the
Mean value is the key point of the comparison.

From Table 3, we can reach that DCGBBO is the first of
the 7 functions and is the second of 1 function on 30D
optimization problem. TDBBO is the first of 2 functions, and
B-BBO and BBO-M are the first of 1 function, respectively,
as evaluate indicators are equal. In the traditional contin-
uous unimodal function (f3-f4), DCGBBO is better than
other algorithms except f5 and is slightly inferior to TDBBO,
but in the multimodal functions (f6-f8), a step function (f1),
and a noisy quartic function (f2), DCGBBO is distinctly
better than other algorithms which shows that dynamic
Gaussian mutation enhances the global search ability and
exploration ability of the algorithm indeed. On function f1,
DCGBBO gets the optima value (0) which proves that
DCGBBO has great convergence performance and opti-
mization performance. From Table 4, we can conclude that
DCGBBO is the first of the 7 functions and is the second of 1
function on 50D benchmark functions. B-BBO is the first of
2 functions, and BBO-M and TDBBO are the first of 1
function, respectively, as evaluate indicators are equal. In the
traditional continuous unimodal function (f3-f5), DCGBBO
is better than other algorithms, which shows that the dy-
namic crossover migration enhances the exploitation ability
and local search ability. In the multimodal functions (f6-f8),
DCGBBO ranks first and the evaluation index is obviously
better than that of other algorithms; this shows that dynamic
Gaussian mutation enhances the global search ability and
exploration ability. On f1, all BBO variants can get the best

value (0) except standard BBO. On f2, DCGBBO is slightly
inferior to B-BBO, but the difference in the evaluation index
is very small.

We get the convergence curves of 5 comparison algo-
rithms on 8 classic functions shown in Figures 2 and 3. *e
abscissa “Iteration” gives the number of iterations, and the
ordinate “f value” gives the optimization functions value of 8
benchmark functions tested by 5 comparison algorithms.
From Figure 2, no matter which function, DCGBBO’s
convergence performance is better than that of other al-
gorithms. Although on functions f2 and f8, DCGBBO’s
convergence speed is inferior to B-BBO, DCGBBO’s con-
vergence speed is obviously faster than that of other com-
parison algorithms. From Figure 3, on 50-dimension
benchmark functions, the proposed algorithm has the faster
convergence speed than other algorithms except f1, f2, and
f8, which has a slightly faster speed of convergence than
DCGBBO. But the convergence efficiency of DCGBBO is
significantly superior to other comparison algorithms. To
sum up, DCGBBO has the best convergence performance
than other improved algorithms.

4.2.2. Experiment Results and Analysis on CEC 2017
Benchmark Functions. In this paper, for CEC 2017 bench-
mark functions, the number of independent runs (Num) of
all the algorithms is 51, and the population size is 100
(N� 100). Maximum number of function evaluation
(MNFE) are 100000, 300000, and 500000 for D� 10, 30, and
50.*e mean value (Mean) and the standard deviation value
(Std) are used as evaluate indicators to testify the optimi-
zation performance of the algorithms. For the algorithm, the
Mean value represents the optimization ability and the Std
value represents the stability. So the Mean value is the key
point of the comparison.

Table 5 depicts the comparison of the DCGBBO with
considered algorithms on CEC 2017 benchmark functions in
terms of mean and best fitness values, and the dimension is
10. From the table, it can be stated that the mean values
(Mean) and the standard deviation value (Std) returned by
DCGBBO are better than those of the considered algorithms
for twenty-four and twenty-one problems out of thirty,

Table 1: Benchmark functions.

Name Function Search range fmin

Step f1(x) � 
D
i�1(xi + 0.5

2
[− 100, 100]D 0

Quartic f2(x) � 
D
i�1 ix4

i + random[0, 1) [− 1.28, 1.28]D 0

Sphere f3(x) � 
D
i�1 x2

i [− 100, 100]D 0
Schwefel 2.22 f4(x) � 

D
i�1 |xi| + 

D
i�1 |xi| [− 10, 10]D 0

Zakharov f5(x) � 
D
i�1 x2

i + (
D
i�1 0.5ixi)

2 + (
D
i�1 0.5ixi)

4 [− 5, 10]D 0

Griewank f6(x) � (1/4000) 
D
i�1 x2

i − 
D
i�1 cos(xi/

�
i

√
) + 1 [− 600, 600]D 0

Ackley
f7(x) � 20 + e − 20 exp(− 0.2

�����������

(1/D)
D

i�1x
2
i



)

− exp((1/D)
D

i�1cos 2πxi)

[− 30, 30]D 0

Alpine f8(x) � 
D
i�1 |xi sin(xi + 0.1xi)| [− 10, 10]D 0
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Table 2: Parameter setting of the experimental algorithm.

Algorithm Parameter setting
BBO N� 50 or 100, I� 1, E� 1, mmax � 0.01, K� 10
B-BBO N� 50 or 100, I� 1, E� 1, mmax � 0.01, K� 10, α � random
BBO-M N� 50 or 100, I� 1, E� 1, mmax � 0.01, K� 10, xn+1 � 4∗xn(1 − xn)

TDBBO N� 50 or 100, I� 1, E� 1, mmax � 0.01, K� 10, c� 0.3
DCGBBO N� 50 or 100, I� 1, E� 1, mmax � 0.01, K� 10, a� 0.02

Table 3: Comparison results between DCGBBO and BBO variants on classic benchmark functions (D� 30).

Function Value BBO B-BBO BBO-M TDBBO DCGBBO

f1

Mean 2.6667E − 01 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
Std 4.4222E − 01 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
Rank 2 1 1 1 1

f2

Mean 1.9511E − 02 6.1618E − 03 3.6860E − 02 2.8988E − 02 4.1232E − 03
Std 6.4387E − 03 2.5473E − 03 1.1431E − 02 1.0614E − 02 1.3524E − 03
Rank 3 2 5 4 1

f3

Mean 7.0000E − 01 4.3405E − 08 5.0172E − 05 4.2146E − 07 1.8894E − 16
Std 2.8581E − 01 1.2372E − 07 3.3052E − 05 3.1749E − 07 6.3309E − 16
Rank 5 2 4 3 1

f4

Mean 3.1585E − 01 8.9749E − 06 5.0074E − 03 1.0957E − 03 7.1868E − 10
Std 4.4929E − 02 1.3574E − 05 1.9967E − 03 3.0729E − 04 1.1770E − 09
Rank 5 2 4 3 1

f5

Mean 9.1743E+ 01 2.0162E+ 01 8.6091E − 02 2.4515E − 02 4.4026E − 02
Std 2.1962E+ 01 7.8399E+ 00 3.1246E − 02 1.4351E − 02 2.6713E − 02
Rank 5 4 3 1 2

f6

Mean 7.1557E − 01 2.2409E − 02 2.1025E − 02 7.2223E − 02 9.6829E − 03
Std 1.7063E − 01 2.3567E − 02 2.1008E − 02 1.0019E − 01 9.4377E − 03
Rank 5 3 2 4 1

f7

Mean 2.9384E − 01 1.4242E − 05 2.9104E − 03 4.0678E − 04 5.2792E − 09
Std 9.0291E − 02 1.1358E − 05 2.6930E − 03 1.2802E − 04 5.7223E − 09
Rank 5 2 4 3 1

f8

Mean 7.3721E − 03 4.2457E − 06 6.3157E − 03 1.4100E − 04 2.8565E − 06
Std 2.8770E − 03 1.4019E − 05 3.6322E − 03 1.3572E − 04 1.1144E − 05
Rank 5 2 4 3 1

Count 0 1 1 2 7
Average rank 4.375 2.25 3.375 2.75 1.125
Total rank 5 2 4 3 1

Table 4: Comparison results between DCGBBO and BBO variants on classic benchmark functions (D� 50).

Function Value BBO B-BBO BBO-M TDBBO DCGBBO

f1

Mean 2.6667E − 01 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
Std 5.7349E − 01 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
Rank 2 1 1 1 1

f2

Mean 3.5416E − 02 5.0596E − 03 1.3334E − 01 1.0006E − 01 8.8093E − 03
Std 1.2171E − 02 1.6088E − 03 5.1771E − 02 2.7291E − 02 2.3044E − 03
Rank 3 1 5 4 2

f3

Mean 9.4072E − 01 7.6629E − 07 1.1455E − 03 3.6507E − 05 2.8116E − 11
Std 2.6482E − 01 6.9881E − 07 5.0193E − 04 1.2786E − 05 1.2494E − 11
Rank 5 2 4 3 1

f4

Mean 4.6046E − 01 1.1890E − 04 6.0901E − 02 1.8880E − 02 1.7604E − 06
Std 7.0598E − 02 5.7422E − 05 1.4203E − 02 4.0873E − 03 7.1498E − 07
Rank 5 2 4 3 1

f5

Mean 1.5938E+ 02 1.1296E+ 01 8.8797E − 01 4.7962E − 01 3.4126E − 01
Std 3.9232E+ 01 5.6901E+ 00 1.9818E − 01 1.4686E − 01 1.6971E − 01
Rank 5 4 3 2 1

f6

Mean 6.9633E − 01 1.3972E − 02 1.6892E − 02 4.7606E − 02 5.2553E − 03
Std 1.1879E − 01 2.0940E − 02 1.3186E − 02 4.7559E − 02 6.7809E − 03
Rank 5 2 3 4 1
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Table 4: Continued.

Function Value BBO B-BBO BBO-M TDBBO DCGBBO

f7

Mean 2.0238E − 01 1.4413E − 04 5.5962E − 01 3.2706E − 03 2.4462E − 06
Std 5.5586E − 02 4.1983E − 05 2.0181E+ 00 7.1758E − 04 1.1495E − 06
Rank 4 2 5 3 1

f8

Mean 9.4789E − 03 1.3125E − 05 8.7008E − 02 3.1986E − 03 2.2021E − 06
Std 2.8390E − 03 5.4439E − 05 3.0606E − 02 1.8003E − 03 2.6616E − 06
Rank 4 2 5 3 1

Count 0 2 1 1 7
Average rank 4.125 2 3.75 2.875 1.125
Total rank 5 2 4 3 1
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Figure 2: Convergence curves of 5 algorithms on 30D classic benchmark functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f ) f6. (g) f7. (h) f8.
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respectively. For D� 30 dimensions, the comparative results
are shown in Table 6. From the table, we can see that
DCGBBO outperforms the considered algorithms on
twenty-two problems for the mean values (Mean) and on
twenty-one problems for the standard deviation values (Std).
And from Table 7 for D� 50 dimensions, DCGBBO out-
performs the considered algorithms on twenty-three
problems for the mean values (Mean) and on twenty-two
problems for the standard deviation values (Std). In short,
DCGBBO has better optimization efficiency than other

modified BBO variants and standard BBO. In particular, as
the dimension of the solution space increases, the perfor-
mance of the algorithm proposed in this paper gradually
stabilizes, except for a few more sensitive functions.

Furthermore, the convergence behavior of DCGBBO is
analyzed for each class of CEC 2017 benchmark problems.
Figure 4 shows the convergence trend of four 10-dimen-
sional benchmark problems, respectively, from F1, F4, F11,
and F24. In the same way, Figures 5 and 6 show the con-
vergence trend of four 30-dimensional and 50-dimensional
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Figure 3: Convergence curves of 5 algorithms on 50D classic benchmark functions. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f ) f6. (g) f7. (h) f8.

10 Mathematical Problems in Engineering



Table 5: Comparison results on CEC 2017 benchmark functions (D� 10).

Function Value BBO B-BBO BBO-M TDBBO DCGBBO

F1 Mean 5.9836E+ 05 3.3868E+ 05 4.4536E+ 03 3.3972E+ 04 3.9464E+ 03
Std 3.9932E+ 05 2.3529E+ 05 3.6243E+ 03 3.9979E+ 03 3.6035E+ 03

F2 Mean 2.3599E+ 05 4.4616E+ 04 5.3770E+ 02 2.0010E+ 02 2.0003E+ 02
Std 6.9658E+ 05 1.1562E+ 05 9.0270E+ 02 6.5937E+ 01 1.7951E − 01

F3 Mean 2.0279E+ 04 1.6642E+ 04 3.0001E+ 02 3.0000E+ 02 3.0000E+ 02
Std 1.0393E+ 04 1.8086E+ 04 2.5682E − 02 3.4721E − 06 2.5348E − 06

F4 Mean 4.2173E+ 02 4.0596E+ 02 4.0892E+ 02 4.0856E+ 02 4.0442E+ 02
Std 3.3960E+ 01 1.9164E+ 01 2.0448E+ 01 2.0446E+ 01 1.2810E+ 01

F5 Mean 5.1087E+ 02 5.1183E+ 02 5.2892E+ 02 5.2317E+ 02 5.2023E+ 02
Std 4.6457E+ 00 5.5670E+ 00 1.0769E+ 01 1.2706E+ 01 7.6739E+ 00

F6 Mean 6.0946E+ 02 6.0528E+ 02 6.3145E+ 02 6.1692E+ 02 6.0366E+ 02
Std 1.5806E − 01 2.6333E − 01 1.6474E+ 01 1.0657E+ 01 4.9938E+ 00

F7 Mean 7.3566E+ 02 7.2397E+ 02 7.5311E+ 02 7.3523E+ 02 7.3133E+ 02
Std 7.6800E+ 00 5.1542E+ 00 1.7394E+ 01 1.0736E+ 01 6.0922E+ 00

F8 Mean 8.1574E+ 02 8.1549E+ 02 8.4917E+ 02 8.3194E+ 02 8.3115E+ 02
Std 5.1018E+ 00 3.3043E+ 00 2.2043E+ 01 1.1538E+ 01 8.8128E+ 00

F9 Mean 9.1496E+ 02 9.0605E+ 02 1.5136E+ 03 1.1042E+ 03 1.0599E+ 03
Std 1.2445E+ 01 6.7970E+ 00 5.2150E+ 02 2.0207E+ 02 1.0683E+ 02

F10 Mean 1.6931E+ 03 1.6626E+ 03 1.8659E+ 03 1.9533E+ 03 1.6221E+ 03
Std 2.3580E+ 02 2.5230E+ 02 2.4510E+ 02 2.1323E+ 02 1.8947E+ 02

F11 Mean 1.2814E+ 03 1.3902E+ 03 1.2090E+ 03 1.1792E+ 03 1.1555E+ 03
Std 2.5309E+ 02 4.5194E+ 02 6.0116E+ 01 5.8805E+ 01 5.1934E+ 01

F12 Mean 5.3143E+ 06 1.2458E+ 06 2.0959E+ 05 5.5021E+ 04 3.2888E+ 04
Std 4.6787E+ 06 2.5726E+ 06 3.2162E+ 05 8.9702E+ 04 2.1839E+ 04

F13 Mean 2.6624E+ 04 1.4218E+ 04 1.2732E+ 04 1.3376E+ 04 1.1020E+ 04
Std 2.9560E+ 04 9.2783E+ 03 1.2678E+ 04 7.7535E+ 03 1.1982E+ 03

F14 Mean 1.0534E+ 04 8.3992E+ 03 7.2156E+ 03 7.8535E+ 03 7.0313E+ 03
Std 9.1737E+ 03 7.0081E+ 03 7.4258E+ 03 7.3835E+ 03 5.7340E+ 03

F15 Mean 9.4708E+ 03 3.8642E+ 03 7.3408E+ 03 4.7368E+ 03 1.0771E+ 04
Std 7.1208E+ 03 2.9039E+ 03 5.3490E+ 03 4.5840E+ 03 8.7666E+ 03

F16 Mean 1.8861E+ 03 1.8211E+ 03 1.8469E+ 03 1.8164E+ 03 1.8056E+ 03
Std 1.3616E+ 02 1.2774E+ 02 2.7480E+ 02 1.6961E+ 02 1.1233E+ 02

F17 Mean 1.8244E+ 03 1.7542E+ 03 1.8489E+ 03 1.8062E+ 03 1.7259E+ 03
Std 4.0171E+ 01 6.7869E+ 01 8.7174E+ 01 3.8909E+ 01 1.0002E+ 02

F18 Mean 2.8159E+ 04 1.5797E+ 04 1.3360E+ 04 1.8035E+ 04 1.3628E+ 04
Std 1.4967E+ 04 1.1278E+ 04 1.0592E+ 04 1.1003E+ 04 1.0383E+ 04

F19 Mean 1.7815E+ 04 9.1510E+ 03 1.6276E+ 04 8.7426E+ 03 1.3668E+ 03
Std 1.2344E+ 04 8.4528E+ 03 1.1888E+ 04 5.8878E+ 03 1.1598E+ 03

F20 Mean 2.0168E+ 03 2.0189E+ 03 2.0888E+ 03 2.1190E+ 03 2.0454E+ 03
Std 8.4723E+ 00 6.1012E+ 01 4.1748E+ 01 7.1002E+ 01 4.0318E+ 01

F21 Mean 2.3095E+ 03 2.3032E+ 03 2.3187E+ 03 2.3128E+ 03 2.3030E+ 03
Std 3.2624E+ 01 4.5667E+ 01 6.0807E+ 01 6.0903E+ 01 3.2062E+ 01

F22 Mean 2.3067E+ 03 2.3988E+ 03 2.4428E+ 03 2.4588E+ 03 2.3053E+ 03
Std 4.4024E+ 00 2.7549E+ 02 3.4655E+ 02 4.2801E+ 02 4.2451E+ 00

F23 Mean 2.6249E+ 03 2.6278E+ 03 2.6317E+ 03 2.6305E+ 03 2.6248E+ 03
Std 4.9188E+ 00 6.0687E+ 00 1.0194E+ 01 8.0294E+ 00 4.7604E+ 00

F24 Mean 2.7623E+ 03 2.7727E+ 03 2.7858E+ 03 2.8045E+ 03 2.7606E+ 03
Std 8.3267E+ 01 9.1873E+ 01 5.1557E+ 01 8.7950E+ 01 4.0653E+ 01

F25 Mean 2.9424E+ 03 2.9428E+ 03 2.9429E+ 03 2.9500E+ 03 2.9410E+ 03
Std 1.3550E+ 01 2.0553E+ 01 3.5638E+ 01 3.3467E+ 01 2.8726E+ 01

F26 Mean 3.0793E+ 03 3.0256E+ 03 3.1166E+ 03 3.1222E+ 03 2.9502E+ 03
Std 3.1888E+ 02 1.2137E+ 02 3.0811E+ 02 2.6391E+ 02 7.4867E+ 01

F27 Mean 3.1173E+ 03 3.1223E+ 03 3.1318E+ 03 3.1396E+ 03 3.1014E+ 03
Std 2.8662E+ 01 2.7372E+ 01 2.3107E+ 01 3.9406E+ 01 1.0045E+ 01

F28 Mean 3.2998E+ 03 3.3459E+ 03 3.3178E+ 03 3.3258E+ 03 3.2963E+ 03
Std 1.4596E+ 02 1.4968E+ 02 1.4401E+ 02 1.9021E+ 02 1.4367E+ 02

F29 Mean 3.2447E+ 03 3.2584E+ 03 3.2414E+ 03 3.2478E+ 03 3.2397E+ 03
Std 8.3164E+ 01 2.8049E+ 01 6.8896E+ 01 5.6400E+ 01 3.5545E+ 01

F30 Mean 9.4055E+ 05 7.9785E+ 05 6.4566E+ 05 5.3678E+ 05 2.0345E+ 05
Std 9.1204E+ 05 7.3106E+ 05 6.8573E+ 05 7.9743E+ 05 4.3233E+ 05
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Table 6: Comparison results on CEC 2017 benchmark functions (D� 30).

Function Value BBO B-BBO BBO-M TDBBO DCGBBO

F1 Mean 2.0905E+ 06 3.5688E+ 03 7.7199E+ 03 9.4396E+ 03 3.4986E+ 03
Std 9.0756E+ 05 4.3978E+ 03 7.9901E+ 03 8.2207E+ 03 4.1129E+ 03

F2 Mean 3.1966E+ 13 2.8591E+ 12 1.9300E+ 13 1.8739E+ 10 1.4756E+ 10
Std 4.8093E+ 13 2.7083E+ 12 4.6269E+ 13 2.6501E+ 11 1.7861E+ 11

F3 Mean 1.5299E+ 05 1.2101E+ 05 3.9023E+ 04 6.9579E+ 03 6.2097E+ 03
Std 6.1148E+ 04 4.1128E+ 04 1.3549E+ 04 4.7113E+ 03 2.6195E+ 03

F4 Mean 5.1936E+ 02 4.9314E+ 02 4.9515E+ 02 4.9914E+ 02 4.7975E+ 02
Std 3.6142E+ 01 1.7435E+ 01 1.3408E+ 01 1.2598E+ 01 8.6073E+ 00

F5 Mean 5.8870E+ 02 6.0481E+ 02 7.8190E+ 02 7.2287E+ 02 6.7660E+ 02
Std 1.1801E+ 01 1.1554E+ 01 5.0211E+ 01 9.8490E+ 00 1.6995E+ 01

F6 Mean 6.1057E+ 02 6.0030E+ 02 6.7059E+ 02 6.4922E+ 02 6.0079E+ 02
Std 5.9632E+ 00 2.0303E − 03 2.1465E+ 01 9.0771E+ 00 4.9564E+ 00

F7 Mean 8.1992E+ 02 8.5653E+ 02 1.9826E+ 03 1.2808E+ 03 9.3643E+ 02
Std 6.9548E+ 00 1.9823E+ 01 5.7593E+ 02 1.2134E+ 02 4.6188E+ 01

F8 Mean 9.0031E+ 02 8.8258E+ 02 1.0723E+ 03 9.8745E+ 02 9.9107E+ 02
Std 1.4242E+ 01 3.3716E+ 01 1.0359E+ 02 4.0662E+ 01 6.1861E+ 01

F9 Mean 4.3912E+ 03 1.7531E+ 03 1.2094E+ 04 5.8881E+ 03 5.8829E+ 03
Std 5.5701E+ 02 2.1804E+ 02 2.0380E+ 03 5.2205E+ 02 1.2671E+ 03

F10 Mean 4.5699E+ 03 4.5175E+ 03 5.0778E+ 03 5.2580E+ 03 4.5080E+ 03
Std 6.1731E+ 02 5.5524E+ 02 7.8534E+ 02 7.1589E+ 02 5.3022E+ 02

F11 Mean 7.7552E+ 03 6.6105E+ 03 1.3689E+ 03 1.4891E+ 03 1.3598E+ 03
Std 5.4998E+ 03 3.1270E+ 03 2.4036E+ 02 1.2940E+ 02 1.1504E+ 02

F12 Mean 7.2515E+ 06 2.1051E+ 06 1.2461E+ 06 1.4148E+ 06 9.1516E+ 05
Std 4.4098E+ 06 1.1815E+ 06 4.9808E+ 05 1.0915E+ 06 4.0362E+ 05

F13 Mean 6.5786E+ 05 3.3389E+ 05 1.4912E+ 04 2.3485E+ 04 1.3990E+ 04
Std 2.7134E+ 05 1.9016E+ 05 3.4013E+ 03 2.2300E+ 04 1.0098E+ 03

F14 Mean 4.1154E+ 06 1.6399E+ 06 4.8582E+ 05 2.7522E+ 05 2.2566E+ 05
Std 1.6526E+ 06 1.5944E+ 06 2.9789E+ 05 9.3017E+ 04 1.9777E+ 05

F15 Mean 4.2048E+ 05 3.8589E+ 05 6.6368E+ 03 1.3934E+ 04 1.0980E+ 04
Std 1.9513E+ 05 1.7599E+ 05 1.3747E+ 03 1.2331E+ 04 1.0807E+ 04

F16 Mean 2.9285E+ 03 2.8481E+ 03 3.1832E+ 03 3.3054E+ 03 2.6314E+ 03
Std 2.5813E+ 02 2.6539E+ 02 2.8659E+ 02 2.9366E+ 02 1.9852E+ 02

F17 Mean 2.4803E+ 03 2.6151E+ 03 2.8180E+ 03 2.6563E+ 03 2.4369E+ 03
Std 2.4101E+ 02 1.5216E+ 02 2.9776E+ 02 3.3716E+ 02 8.0657E+ 01

F18 Mean 2.9469E+ 06 1.4557E+ 06 1.8334E+ 06 1.9069E+ 06 1.3240E+ 06
Std 2.2382E+ 06 6.2132E+ 05 2.7873E+ 05 8.6939E+ 05 1.6639E+ 05

F19 Mean 1.2565E+ 05 1.5159E+ 05 2.1308E+ 04 1.8654E+ 04 1.0586E+ 04
Std 4.5501E+ 04 1.4916E+ 05 1.6375E+ 04 2.0967E+ 04 8.7381E+ 03

F20 Mean 2.5248E+ 03 2.6783E+ 03 2.9207E+ 03 2.7799E+ 03 2.4961E+ 03
Std 1.4347E+ 02 2.2008E+ 02 4.1438E+ 02 1.6015E+ 02 1.3643E+ 02

F21 Mean 2.4007E+ 03 2.4017E+ 03 2.5215E+ 03 2.5316E+ 03 2.4833E+ 03
Std 8.6829E+ 00 2.7428E+ 01 5.0754E+ 01 1.2309E+ 01 2.3791E+ 01

F22 Mean 5.0347E+ 03 5.5745E+ 03 6.8846E+ 03 7.2661E+ 03 5.0281E+ 03
Std 1.3926E+ 03 1.4422E+ 03 6.5978E+ 02 2.2049E+ 03 1.9036E+ 03

F23 Mean 2.7858E+ 03 2.8232E+ 03 3.0110E+ 03 4.3402E+ 03 2.7844E+ 03
Std 1.9115E+ 01 3.4769E+ 01 8.6116E+ 01 1.6425E+ 02 1.5676E+ 01

F24 Mean 2.9992E+ 03 3.1099E+ 03 3.2308E+ 03 3.4116E+ 03 2.9982E+ 03
Std 3.9877E+ 01 3.7526E+ 01 7.1558E+ 01 2.7861E+ 02 2.7076E+ 01

F25 Mean 2.9042E+ 03 2.9020E+ 03 2.8969E+ 03 2.9352E+ 03 2.8899E+ 03
Std 1.8822E+ 01 1.6433E+ 01 1.1056E+ 01 3.5758E+ 01 7.6811E+ 00

F26 Mean 5.6751E+ 03 4.8496E+ 03 9.8539E+ 03 4.6828E+ 03 5.5333E+ 03
Std 1.2513E+ 02 2.4925E+ 02 2.5407E+ 02 2.8345E+ 02 6.9512E+ 01

F27 Mean 3.2466E+ 03 3.2824E+ 03 3.3265E+ 03 3.4259E+ 03 3.2456E+ 03
Std 1.5488E+ 01 2.0294E+ 01 5.8324E+ 01 1.3208E+ 02 1.2590E+ 01

F28 Mean 3.2650E+ 03 3.2181E+ 03 3.2160E+ 03 3.2258E+ 03 3.2129E+ 03
Std 2.3417E+ 01 1.6696E+ 01 2.6681E+ 01 1.1103E+ 03 1.1220E+ 01

F29 Mean 3.9047E+ 03 3.9269E+ 03 4.9176E+ 03 4.4414E+ 03 3.9039E+ 03
Std 1.2652E+ 02 1.5749E+ 02 1.8912E+ 02 2.6653E+ 02 1.1682E+ 02

F30 Mean 8.6592E+ 04 2.3951E+ 04 1.8992E+ 04 1.5963E+ 04 1.1207E+ 04
Std 5.2602E+ 04 1.7045E+ 04 1.2445E+ 04 3.4998E+ 03 3.3715E+ 03
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Table 7: Comparison results on CEC 2017 benchmark functions (D� 50).

Function Value BBO B-BBO BBO-M TDBBO DCGBBO

F1 Mean 4.5534E+ 06 8.5285E+ 03 1.2450E+ 04 7.1327E+ 03 6.6860E+ 03
Std 8.2775E+ 05 4.6143E+ 03 8.6411E+ 03 5.6290E+ 03 3.5733E+ 03

F2 Mean 4.9564E+ 31 3.6130E+ 20 8.3500E+ 36 6.8599E+ 22 1.3255E+ 17
Std 7.0092E+ 31 4.0180E+ 18 1.1792E+ 37 9.6981E+ 22 1.2605E+ 17

F3 Mean 2.4582E+ 05 7.7333E+ 04 1.4055E+ 05 6.9552E+ 04 1.3164E+ 05
Std 3.3805E+ 04 3.6960E+ 04 4.5305E+ 04 3.8235E+ 04 2.9520E+ 04

F4 Mean 5.6291E+ 02 5.5274E+ 02 5.6517E+ 02 5.3337E+ 02 5.0774E+ 02
Std 4.9271E+ 01 6.0366E+ 01 4.7069E+ 01 7.1149E+ 01 4.5645E+ 01

F5 Mean 7.1753E+ 02 7.0801E+ 02 9.5435E+ 02 8.7642E+ 02 8.4335E+ 02
Std 1.9408E+ 01 3.4002E+ 01 1.1771E+ 02 8.1464E+ 01 5.4256E+ 01

F6 Mean 6.2677E+ 02 6.0007E+ 02 6.7606E+ 02 6.5970E+ 02 6.2564E+ 02
Std 7.8823E − 02 4.6893E − 02 3.9206E+ 00 8.2295E+ 00 3.8631E+ 00

F7 Mean 1.0088E+ 03 9.8735E+ 02 3.5893E+ 03 2.0899E+ 03 1.0749E+ 03
Std 3.0508E+ 01 2.6606E+ 01 2.7245E+ 02 2.0947E+ 02 6.1975E+ 01

F8 Mean 9.6919E+ 02 9.8924E+ 02 1.3265E+ 03 1.1628E+ 03 1.1804E+ 03
Std 5.1574E+ 01 3.1845E+ 01 1.5945E+ 02 1.3265E+ 03 3.0023E+ 01

F9 Mean 4.1603E+ 03 4.4364E+ 03 2.3369E+ 04 1.2206E+ 04 1.7392E+ 04
Std 2.6953E+ 03 1.9429E+ 03 3.5611E+ 03 3.8837E+ 03 1.9011E+ 03

F10 Mean 6.7747E+ 03 7.0697E+ 03 8.7494E+ 03 8.9914E+ 03 6.6757E+ 03
Std 7.4257E+ 02 8.5307E+ 02 6.5265E+ 02 6.7515E+ 02 6.1082E+ 02

F11 Mean 1.1240E+ 04 6.3925E+ 03 1.4738E+ 03 1.4670E+ 03 1.4369E+ 03
Std 6.3868E+ 03 3.4914E+ 03 2.7387E+ 01 1.3309E+ 02 2.6880E+ 01

F12 Mean 3.4829E+ 07 5.5871E+ 06 5.4082E+ 06 5.4123E+ 06 3.7717E+ 06
Std 1.1321E+ 07 1.9812E+ 06 2.0075E+ 06 3.3981E+ 06 1.9140E+ 06

F13 Mean 1.5819E+ 06 3.6046E+ 05 1.6165E+ 04 1.5964E+ 04 1.0071E+ 04
Std 7.2597E+ 05 3.4239E+ 05 5.8611E+ 03 6.1982E+ 03 5.2622E+ 03

F14 Mean 7.2961E+ 06 1.0222E+ 07 3.6465E+ 05 4.1988E+ 05 3.1091E+ 05
Std 2.7307E+ 05 2.6795E+ 06 1.5113E+ 05 2.3230E+ 05 1.0629E+ 05

F15 Mean 1.7722E+ 06 1.5313E+ 06 1.2537E+ 04 1.6464E+ 04 9.9267E+ 03
Std 9.3174E+ 05 3.8290E+ 05 7.4936E+ 03 7.9128E+ 03 7.2030E+ 03

F16 Mean 3.5805E+ 03 3.6935E+ 03 4.0112E+ 03 3.5772E+ 03 3.4679E+ 03
Std 2.8490E+ 02 5.3918E+ 02 5.2281E+ 02 2.3058E+ 02 1.8773E+ 02

F17 Mean 3.6204E+ 03 3.4643E+ 03 4.3956E+ 03 3.8489E+ 03 3.4381E+ 03
Std 5.3340E+ 02 3.5515E+ 02 7.0775E+ 02 4.8888E+ 02 3.2285E+ 02

F18 Mean 1.7178E+ 07 6.7179E+ 06 2.0530E+ 06 1.7286E+ 06 7.8350E+ 05
Std 1.0903E+ 07 1.2929E+ 06 1.0905E+ 06 1.2087E+ 06 4.6721E+ 05

F19 Mean 2.6680E+ 05 3.7502E+ 04 1.7302E+ 04 2.2410E+ 04 1.1665E+ 04
Std 1.3560E+ 05 8.7685E+ 03 1.2369E+ 04 1.3954E+ 04 5.5641E+ 03

F20 Mean 3.3597E+ 03 3.3762E+ 03 3.7006E+ 03 3.6179E+ 03 3.3449E+ 03
Std 3.1046E+ 02 4.0777E+ 02 1.1085E+ 02 3.1626E+ 02 1.8588E+ 02

F21 Mean 2.7789E+ 03 2.3100E+ 03 2.8415E+ 03 2.7329E+ 03 2.3595E+ 03
Std 6.4204E+ 01 1.5609E+ 01 5.4735E+ 01 5.1492E+ 01 4.7061E+ 01

F22 Mean 8.8223E+ 03 8.4081E+ 03 1.0196E+ 04 1.0986E+ 04 7.3650E+ 03
Std 1.4081E+ 03 9.9405E+ 02 3.6858E+ 02 5.7951E+ 02 6.9539E+ 02

F23 Mean 3.2448E+ 03 3.0430E+ 03 3.7024E+ 03 3.4871E+ 03 3.0420E+ 03
Std 6.1704E+ 01 8.2445E+ 01 2.1648E+ 02 1.1224E+ 02 5.1718E+ 01

F24 Mean 3.3788E+ 03 3.4315E+ 03 3.6068E+ 03 3.6100E+ 03 3.3103E+ 03
Std 2.8741E+ 01 5.3317E+ 01 1.2678E+ 02 1.9000E+ 02 9.1731E+ 00

F25 Mean 3.0812E+ 03 3.0954E+ 03 3.0824E+ 03 3.0764E+ 03 3.0112E+ 03
Std 3.2545E+ 01 4.1084E+ 00 1.0947E+ 01 9.5134E+ 00 3.6953E+ 00

F26 Mean 7.3849E+ 03 8.1513E+ 03 1.4529E+ 04 1.1593E+ 04 7.3758E+ 03
Std 1.7275E+ 02 7.6898E+ 02 7.3687E+ 02 2.3545E+ 03 1.6739E+ 02

F27 Mean 3.6131E+ 03 3.7026E+ 03 4.4800E+ 03 4.2449E+ 03 3.5982E+ 03
Std 9.1037E+ 02 1.2647E+ 02 5.9388E+ 02 1.3665E+ 02 1.1960E+ 02

F28 Mean 3.3357E+ 03 3.3334E+ 03 3.3443E+ 03 3.3186E+ 03 3.3083E+ 03
Std 1.6452E+ 01 8.1412E+ 00 1.4603E+ 01 9.9218E+ 00 7.8384E − 01

F29 Mean 4.3156E+ 03 4.2839E+ 03 6.1147E+ 03 6.0862E+ 03 4.1902E+ 03
Std 4.9479E+ 02 3.7419E+ 02 4.4033E+ 02 5.4248E+ 02 3.3537E+ 02

F30 Mean 1.9725E+ 06 1.3692E+ 06 4.6563E+ 06 2.1541E+ 06 1.2843E+ 06
Std 3.6799E+ 05 7.9265E+ 05 9.4001E+ 05 9.1187E+ 05 2.5702E+ 05
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benchmark problems, respectively. It can be seen from
Figures 4–6 that, among the most advanced methods
compared in the experiment, DCGBBO’s exploration ability
is very good at the beginning. *e algorithm converges fast
and in a consistent direction and finally reaches the optimal
solution. *e results show that the proposed DCGBBO can
balance the local search and global search.

4.2.3. Experiment Results and Analysis on CEC 2017
Benchmark Functions with respect to State-of-the-Art
Algorithms. In order to have a fair comparison of the
proposed SACS with respect to state-of-the-art algorithms,
basic CS [42], basic BBO, and CV1.0 [43] algorithms are
used. *ese algorithms are highly competitive and have
proven their value in various CEC competitions and solving

other real-world optimization problems. *e results for CS
and CV1.0 are taken from [44]. *e population is set to 50
(N� 50).*e stopping criterion was taken as 10,000×D total
number of function evaluations with 51 runs performed for
each test problem. *e error values are calculated by finding
the difference between the expected and the desired solution,
and if the difference becomes less than 10− 8, the error is
considered as zero. *e comparison results are shown in
Table 8. *e last row of the table gives the values of the
Wilcoxon rank-sum test [45]. Here, “+ (win/w)” represents
the algorithm under consideration is better than the pro-
posed algorithm, “- (lost/l)” corresponds to the situation that
algorithm under test is worse as compared to DCGBBO, and
“� (tie/t)” represents that they either have no correlation, or
they have the same statistical results and are equal to each
other.

0 100 200 300 400 500 600 700 800 900 1000
Iterations

10–1

100

101

102

103

104

105

106
F 

va
lu

e

BBO
B-BBO
BBOM

TDBBO
DCGBBO

(a)

0 100 200 300 400 500 600 700 800 900 1000
Iterations

BBO
B-BBO
BBOM

TDBBO
DCGBBO

102

103

104

F 
va

lu
e

(b)

0 100 200 300 400 500 600 700 800 900 1000
Iterations

BBO
B-BBO
BBOM

TDBBO
DCGBBO

1000

1500

2000

2500

3000

3500
4000
4500
5000
5500
6000

F 
va

lu
e

(c)

0 100 200 300 400 500 600 700 800 900 1000
Iterations

BBO
B-BBO
BBOM

TDBBO
DCGBBO

2000

2200

2400

2600

2800

3000

3200

3400

3600
3800
4000

F 
va

lu
e

(d)

Figure 4: Convergence curves of 5 algorithms on 10D CEC 2017 benchmark functions. (a) F1. (b) F4. (c) F11. (d) F24.
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From Table 8, we can obtain that, for unimodal
functions (F1–F3), CV1.0 is highly competitive and attain
good results as CS and DCGBBO were not able to con-
verge. For most of the multimodal functions (F4–F10),
DCGBBO performs better than basic BBO and basic CS.
For the hybrid functions (F11–F20), the CV1.0 algorithm
has strong competitiveness, but among them the newly
proposed DCGBBO is the best performing algorithm. For
the final set of composite functions (F21–F30), the
DCGBBO algorithm was again the best performing al-
gorithm among all the algorithms under test. From the
results of the last row of Table 8, we can say that the
proposed algorithm is highly competitive and future
modification in the same approach may lead to much
better results.

4.2.4. Parametric Analysis. In order to test the individual
effect of the proposed dynamic crossover migration oper-
ator, dynamic Gaussian mutation operator, and a unified
maximum mutation rate mmax on the performance of
DCGBBO, the experiments of the same DCGBBO version
without the above improvements were carried out sepa-
rately. *e same DCGBBO version without the proposed
dynamic crossover migration operator is called DCGBBO-1,
the same DCGBBO version without the proposed dynamic
Gaussian mutation operator is called DCGBBO-2, and the
same DCGBBO version without the proposed unified
maximum mutation rate mmax is called DCGBBO-3. Table 8
shows the experimental results of each version on CEC 2017
benchmark functions with dimension 30, the number of
independent runs (Num) of all the algorithms is 51, and the
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Figure 5: Convergence curves of 5 algorithms on 30D CEC 2017 benchmark functions. (a) F1. (b) F4. (c) F11. (d) F24.
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population size is 100 (N� 100). Maximum number of
function evaluation (MNFE) is 300000 for D� 30. *e last
row of the table gives the values of the Wilcoxon rank-sum
test.

From Table 9, we can conclude that there are 25 func-
tions in the CEC 2017 benchmark functions that can reflect
the advantages of dynamic crossover migration, which can
well increase the global search ability, and the population
diversity will also increase. Similarly, there are 23 functions
that can show the optimization performance of dynamic
Gaussian mutation, which can greatly improve the local
search ability of the algorithm, expand the search range of
the solution space under the premise of finding the local
optimal solution, and accelerate the convergence speed of

the algorithm. In addition, there are 29 functions because of
the fixedmutation probabilitymmax, the overall optimization
effect of the algorithm has been greatly improved.*erefore,
each improvement can improve the optimization perfor-
mance of the algorithm.

4.2.5. Friedman Test. To investigate the performance of
DCGBBO, the Friedman test [45] was used for testing
statistically the performance of DCGBBO compared with the
comparison algorithms. *e Friedman hypothesis test is a
nonparametric test using rank to implement significant
differences in multiple population distributions. Null hy-
pothesis: all the comparison algorithms in the experiment
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Figure 6: Convergence curves of 5 algorithms on 50D CEC 2017 benchmark functions. (a) F1. (b) F4. (c) F11. (d) F24.
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Table 8: Comparison results between DCGBBO and other algorithms (D� 50).

Functions Value CS CV1.0 BBO DCGBBO

F1
Mean 1.00E+ 10 1.00E+ 10 3.57E+ 06 6.99E+ 03
Std 0.00E+ 00 0.00E+ 00 6.50E+ 05 7.56E+ 03
Rank — — —

F2
Mean — 1.00E+ 10 5.64E+ 31 1.35E+ 17
Std — 0.00E+ 00 8.41E+ 30 4.06E+ 17
Rank — + —

F3
Mean 2.52E+ 05 1.95E+ 04 2.43E+ 05 1.01E+ 05
Std 3.02E+ 04 6.27E+ 03 3.55E+ 04 1.94E+ 04
Rank - + —

F4
Mean 1.28E+ 02 1.16E+ 02 1.71E+ 02 1.11E+ 02
Std 2.44E+ 01 6.27E+ 03 4.42E+ 01 2.36E+ 01
Rank — — —

F5
Mean 4.86E+ 02 3.41E+ 02 2.68E+ 02 3.40E+ 02
Std 4.66E+ 01 8.02E+ 01 5.04E+ 01 3.43E+ 01
Rank — — +

F6
Mean 4.13E+ 01 4.85E+ 01 4.05E+ 01 3.56E+ 01
Std 6.32E+ 00 4.85E+ 01 8.12E+ 00 4.66E+ 00
Rank — — —

F7
Mean 5.51E+ 02 2.74E+ 02 3.09E+ 02 4.05E+ 02
Std 4.08E+ 01 7.29E+ 01 4.05E+ 01 3.80E+ 01
Rank — + +

F8
Mean 4.82E+ 02 3.89E+ 02 2.69E+ 02 3.80E+ 02
Std 4.67E+ 01 7.29E+ 01 6.76E+ 01 4.89E+ 02
Rank — — +

F9
Mean 3.53E+ 04 1.00E+ 04 4.42E+ 03 1.78E+ 04
Std 4.82E+ 03 2.90E+ 03 2.54E+ 03 2.90E+ 03
Rank — + +

F10
Mean 7.39E+ 03 7.10E+ 03 6.01E+ 03 5.88E+ 03
Std 3.26E+ 02 5.34E+ 02 6.92E+ 02 3.11E+ 02
Rank — — —

F11
Mean 3.45E+ 02 1.66E+ 02 1.00E+ 04 2.37E+ 02
Std 4.16E+ 01 3.38E+ 01 6.19E+ 03 2.63E+ 01
Rank — + —

F12
Mean 1.00E+ 10 1.00E+ 10 2.59E+ 07 3.84E+ 06
Std 0.00E+ 00 0.00E+ 00 9.32E+ 06 2.93E+ 06
Rank — — —

F13
Mean 1.00E+ 10 1.00E+ 10 4.02E+ 06 9.77E+ 03
Std 0.00E+ 00 0.00E+ 00 3.14E+ 06 3.26E+ 03
Rank — — —

F14
Mean 3.26E+ 05 2.05E+ 02 7.12E+ 06 3.00E+ 05
Std 1.60E+ 05 2.13E+ 01 4.33E+ 05 2.50E+ 05
Rank — + —

F15
Mean 7.85E+ 09 1.37E+ 09 2.47E+ 06 8.43E+ 03
Std 4.12E+ 09 3.47E+ 09 4.39E+ 05 8.50E+ 03
Rank — — —

F16
Mean 1.76E+ 03 1.53E+ 03 1.98E+ 03 1.44E+ 03
Std 2.37E+ 02 2.74E+ 02 2.49E+ 02 1.90E+ 02
Rank — — —

F17
Mean 1.18E+ 03 1.25E+ 03 2.02E+ 03 1.74E+ 03
Std 1.78E+ 02 1.85E+ 02 4.43E+ 02 1.23E+ 02
Rank + + —

F18
Mean 1.43E+ 06 5.21E+ 02 6.22E+ 07 7.81E+ 05
Std 5.89E+ 05 1.19E+ 02 6.89E+ 06 3.57E+ 05
Rank — + —

F19
Mean 1.99E+ 08 1.73E+ 02 2.01E+ 05 9.77E+ 03
Std 1.39E+ 09 4.17E+ 02 3.66E+ 04 6.56E+ 03
Rank — + —

F20
Mean 1.04E+ 03 1.05E+ 03 1.46E+ 03 1.24E+ 03
Std 1.67E+ 02 2.14E+ 02 3.77E+ 02 1.66E+ 02
Rank + + —
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Table 8: Continued.

Functions Value CS CV1.0 BBO DCGBBO

F21
Mean 6.55E+ 02 5.41E+ 02 7.09E+ 02 2.63E+ 02
Std 7.93E+ 01 6.27E+ 01 5.72E+ 01 4.91E+ 01
Rank — — —

F22
Mean 8.19E+ 03 7.33E+ 03 6.62E+ 03 6.17E+ 03
Std 4.08E+ 02 1.99E+ 03 1.01E+ 03 6.78E+ 02
Rank — — —

F23
Mean 9.14E+ 02 7.74E+ 02 8.45E+ 02 7.42E+ 02
Std 4.59E+ 01 8.06E+ 01 7.50E+ 01 4.17E+ 01
Rank — — —

F24
Mean 1.01E+ 03 8.32E+ 02 9.79E+ 02 9.10E+ 02
Std 6.38E+ 01 1.21E+ 01 1.87E+ 01 1.02E+ 01
Rank — + —

F25
Mean 5.33E+ 02 5.43E+ 02 6.01E+ 02 5.21E+ 02
Std 1.66E+ 01 1.51E+ 01 4.21E+ 01 3.70E+ 00
Rank — — —

F26
Mean 4.57E+ 03 2.48E+ 03 4.78E+ 03 4.68E+ 03
Std 1.82E+ 03 1.88E+ 03 2.33E+ 02 1.05E+ 02
Rank + + —

F27
Mean 8.17E+ 02 7.38E+ 02 9.03E+ 02 8.90E+ 02
Std 5.68E+ 01 8.21E+ 01 8.50E+ 02 1.96E+ 01
Rank + + —

F28
Mean 5.12E+ 02 4.94E+ 02 5.16E+ 02 5.03E+ 02
Std 1.88E+ 01 1.93E+ 01 2.45E+ 01 6.24E+ 00
Rank — + —

F29
Mean 1.57E+ 03 1.69E+ 03 1.49E+ 03 1.32E+ 03
Std 1.79E+ 02 2.29E+ 02 3.95E+ 02 1.35E+ 02
Rank — — —

F30
Mean 2.95E+ 09 4.64E+ 06 2.25E+ 06 1.88E+ 06
Std 4.59E+ 09 8.59E+ 06 5.72E+ 05 2.53E+ 05
Rank — — —

w/l/t 4/25/0 14/16/0 4/26/0

Table 9: Comparison results (D� 30).

Function Value DCGBBO-1 DCGBBO-2 DCGBBO-3 DCGBBO

F1
Mean 1.1356E+ 04 4.7084E+ 03 5.9709E+ 03 3.4986E+ 03
Std 6.2167E+ 03 1.2510E+ 03 1.1553E+ 03 4.1129E+ 03
Rank — — —

F2
Mean 8.3672E+ 12 2.8681E+ 13 2.4459E+ 12 1.4756E+ 10
Std 1.1302E+ 13 2.1715E+ 13 3.4458E+ 12 1.7861E+ 11
Rank — — —

F3
Mean 1.5852E+ 05 1.5282E+ 05 8.5642E+ 04 6.2097E+ 03
Std 8.5953E+ 04 7.0895E+ 04 3.0558E+ 04 2.6195E+ 03
Rank — — —

F4
Mean 5.4851E+ 02 4.8680E+ 02 4.8717E+ 02 4.7975E+ 02
Std 3.4931E+ 01 1.8757E+ 01 1.7507E+ 00 8.6073E+ 00
Rank — — —

F5
Mean 6.4970E+ 02 6.1790E+ 02 6.8210E+ 02 6.7660E+ 02
Std 1.8458E+ 01 2.6254E+ 01 9.4053E+ 00 1.6995E+ 01
Rank + + —

F6
Mean 6.2000E+ 02 6.0111E+ 02 6.2498E+ 02 6.0079E+ 02
Std 1.4027E+ 01 4.4846E − 03 1.5729E+ 01 4.9564E+ 00
Rank — — —

F7
Mean 1.2476E+ 03 8.7160E+ 02 9.9638E+ 02 9.3643E+ 02
Std 1.4698E+ 02 1.6442E+ 01 2.8770E+ 01 4.6188E+ 01
Rank — + —

F8
Mean 9.6384E+ 02 9.2333E+ 02 1.0416E+ 03 9.9107E+ 02
Std 3.4200E+ 01 3.4892E+ 01 4.9989E+ 01 6.1861E+ 01
Rank + + —
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Table 9: Continued.

Function Value DCGBBO-1 DCGBBO-2 DCGBBO-3 DCGBBO

F9
Mean 4.5104E+ 03 3.0913E+ 03 6.5061E+ 03 5.8829E+ 03
Std 1.7918E+ 03 2.3509E+ 02 2.8977E+ 03 1.2671E+ 03
Rank + + —

F10
Mean 6.0419E+ 03 4.2296E+ 03 5.8954E+ 03 4.5080E+ 03
Std 4.8381E+ 02 3.9345E+ 02 1.2187E+ 03 5.3022E+ 02
Rank — + —

F11
Mean 1.3765E+ 03 6.9547E+ 03 1.3162E+ 03 1.3598E+ 03
Std 1.4102E+ 02 2.2973E+ 03 6.3358E+ 01 1.1504E+ 02
Rank — — +

F12
Mean 1.4078E+ 06 1.1135E+ 06 1.4175E+ 06 9.1516E+ 05
Std 4.6185E+ 05 7.8204E+ 05 5.9977E+ 05 4.0362E+ 05
Rank — — —

F13
Mean 3.4200E+ 04 2.1576E+ 05 3.3701E+ 04 1.3990E+ 04
Std 2.4819E+ 04 7.8291E+ 04 2.6332E+ 04 1.0098E+ 03
Rank — — —

F14
Mean 2.4390E+ 06 4.5935E+ 06 2.5577E+ 05 2.2566E+ 05
Std 1.6254E+ 06 3.9305E+ 06 1.0537E+ 05 1.9777E+ 05
Rank — — —

F15
Mean 2.2555E+ 04 8.2162E+ 04 1.3483E+ 04 1.0980E+ 04
Std 1.3587E+ 04 5.7354E+ 04 9.5731E+ 03 1.0807E+ 04
Rank — — —

F16
Mean 3.2154E+ 03 2.6706E+ 03 3.1079E+ 03 2.6314E+ 03
Std 4.8213E+ 02 2.3915E+ 02 4.9006E+ 02 1.9852E+ 02
Rank — — —

F17
Mean 2.4487E+ 03 2.4587E+ 03 2.7369E+ 03 2.4369E+ 03
Std 1.5107E+ 02 1.8634E+ 02 4.9742E+ 01 8.0657E+ 01
Rank — — —

F18
Mean 1.7959E+ 06 6.9817E+ 06 2.4653E+ 06 1.3240E+ 06
Std 1.5266E+ 06 4.5528E+ 06 1.7262E+ 06 1.6639E+ 05
Rank — — —

F19
Mean 8.1250E+ 03 3.0583E+ 04 3.3237E+ 04 1.0586E+ 04
Std 2.0035E+ 03 2.8386E+ 04 1.5454E+ 04 8.7381E+ 03
Rank + — —

F20
Mean 2.6911E+ 03 2.6922E+ 03 3.1552E+ 03 2.4961E+ 03
Std 1.7123E+ 02 5.1005E+ 01 2.1504E+ 02 1.3643E+ 02
Rank — — —

F21
Mean 2.4305E+ 03 2.4101E+ 03 2.4939E+ 03 2.4833E+ 03
Std 2.6785E+ 01 2.8179E+ 01 5.4148E+ 01 2.3791E+ 01
Rank + + —

F22
Mean 6.4604E+ 03 5.9365E+ 03 6.4819E+ 03 5.0281E+ 03
Std 5.0618E+ 02 1.7148E+ 02 9.7005E+ 02 9.0360E+ 02
Rank — — —

F23
Mean 2.8965E+ 03 2.7928E+ 03 2.8558E+ 03 2.7844E+ 03
Std 3.6426E+ 01 1.2264E+ 01 1.6936E+ 01 1.5676E+ 01
Rank — — —

F24
Mean 3.0105E+ 03 3.0307E+ 03 3.0209E+ 03 2.9982E+ 03
Std 2.5921E+ 01 8.0940E+ 01 3.4606E+ 01 2.7076E+ 01
Rank — — —

F25
Mean 2.8960E+ 03 2.9172E+ 03 2.9140E+ 03 2.8899E+ 03
Std 1.1293E+ 01 1.4694E+ 01 4.0064E+ 01 7.6811E+ 00
Rank — — —

F26
Mean 5.7904E+ 03 5.1905E+ 03 6.9282E+ 03 5.5333E+ 03
Std 7.9146E+ 02 3.6037E+ 02 7.1928E+ 02 6.9512E+ 01
Rank — +

F27
Mean 3.3503E+ 03 3.2459E+ 03 3.2850E+ 03 3.2456E+ 03
Std 7.0498E+ 01 1.4053E+ 01 2.0881E+ 01 1.2590E+ 01
Rank — — —

F28
Mean 3.2178E+ 03 3.2866E+ 03 3.2382E+ 03 3.2129E+ 03
Std 1.3027E+ 01 6.9604E+ 01 3.5481E+ 01 1.1220E+ 01
Rank — — —
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have the same performance for any benchmark function. In
the Friedman test, the 8 benchmark functions are treated as a
random sample and each optimization algorithm is con-
sidered as a treatment. *e mean values (Mean) of the
optimization approaches on each benchmark function are
ranked from the largest to the smallest [46]. *e ranking of
the j comparison algorithm on the i test function f(x) can
be expressed as ri,j, and the Friedman test statistic χ2r is
structured as follows:

χ2r �
12

np(p + 1)


p

p�1


n

i�1
ri,j

⎛⎝ ⎞⎠

2

− 3n(p + 1), (14)

where n is the number of test benchmark functions and p is
the number of comparison algorithms. *e Friedman test
statistic follows a chi-squared distribution with p − 1 degrees
of freedom.

*e 5 optimization algorithms in this paper are tested on
8 benchmark functions and obtained the ranks of the mean
values (Mean), as shown in Tables 10 and 11. As for Table 10,
the Friedman test statistic χ2r is computed, and the result is
χ2r � 20.95. As for Table 11, the Friedman test statistic χ2r is
χ2r � 21.25. With p − 1 � 4 degrees of freedom, the critical
value is χ2r � 9.488 at the significance level α � 0.05. *e
conclusion of the Friedman test, therefore, is to reject the
null hypothesis that the 5 optimization algorithms levels on 8
benchmark functions in different functional dimensions are
significantly different. In this case, compared algorithms in
this paper get significantly different fitness function values.

4.2.6. Wilcoxon Signed-Rank Test. Wilcoxon signed-rank
test is a nonparametric test method [45], and it is used to test
whether there are significant differences in the comparison
algorithm to test the performance of the algorithm. *e p
values can be computed by using IBM SPSS Statistics 25.0.
Wilcoxon signed-rank test is performed on the 10-dimen-
sional, 30-dimensional, and 50-dimensional CEC 2017
benchmark functions. *e data are taken from Tables 6–8,
and the results are shown in Tables 12–14. Among them,
“R+” is the sum of ranks for the problems in which DCGBBO
outperformed the comparison algorithm, and “R− ” is the
sum of ranks for the opposite. When the DCGBBO algo-
rithm and the comparison algorithm achieve the same
optimization performance, the corresponding ranks are split
evenly to “R+” and “R− .” “w” represents DCGBBO algorithm
wins the comparison algorithm on w functions, and “l” and
“t” represent DCGBBO loses the comparison algorithm on l
functions and ties on t functions, respectively. From the

results, we can concluded whether on the 10-dimensional,
the 30-dimensional, or the 50-dimensional functions, the
values of p are all less than 0.05, so the proposed DCGBBO
algorithm’ optimization performance outperforms the
comparison algorithms significantly.

4.2.7. Application of DCGBBO to Image Segmentation.
Image segmentation is the technique and process of dividing
an image into several specific areas and proposing objects of
interest. It is a key step from image processing to image
analysis. In this paper, we take the pixel as the basic unit of
image segmentation and concentrate on pixel image seg-
mentation. Furthermore, we use the improved DCGBBO
algorithm to segment colour images, which is done based on
the features and the distances between the pixels of the colour
images. We use the clustering optimization algorithm and
Euclidean distance to segment the colour images, and the
objective function is constructed by the following equation:

Table 9: Continued.

Function Value DCGBBO-1 DCGBBO-2 DCGBBO-3 DCGBBO

F29
Mean 4.2793E+ 03 3.9474E+ 03 4.2701E+ 03 3.9039E+ 03
Std 2.2204E+ 02 1.7223E+ 02 3.1895E+ 02 1.1682E+ 02
Rank — — —

F30
Mean 4.1858E+ 04 1.6967E+ 04 1.5831E+ 04 1.1207E+ 04
Std 4.3777E+ 04 6.6238E+ 03 3.3964E+ 03 3.3715E+ 03
Rank — — —

w/l/t 5/25/0 7/23/0 1/29/0

Table 10: Ranks of the average values (mean) for the five opti-
mization algorithms (D� 30).

Function BBO B-BBO BBO-M TDBBO DCGBBO
f1 5 2.5 2.5 2.5 2.5
f2 3 2 5 4 1
f3 5 2 4 3 1
f4 5 2 4 3 1
f5 5 4 3 1 2
f6 5 3 2 4 1
f7 5 2 4 3 1
f8 5 2 4 3 1
Sum rank 38 19.5 28.5 23.5 10.5
Average rank 4.7500 2.4375 3.5625 2.9375 1.3125

Table 11: Ranks of the average values (mean) for the five opti-
mization algorithms (D� 50).

Function BBO B-BBO BBO-M TDBBO DCGBBO
f1 5 2.5 2.5 2.5 2.5
f2 3 1 5 4 2
f3 5 2 4 3 1
f4 5 2 4 3 1
f5 5 4 3 2 1
f6 5 2 3 4 1
f7 4 2 5 3 1
f8 4 2 5 3 1
Sum rank 36 17.5 31.5 24.5 10.5
Average rank 4.5 2.1875 3.9375 3.0625 1.3125
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where K represents the cluster number, p is a pixel which
belongs to Ci, Ci is the ith cluster, vi is the ith clustering
center, and n is the number of pixels of an image.

*e experiments were done between DCGBBO, BBO
[12], B-BBO [27], BBO-M [29], and TDBBO [32].N is 50,MI
is 100, and Num is 10. We used 4 colour images with a pixel
size of 481∗ 321 as experimental data, include “Church1,”
“Church2,” “sunflower,” and “bird.” We take the mean
value, standard deviation value, the maximum, and the
minimum as the final result to compare the performance of
the algorithms. *e smaller the value, the more efficient the

algorithms.*e comparison results are exhibited in Table 15.
*e image segmentation results are shown in Figure 7.

From Table 14, we can clearly obtain that the perfor-
mance of the DCGBBO algorithm is better than that of other
algorithms in terms of Mean, Std, Maxvalue, and Minvalue.
Although the minimum value of the new algorithm is not as
good as the TDBBO algorithm except image “Church2,” the
performance of DCGBBO is more stable than that of other
algorithms. From Figure 7, we can conclude that on
“Church1,” the segmentation edge of figure f is relatively
smooth than that of other figures and the segmentation area
is complete. On “Church2” and “Bird,” the image seg-
mentation effect of each algorithm is not different, and the
target area is relatively completely segmented, but the details

Table 12: Wilcoxon signed-rank test results on CEC 2017 benchmark functions (D� 10).

Comparison R+ R− p value w/l/t
DCGBBO versus BBO 389 76 0.001 25/5/0
DCGBBO versus B-BBO 386 79 0.002 24/6/0
DCGBBO versus BBO-M 416 49 0.000 28/2/0
DCGBBO versus TDBBO 438.5 26.5 0.000 29/1/0

Table 13: Wilcoxon signed-rank test results on CEC 2017 benchmark functions (D� 30).

Comparison R+ R− p value w/l/t
DCGBBO versus BBO 388 77 0.001 25/5/0
DCGBBO versus B-BBO 379 86 0.003 23/7/0
DCGBBO versus BBO-M 465 0 0.000 30/0/0
DCGBBO versus TDBBO 445 20 0.000 28/2/0

Table 14: Wilcoxon signed-rank test results on CEC 2017 benchmark functions (D� 50).

Comparison R+ R− p value w/l/t
DCGBBO versus BBO 410 55 0.000 26/4/0
DCGBBO versus B-BBO 375 90 0.003 23/7/0
DCGBBO versus BBO-M 465 0 0.000 30/0/0
DCGBBO versus TDBBO 417 48 0.000 27/3/0

Table 15: Comparison results between DCGBBO and BBO variants on 4 images.

Image Value BBO B-BBO BBO-M TDBBO DCGBBO

Church1

Mean 6.5949E+ 00 6.5708E+ 00 6.4798E+ 00 6.4792E+ 00 6.4677E+ 00
Std 9.8742E − 02 1.8412E − 01 1.1488E − 01 1.5759E − 01 4.1861E − 02

Maxvalue 6.8362E+ 00 6.9859E+ 00 6.8159E+ 00 6.9498E+ 00 6.5358E+ 00
Minvalue 6.4548E+ 00 6.4289E+ 00 6.4162E+ 00 6.4132E+ 00 6.4193E+ 00

Church2

Mean 9.2471E+ 00 9.1824E+ 00 9.0874E+ 00 9.0293E+ 00 9.0345E+ 00
Std 1.8636E − 01 1.6661E − 01 1.2215E − 01 7.4869E − 02 6.6043E − 02

Maxvalue 9.5303E+ 00 9.5776E+ 00 9.3554E+ 00 9.2172E+ 00 9.1880E+ 00
Minvalue 9.0416E+ 00 9.0475E+ 00 8.9833E+ 00 8.9773E+ 00 8.9767E+ 00

Sunflower

Mean 9.8809E+ 00 9.8240E+ 00 9.7161E+ 00 9.7447E+ 00 9.7067E+ 00
Std 2.1451E − 01 2.3833E − 01 1.9982E − 01 3.1698E − 01 9.2090E − 02

Maxvalue 1.0278E+ 01 1.0350E+ 01 1.0264E+ 01 1.0583E+ 01 9.9261E+ 00
Minvalue 9.6478E+ 00 9.5869E+ 00 9.5674E+ 00 9.5653E+ 00 9.5787E+ 00

Bird

Mean 7.6379E+ 00 7.5532E+ 00 7.5633E+ 00 7.5322E+ 00 7.5317E+ 00
Std 4.9898E − 02 4.6186E − 02 4.8408E − 02 2.0981E − 02 1.2023E − 02

Maxvalue 7.7201E+ 00 7.6655E+ 00 7.6526E+ 00 7.5727E+ 00 7.5576E+ 00
Minvalue 7.5575E+ 00 7.5157E+ 00 7.5146E+ 00 7.5143E+ 00 7.5159E+ 00
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a1 (Church1) b1 c1

a2 (Church2) b2 c2

a3 (Sunflower) b3 c3

a4 (Bird) b4 c4

d1 e1 f1

d2 e2 f2

d3 e3 f3

d4 e4 f4

Figure 7: Image segmentation results between DCGBBO and BBO variants on 4 images (a is the original image, b is the segmentation image
of BBO, c is the segmentation image of B-BBO, d is the segmentation image of BBO-M, e is the segmentation image of TDBBO, and f is the
segmentation image of DCGBBO).
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are not good. On “Sunflower,” the segmentation effect of
each algorithm is well. *rough the above analysis, we can
conclude that the proposed DCGBBO algorithm is more
effective for colour image segmentation.

5. Conclusions

In this paper, we introduce an improved BBO algorithm
(DCGBBO) based on hierarchical tissue-like P system with
triggering ablation rules. By making full use of a series of
rules defined in the algorithm, the iterative process of the
optimization algorithm is completed and the effect of the
algorithm is improved. For the DCGBBO algorithm, from
the evolutionary principle of the algorithm itself, dynamic
crossover migration, dynamic Gaussian mutation, opposi-
tion-based learning approach, and maximum mutation rate
are designed. *e above operations can balance the ex-
ploitation and exploration ability of the algorithm and
improve the optimization efficiency. For the sake of testi-
fying the optimization performance of DCGBBO, a number
of experiments are implemented on eight classic benchmark
functions. *rough a large number of experimental analysis,
the optimization effect of the proposed algorithm is better
than that of the comparison algorithms. Finally, through
segmenting four colour images, our algorithm is proved to
be better than other compared algorithms.

Furthermore, except the BBO algorithm, some com-
putational intelligence algorithms such as particle swarm
optimization (PSO), artificial bee colony (ABC), ant colony
optimization (ACO), differential evolution (DE), Grey Wolf
optimizer (GWO), monarch butterfly optimization (MBO),
earthworm optimization algorithm (EWA), elephant herd-
ing optimization (EHO), moth search (MS) algorithm, slime
mould algorithm (SMA), and Harris hawks optimization
(HHO) can also tested on some benchmark functions and
might be used to segment images. For the other two P
systems, there may be more combinations to find the op-
timal solution.

Data Availability

Data supporting the results of this study can be obtained by
contacting the authors. *e four images tested in this paper
are from BSDS300 and BSDS500, which could be found at
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench/.
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[45] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3–18, 2011.

[46] M. Friedman, “*e use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, no. 200, pp. 1–27,
1937.

24 Mathematical Problems in Engineering


