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%e aging population has become a growing worldwide problem. Every year, deaths and injuries caused by elderly people’s falls
bring huge social costs. To reduce the rate of injury and death caused by falls among the elderly and the following social cost, the
elderly must be monitored. In this context, falls detecting has become a hotspot for many research institutions and enterprises at
home and abroad.%is paper proposes an algorithm framework to prealarm the fall based on fractional domain, using inertial data
sensor as motion data collection devices, preprocessing the data by axis synthesis and mean filtering, and using fractional-order
Fourier transform to convert the collected data from time domain to fractional domain. Based on the above, a multilayer
dichotomy classifier is designed, and each node parameter selection method is given, which constructed a preimpact fall detection
system with excellent performance. %e experiment result demonstrates that the algorithm proposed in this paper can guarantee
better warning effect and classification accuracy with fewer features.

1. Introduction

According to a report of the World Health Organization
(WHO) in 2018, about 400000 people die each year from fall
around the world; fall has become the second leading cause
of unintentional injury death and is also the number one
cause of injury and death among the elderly in the com-
munity. %e people needed for treatment of serious falls are
37.3 million per year [1], the fall in the low- and middle-
income countries deaths accounted for 80% of the fall in the
global death toll, and the proportion of people over 65 is the
largest [2]. According to the 2018 Statistical Bulletin Social
Service Development released by Ministry of Civil Affairs
(MOCA) published, by the end of 2018, there are 249.49
million elderly people at or above the age of 60, accounting
for 17.9 percent of the total population, of which 166.58
million are aged 65 or above, accounting for 1.9 percent of
the total population. According to statistics, at least 20
million elderly fall 25 million times a year, directly resulting
in medical costs more than 5 billion yuan. Every year in
China, the social cost caused by elderly falls is estimated to be
16 billion∼80 billion; this cost will dramatically increase
along with the aggravation of the aging population. To bring

down the injury and death rate of elderly fall and the
resulting social cost, the elderly must be detected [3], pro-
tected, or intervened for falls, and the premise of protection
or intervention is the accurate monitoring of falls. In this
context, fall monitoring has become a research hotspot for
many scientific research institutions and enterprises at home
and abroad.

Currently, research directions for fall monitoring are
mainly divided into two aspects: postfall identification,
namely, fall detection [4], and prefall detection [5–11],
namely, preimpact fall detection [2].

Among them, fall detection is an effective fall protection
strategy, in which the main idea is to automatically detect the
occurrence of falls, so as to timely send out alarm and help
information, save the time of rescue arrival, and thus greatly
reduce the disability rate and death rate caused by falls.
Although this method can accurately find the occurrence of
falls, it still has its inherent limitations; that is, the detection
takes place after the fall and the injury caused by the fall has
already occurred, so the fall detection cannot fundamentally
avoid the casualties caused by the fall.

Different from fall detection, the main idea of preimpact
fall detection is to detect the occurrence of falls in the process
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from the occurrence of falls to the occurrence of an impact.
%erefore, preimpact fall detection can not only provide
timely fall alarm and help and shorten the time of rescue
arrival, but also break through the inherent limitations of fall
detection, and work in cooperation with fall protection or
intervention equipment to intervene or protect the person
who falls, thereby radically avoiding or reducing the casu-
alties caused by falls.

Several solutions for fall detection have been presented
in the literature in recent years. In [12], an accelerometer
installed at the waist detects the vertical acceleration of the
inertial frame near the center of gravity of the body. %e
threshold method is used to distinguish the ongoing and
unrecoverable fall motion from the nonfall motion. %e
advance time is 70ms to 375ms. In [10], acceleration, an-
gular velocity, and body inclination are measured by inertial
sensors, and the threshold method is used for fall detection.
%e lead time is 401.9± 46.9ms, the sensitivity is 100%, and
the specificity is 100%. Similarly, the authors of [11] use
inertial sensors to measure the vertical velocity and dis-
placement, and the threshold method is used for fall
warning.%e sensitivity is 93.6% and the specificity is 95.6%.
Besides, in [13], the authors record 3D movements of the
whole body, measure the linear acceleration of all body parts,
and classify walking from accidental disturbances through
artificial neural networks. %e average detection time is
351± 123ms, and the accuracy is 95.4%. %ey also proposed
that only by observing the feet and hands, the appropriate
performance in terms of average detection time and accu-
racy can be obtained. %e authors of [14] used the waist
inertial sensor to measure acceleration and angular velocity
and used the SVM algorithm based on hidden Markov
model (HMM) for fall warning. %e accuracy is 94.91%, the
sensitivity is 97.22%, and the specificity is 93.75%.

%e present study tests the following hypotheses:

Hypothesis 1. Testers with different ages and physical
fitness have an impact on the test results.
Hypothesis 2. Preimpact fall detection algorithm based
on fractional domain has higher classification perfor-
mance and accuracy.

%e present study tests have the following limitations:

Limitation 1. %e data source for this test is young
people aged 20–25. It is not representative in terms of
age.
Limitation 2. %e algorithms selected in this article use
MATLAB for simulation.
Limitation 3. %e algorithm proposed in this paper is
only suitable for fall detection and is not universal.

%is article mainly focuses on the research on efficient
classification and early warning methods for the elderly to
fall. %e testers imitate the elderly walking, jogging, tripping,
fainting, slipping while standing, and choosing wearables
Inertial data sensor that includes a three-axis accelerometer
and a three-axis gyroscope as data acquisition devices [15],
preprocessing the data using the average filtering method
and the fractional Fourier transform, selecting the

classification algorithm that is easy to implement on the
embedded system [16] and the appropriate motion feature as
group standard, constructing a multilayer dichotomy clas-
sifier, and finally performing experimental verification.

%e rest of this article is arranged as follows. Section 2 is
the theoretical basis; it introduces the method of inertial data
acquisition and the principle of fractional Fourier transform
and then applies it to the domain transformation of data to
highlight different motions at different transformation or-
ders. And Section 3 analyzes and compares fall detection
algorithms based on the time domain threshold method,
machine learning, and fractional domain. %e experiments
carried out are contained in Section 4. Finally, Section 5
describes the conclusions.

2. Theoretical Basis

2.1. Inertial Data Collection. %e experimental data were
collected through 15 wearable inertial sensors integrating
triaxial accelerometers and three-axis gyroscope.%e inertial
sensors are shown in Figure 1, and the map of wearables on
the body is shown in Figure 2, among which the No. 12
sensor and the No. 8 sensor were not worn in the experi-
ment. %e main parameters of the sensor are shown in
Table 1.

In this paper, falls are classified into tripping, slipping,
and fainting under the state of walking or jogging [17]. By
imitating the fall of the elderly in the above commonmotion
state, the tester uses the above data acquisition device to
collect the inertial data during the moving process. %ere
were three participants in the experiment; all were males.
%e experimental scenario is shown in Figure 3.

2.2. Domain Transformation. For human motion data, it is
usually analyzed from the perspective of time domain or
frequency domain. At present, most of the documents di-
rectly extract the corresponding features from the time
domain for classification or judgment. Considering that
human movement also contains certain frequency infor-
mation, the accuracy of classification can be improved to
some extent by introducing frequency-related features.
%erefore, by introducing fractional Fourier transform, this
paper extracts features from the perspective of the fraction
domain and makes it contain both time domain and fre-
quency information [18].

2.2.1. Fractional Fourier Transform (eory. In the field of
signal processing, the traditional Fourier transform is a
mature and widely used mathematical tool. In 1980,
V. Namias proposed the concept of fractional Fourier
transform (FRFT) in a purely mathematical way, from the
perspective of the characteristic value and characteristic
function [19]. Subsequently, some researchers proposed the
concept of fractional Fourier transforms from the per-
spective of optics. It can be proved that these definitions are
completely equivalent. Because fractional-order Fourier
transform can be realized by simple optical equipment, it is
first applied in optical signal processing. Until recent years,
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scholars at home and abroad have found several fast algo-
rithms of fractional Fourier transform, which has attracted
much attention in the application of signal processing and
other fields.

Fractional Fourier transform is the signal representation
method in the fractional Fourier domain which, formed by
the coordinate axis, rotates counterclockwise around the
origin at any angle in the time-frequency plane. It is a time-
frequency analysis method and a generalized Fourier
transform. %e fractional Fourier transform has many
properties that the traditional Fourier transform does not
have and can be widely used in scientific research and en-
gineering technology.

%e fractional Fourier transform is defined as follows
[19].

Generally, the p-order of fractional Fourier transform of
function f(u) can be represented as follows: fp(u) or
Fpf(u); among them, Fpf(u) can be explained by the
operator Fp effects on function f(u), and its results are
located on u domain.

%e basic definition of fractional Fourier transform is

fp(u) � 
+∞

−∞
Kp(u, t)f(t)dt. (1)

Among them, Kp(u, t) � Aα exp[jπ(u
2 cot α − 2ut

csc α + t
2 cot α)], α≠ nπδ(u − t), α � 2nπδ(u + t), α � (2n

+1)π is the kernel function of the fractional Fourier
transform, Aα � exp[−jπsgn(sin α)/4 + jα/2]/|sin α|1/2, α �

pπ/2, and n is an integer.
%e following can be derived from the above:

fα(u) � AαTt(u) 
+∞

−∞
Ts(u − x) Tt(x)f(x) dx. (2)

Among them, Tt(x) � exp(−jπtx2), t � tan (α/2), s �

−csc(α).

Notice F4n and F4n±2 are, respectively, equal to the unit
operator τ and parity operator P. For p � 1, we have
α � π/2, Aα � 1, and f1(u) � 

+∞
−∞ e−j2πutf(t)dt.

%erefore, f1(u) is the ordinary Fourier transform of
f(u), and the function of zero order transformation is
defined as equal to the function itself. Since the α � pπ/2
only appeared on the position of the trigonometric function
parameter, p(or α) as a parameter is based on the definition
of 4 (or 2π) as a cycle.

%e reason for choosing fractional Fourier transform to
extract the feature vector, besides comparing the time do-
main and frequency domain, is that Li Chao derived the
relationship between the time domain amplitude average A

of the signal and the amplitude B of the fractional domain
from the theoretical time width-bandwidth product [20].

According to the fractional domain sampling theorem,
the relationship between fractional bandwidth and fre-
quency bandwidth is

Bu � B sin α, (3)

where α is the rotation angle of the frictional domain and
α � pπ/2.

Figure 1: Mini wireless IMU devices.

Figure 2: %e wearing-on diagram of inertial data acquisition
devices.
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%e time width and bandwidth of fractional domain
signal are defined as follows:

Δt2 ≜ 
+∞

−∞
t − t0( x(t)



2dt, (4)

Δu2
α ≜ 

+∞

−∞
uα − uα0 x uα( 




2
duα. (5)

Among them, uα for frequency of fractional domain and
x(uα) is the fractional domain transformation of signal x(t).

We know the following from the indefinite principle of
the signal frequency domain:

Δt2 · Δu2 ≥
1
4
is Δt · Δu≥

1
2

 . (6)

%e indefinite principle of the fractional domain can be
derived from (4)-(6):

Δt2 · Δu2
α ≥

sin
2α
4

is Δt · Δuα ≥
sinα
2

 . (7)

According to Parseval’s theorem, the energy of the signal
in the time domain is the same as that in the fractional
domain:

Table 1: Parameters of sensor.
Parameters Index Parameters Index
Accelerometer range ±18 g Sample frequency 30Hz

Gyroscope range ±3200 deg/s Gyroscope static accuracy ≤0.5deg(pitching, rolling); ≤1deg azimuth
Angular resolution ≤0.05 deg Gyroscope dynamic accuracy ≤1degRMS

(a) (b)

(c)

Figure 3: Experimental scenario. (a) Movement data collection of prosthetic limb wearers. (b) Imitating the elderly slipping. (c) Imitating
the elderly fainting.
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E � Eα. (8)

Among them, E represents total energy in time domain
and Eα represents total energy in frictional domain.
Moreover,

E �
1
2

A · Δt2, Eα �
1
2

B · Δu2
α. (9)

Considering (7)–(9), the average amplitude A of signal in
time domain has a nonlinear relationship with amplitude B

in fractional domain and is related to the angle change α of
the fractional domain.

Hence, we can convert the sequence of values with no
significant difference in amplitude in the time domain into a
sequence of fractions with significant differences in ampli-
tude by selecting an appropriate FRFT order [20]. %e
method can be used to recognize various signals of motion
feature effectively and achieve the purpose of recognition.

2.2.2. Discrete Fractional Fourier Transform. Equation (2) is
a calculation method in the continuous domain. %is
continuous transformation cannot be calculated in practice.
It is usually necessary to sample and interpolate the con-
tinuous signal for numerical calculation. Using Shannon’s
interpolation formula and numerical integration operation,
the discrete calculation formula of the fractional Fourier
transform is shown in the following equation [19]:

fα
k

2Δ
  ≈

Aα

2Δ
exp −jπ tan(α/2)

k

2Δ
 

2
⎡⎣ ⎤⎦ · 

N−1

l�−N

exp jπ
k − l

2Δ
 

2

csc α⎡⎣ ⎤⎦

· exp −jπ
l

2Δ
 

2

tan(α/2)f
l

2Δ
 ⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(10)

%e derivation can be shown as below:

fα xk(  ≈
xkCα

k
Et uk(  

N−1

l�−N

Es xk−l(  Et xl( f xl(   .

(11)

Among them, Et(uk) � exp(−jπtu2
k), t � tan(α/2), s �

−csc(α), and xk � uk � k/2Δ.Δ is dimensional normaliza-
tion scale of time domain or frequency domain.

2.2.3. Fractional Fourier Transform Effect. According to the
above theory, we could use fractional Fourier transform to
process the inertial data collected by the inertial sensor.
Compared with the simple time domain and frequency
domain, the fraction domain has better diversity and can
provide more optional characteristic value.

First of all, it is necessary to compare the output of
various data after different or the same order of fractional
Fourier transform: the results of the same set of data after
different order [20] transformation are shown in Figure 4.
%e results of the same class of data after the transformation
of the same order are shown in Figure 5, and the results of
different classes of data after the transformation of the same
order are shown in Figure 6.

It can be found that the same set of data has obvious
differences after transformation of different orders, and data
of different types also have certain differences after trans-
formation of the same order. %erefore, we can choose the
appropriate order to maximize the difference and then use
the appropriate characteristic value to distinguish different
motion states.

2.3. Selection of Characteristic Value. %e experimental data
are collected through 15 inertial sensors that integrate three-
axis accelerometers and three-axis gyroscopes worn on the
body. After the collected data are subjected to fractional
Fourier transform, appropriate characteristic value needed
to be extracted and then classified based on the characteristic
value. However, not all characteristic values are suitable for
inertial data. In addition, redundant characteristic values
will lead to excessive calculations, time costs, and storage
costs and will also reduce the battery life of the device, while
too few characteristic values cannot achieve the accuracy
required to distinguish various motions, so appropriate
characteristic values need to be selected for motion posture
recognition.

According to the characteristics of inertial data and
fractional Fourier transform, ten characteristic values in-
cluding the maximum value, maximum absolute value,
maximum difference, standard deviation, variance, root
mean square, interquartile difference, mean value, peak
mean value, and peak number are selected as initial features
to construct feature vector, as shown in the following
equation:

F � Max MaxABS Range Std Var Rms IQR Mean PksMean PksNum . (12)

3. Preimpact Fall Detection Algorithm

In the field of preimpact fall detection, there are mainly two
kinds of commonly used classification algorithms: threshold
method [21] and machine learning method [13]. %reshold
method refers to judging whether a fall occurs by deter-
mining whether a certain feature or several features exceed

the preset threshold [22] in the process of movement.
Machine learning trains more accurate prediction models
through appropriate features and then judges whether a fall
occurs by using the model. In this chapter, the algorithm
design of preimpact fall detection is studied from the view of
fraction domain and compared with the threshold method
and machine learning method in time domain.
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3.1. Preimpact Fall Detection Based on (reshold Method in
Time Domain

3.1.1. Prealarm(eory. Based on the time-domain threshold
method, the preimpact fall detection is to directly process the
acceleration and angular velocity collected by the inertial
sensor and set an appropriate threshold value. When the
collected data exceed the threshold value, the fall trend is
judged. For a piece of data collected in real time, it can be
expressed in the following form:

Max Xt( >T. (13)

Among them, Xt represents the characteristics of the
data collected at time t andT represents the preset threshold.

3.1.2. Feature Selection. In general, the threshold method
can choose one feature as the maximum value of the data
collected in real time or a combination of multiple features
as the classification basis. Generally, a single feature can
guarantee a certain precision rate and recall rate. Appro-
priately increasing the number of features can improve the
precision rate and recall rate; on the contrary, excessive
features will reduce the precision rate and recall rate. In this
paper, four characteristics value including global maximum
absolute value (GMA), the global maximum value (GM),
interval maximum value (IM), and interval maximum ab-
solute value (IMA) are analyzed.

Figure 7 shows the changes of the characteristics in the
time domain with the original data before and after the fall.
Among them, Figure 7(a) is the characteristic change with
the original angular velocity, and Figure 7(b) is the char-
acteristic change with the original acceleration. %ere is a
clear difference in the amplitude of the inertial data gen-
erated by regular exercise and falling. %erefore, falling can
be detected by setting the threshold. Among these features,
the maximum absolute value of the interval can quickly
reflect the occurrence of a fall, while the global maximum
can ensure a lower recall rate. %us, these two features are
selected for further classification analysis.
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3.1.3. Classification Process and Result Analysis. In this
paper, the average T of the maximum absolute value of the
training sample at the time of the fall is calculated, and the
threshold is ranged from 60% to 140% of the average. %e
time tp when the threshold is reached is regarded as the
predicted time of the fall. We compare tp with the actual
time of fall tr to get the delay time td, while comparing tp

with the time tc that falling collision happened to calculate
the lead time ta. We count the number of misjudgments Nw

that mixed up a normal movement with a fall and finally
evaluate the pros and cons of the classification effect based
on the above parameters.

Table 2 shows the prealarm effect of fainting. When the
threshold is 1.32 m/s2, there is a misjudgment. When the
threshold is 1.54 m/s2 while the number of misjudgments is
0, the lead time is the largest.

Table 3 shows the average optimal early warning effect
for independent monitoring of falls. It can be seen that when
a single fall state is monitored independently, the average
advance time without misjudgment can be as high as 413ms.
However, there is a large gap between the threshold values of
each fall state. Here, take the 80%–120% of the maximum
threshold value and give the early warning for all fall states
under the same threshold condition.

Table 4 shows the optimal prealarm effect for all fall
states under the same threshold condition (8.49 m/s2). It can
be seen that multiple fall states need to be monitored at the
same time. Compared to independent monitoring, the
prealarm performance is obviously reduced.

%e fall data of another tester were verified under the
condition of keeping the threshold value of 8.49 m/s2, and
the prealarm effect is shown in Table 5.

From the data in Table 5, it can be found that walking-
slipping and jogging-slipping cannot be detected. It can be
seen that the threshold method is seriously restricted by
personnel, and the threshold used by different testers is
significantly different. In addition, the threshold method
also has the defect that it cannot distinguish the type of fall.

3.1.4. Preimpact Fall Detection Based on Machine Learning.
In addition to the threshold method, machine learning is
also a common class of preimpact fall detection algorithms.
Common machine learning algorithms include support
vector machine (SVM) [14, 23–25], decision tree (DT),
artificial neural network (ANN) [26], and k-nearest
neighbor (K-NN) [27], which all can be used for model
construction. Some have preferable performance including
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convolutional neural network (CNN), a class of support
vector machine (1SVM), CNN+1SVM [28], hidden Markov
model (HMM) [29], K-NN, and ANN [30].

%is paper used the MATLAB machine learning toolbox
to employ commonly used machine learning algorithms to
conduct classification training on the training set and se-
lected two algorithms with the best classification results.
Table 6 shows the selected classification algorithms and
classification accuracy.

%e data in the test set are intercepted through a sliding
window simulating real-time data reading. After extracting its
features, the data are sent to the trained model for classifi-
cation. Finally, the classification results are compared with the
actual motion curves. Figure 8 is the real-time simulation
classification rendering of walking-fainting. Among them, the
red curve represents the original data, the blue curve rep-
resents the classification effect of the weighted KNN algo-
rithm, and the yellow curve represents the classification effect
of the bagged trees algorithm of integrated learning. Among
the classification results, 1–6 correspond to walking, jogging,
fainting, tripping, and slipping, respectively.

It can be seen that the bagged trees algorithm of inte-
grated learning has almost no misjudgment before falling,
with an accuracy rate of 98.62%, while the weighted KNN
algorithm has several misjudgments with an accuracy rate of
88.94%. Moreover, both algorithms give an alarm at the time
of 217 sampling points, which are 11 sampling points in
advance, namely, 367ms, compared with 228 sampling
points where the fall collision [12] occurs.

Table 7 shows the fall prealarming accuracy and lead
time of part of the test set. On the left side, we have the
prediction result of the KNN algorithm, and the prediction
result of the integrated learning algorithm is on the right
side. %e lead time is calculated by the time difference

Table 2: Prealarm effect of fainting.

%reshold T (m/s2) Delay time Td (ms) Lead time Ta (ms) Misjudgment frequency Nw

1.32 100 400 1
1.54 133 367 0
1.76 133 367 0
2.20 167 333 0

Table 3: %e average optimal prealarm effect for independent monitoring of falls.

Falls type %reshold T (m/s2) Delay time Td (ms) Lead time Ta (ms)
Walking-fainting 1.76 87 413
Walking-slipping 2.27 108 375
Walking-tripping 2.06 153 506
Jogging-fainting 6.08 180 260
Jogging-slipping 6.82 426 193
Jogging-tripping 7.72 453 100

Table 4: %e optimal prealarm effect under the same threshold
condition.

Falls type Delay time Td (ms) Lead time Ta (ms)
Walking-fainting 300 233
Walking-slipping 433 67
Walking-tripping 300 400
Jogging-fainting 267 233
Jogging-slipping 433 167
Jogging-tripping 367 67

Table 5: %e prealarm effect of another tester under the condition
of constant threshold.

Falls type Delay time Td (ms) Lead time Ta (ms)
Walking-fainting 567 67
Walking-slipping - -
Walking-tripping 233 93
Jogging-fainting 367 100
Jogging-slipping - -
Jogging-tripping 300 567

Table 6: %e selected classification algorithm and classification
accuracy.

Classification algorithm Accuracy
Integrated learning bagged trees 88.9%
Weighted KNN 89.2%
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between the time when the fall was predicted to be correct
for the first time and the time when the fall collision oc-
curred. It can be seen that walking in the motion state is
more likely to predict falling than jogging in the motion
state, and jogging state is more difficult to distinguish from
falling state in the time domain.

3.2. Preimpact Fall Detection Algorithm Based on Fractional
Domain. On the basis of the research in Sections 3.1 and 3.2,
considering that human body motion also contains certain
frequency information, if frequency-related features are
introduced, the classification accuracy can be improved to a
certain extent. %erefore, this paper considers introducing
the fractional Fourier transform to extract features from the
perspective of the fractional domain, so that it contains both
information of time domain and frequency. %e theory of
the fractional Fourier transform has been explained in
Section 2.2. In this section, the data collected in the sliding
window take the mixed order fractional Fourier transform,
converted to the mixed order fractional domain, and then
feature extraction is performed. According to the pairwise
classification of these features, the most effective combi-
nation and the relief algorithm are used to calculate the
weights of each feature and reduced the dimension. Finally, a
multilayer dichotomy classifier is constructed.

3.2.1. Classification Method Selection. To apply the frac-
tional Fourier transform to fall prealarming, the classifica-
tion algorithm must first be determined. In the commonly
used threshold method and machine learning method, al-
though the threshold method is simple to calculate, it is
limited by the data and difficult to achieve the optimization
by setting the threshold based on experience. Although most
machine learning methods can provide high classification
performance, the calculation of their prediction results is
more complicated, which is not easy to implement on the
on-board chip and will significantly increase computing
power consumption and reduce battery life. Support vector
machine (SVM) have mature and optimized classification
algorithms, which is also suitable for implementation on on-
board low-power chips. %us, support vector machines are
the most suitable choice.

Considering the classifier design idea, each step of
classification is a dichotomy classification, and the number
of features used in the final classification needs to be reduced
as much as possible. After verification, only 2–3 features are
required to achieve a better classification effect. %erefore,

the kernel function of SVM can be defined as the simplest
linear kernel function or polynomial kernel function, and its
expression is shown in the following:

k(x, y) � x
T
y + c, (14)

k(x, y) � ax
T
y + c 

d
. (15)

In summary, this article sets the classification algorithm
of each subnode to SVM and directly uses the quadratic
SVM tool in Matlab classification learner toolbox for clas-
sification analysis.

3.2.2. Evaluation Method of the Transformation Order of the
Best Classification. Considering that the transformation
order and features required to separate any two motion
states may be different, this paper uses the traversal method
to calculate the classification effect of any two sets of motion
states using all features at all orders.

Table 8 is the best training effect of any two kinds of
sports classified by the 20 sets of features calculated from the
acceleration and angular velocity collected by the waist
sensor. %e upper part and the lower part, respectively,
indicate the sensitivity and specificity of the classification.
Table 9 shows the order of the best classification effect.

It can be seen from Table 9 that there are two cases for
the best classification effect: the classification of walking
and jogging has better sensitivity under the 0.3-order
transformation and better specificity under the 0.1-order
transformation; that means the best sensitivity and best
specificity are not in the same transformation order. %e
sensitivity and specificity of walking-slipping classifica-
tion can reach 100% under 0.2-order transformation; that
is, the best sensitivity and best specificity are in the same
transformation order. For the latter, the order can be
directly used for classification, while for the former, a new
order needs to be found that can satisfy high sensitivity
and specificity at the same time.

ROC (Receiver Operating Characteristic) curve is
usually used in machine learning to reflect the changes of
model performance with the changes of a specific ex-
ternal stimulus. Referring to the ideas of the ROC curve,
the true positive rate (TPR) and the false positive rate
(FPR) were plotted as the ROC curve with the trans-
formation order as the external stimulus condition
during the process that the transformation order change
from 0 to 1 in the process plots order. According to the

Table 7: %e fall prealarming accuracy and lead time of part of the test set.

Motion Accuracy of data set 1 Lead time of data set 1 (ms) Accuracy of data set 2 Lead time of data set 2 (ms)
Walking-fainting 0.889-0.880 367-433 0.917-0.856 567-500
Walking-slipping 0.845-0.743 333-233 0.880-0.789 433-367
Walking-tripping 0.753-0.688 433-367 0.838-0.668 433-668
Jogging-fainting 0.664-0.930 467-333 0.651-0.846 467-433
Jogging-slipping 0.515-0.874 267-267 0.571-0.920 200-267
Jogging-tripping 0.617-0.807 200-267 0.631-0.719 267-433
Note. %e prediction result of KNN algorithm is on the left side, and the prediction result of integrated learning algorithm is on the right side.
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nature of the ROC curve, the point closer to the coordinate (0,
1) indicates that the classification effect of the point is better.
Define the rectangular area STF surrounded by four straight
lines y � TPR, y � 0, x � FPR, x � 1 to represent the distance
from (0,1). Draw the rectangular area corresponding to each
order as a curve, as shown in Figure 9.

Figure 9 shows the curve of the classification effect of
walking-fainting with the change of transformation order.
Among them, Figure 9(a) is the ROC curve. Since the TPR
and FPR evaluating the classification effect do not show
monotonicity with the increase of the change order, thus
Figure 9(a) is not the ROC curve in the usual sense.
Figure 9(b) is the curve. According to the property of the
ROC curve, the curve directly reflects the classification effect.
%erefore, the optimal classification order and the corre-
sponding optimal classification effect of this order can be
determined according to Figure 9(b).

In this figure, the classification effect is best after the frac-
tional Fourier transform of order 0.4, with the corresponding
true positive rate of 99.74% and false positive rate of 2.86%.

In summary, on the basis of using all the feature values,
the best transformation order for distinguishing walking and
fainting through the waist sensor is 0.4 order.

3.2.3. Feature Dimension Reduction. %e feature vector used
in the current classification is shown in (12); both acceler-
ation and angular velocity need to be calculated once for
each feature vector, so there are a total of 20 features actually
used for classification. Considering that the classification
algorithm is employed on a wearable device, exorbitant
calculation amount will significantly increase the power
consumption of the device, thereby reducing the battery life
of the device. %us, the number of features used in classi-
fication must be reduced.

Relief’s feature classification algorithm is a feature di-
mensionality reduction algorithm mainly for dichotomy
classification problems. Considering that the classifier used
in this article is a multilayer dichotomy classifier, only two

classes of objects at a time, there is no need to use Relief’s
extended algorithm Relief-F.

%is section still takes the classification of walking-
fainting as an example to reduce the dimensionality of the
walking-fainting data in the training set through the Relief
algorithm. Table 10 is the evaluation value of each feature of
the walking-fainting motion state under each order of
fractional Fourier transform, in which MA stands for
MaxABS, PM stands for PksMean, and PN stands for
PksNum.%e first ten features are calculated by acceleration,
while the last ten features are calculated by angular velocity.

It can be seen from Table 10 that the Var., Std., and RMS
of acceleration and the Var., MaxABS, and Std. of angular
velocity have higher weights, indicating that these features
have a higher contribution to distinguish between walking
and fainting. %e lower weights of the PksNum and
PksMean features of acceleration and angular velocity in-
dicate that these features have a lower contribution to
distinguish between walking and fainting. %e IQR of an-
gular velocity has lower weights under the transformations
of 0.6, 0.7, 0.8, and 0.9 order. Referring to the conclusion of
previous Section 3.2.2, walking and fainting have the best
classification effect under the 0.1-order and 0.4-order
transformation, while the highest feature weight also appears
under the 0.1-order transformation, indicating the reliability
of the algorithm.%erefore, the feature can be filtered by the
weight, namely, feature dimensionality reduction.

Considering the combination relationship between fea-
tures, the classification effect of selecting the two features with
the highest weights for classification is not necessarily better
than the other feature combinations, so the optimal solution
for feature dimensionality reduction is not necessarily the top
feature.%emain idea of the boosting algorithm in integrated
learning is selected in this paper to make feature selection.

%e main idea of the boosting algorithm is to construct a
strong classifier through several weak classifiers, which is a
serial iterative model. For the series of weak classifier
combinations ABC, classifier A will generate a prediction
result for the training sample, send the wrong part of this
result to classifier B for training, and then send the wrong
part of the prediction result of B into the classifier C for
training. %rough continuous iteration, several weak clas-
sifiers can be used to form a strong classifier with out-
standing performance.

Referring to themain idea of the boosting algorithm, first
the angular velocity var. of order 0.1 is selected, which is the
feature with the highest weight in Table 10, and then the
classification effect of the combination with other features
based on this feature is traversed. Find the feature vector
composed of two features with the best classification effect.

Table 11 shows the result of the feature pair composed of
the angular velocity var. and other features and sent to the
SVM for training. %e first ten features in the table are
calculated from acceleration, and the last ten are calculated
from angular velocity.

Since the order and feature group of the maximum value
in Tables 11 and 12 are not completely the same, this paper
chooses the form of obtaining the maximum value of the
product to select the final transformation order and feature

Table 8: %e best accuracy rate using all features for any two sets of
motions at all transformation orders.

Motion type Walking Jogging Fainting Tripping Slipping
Walking 0.9943 0.9903 0.9961 1
Jogging 0.9954 0.9904 1 0.9976
Fainting 0.9942 0.9928 0.9821 1
Tripping 1 1 0.9821 0.9483
Slipping 1 0.9976 1 0.9655

Table 9: %e order of the best accuracy.

Motion type Walking Jogging Fainting Tripping Slipping
Walking 0.3 0.9 0.2 0.2
Jogging 0.1 0.1 0.8 0.9
Fainting 0.8 0.8 0.1 0.2
Tripping 0.4 0.2 0.3 0.1
Slipping 0.2 0.1 0.4 0.6
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group. Table 13 is the result of multiplying the values in
Tables 11 and 12 in the same position.

According to the calculation results in Table 13, take the
maximum value to determine the classification parameters
of walking and fainting: the angular velocity (var.) and
acceleration (range) under the 0.1-order transformation. At
this time, STF is 0.951.

3.2.4. Multilayer Dichotomy Classifier Construction. From the
conclusions in Sections III-C-(b) and III-C-(c), the best
classification order and feature group for separating a certain

individual motion state from all sports can be calculated in
turn and then iteratively, until the classification of all motion
states is completed. Finally, we build a multilayer dichotomy
classifier on the grounds of the calculation results. In ad-
dition, to ensure efficiency, the feature values used for
classification are limited to no more than three.

Table 14 shows the optimal classification effect between
every two movements and the transformation order and the
feature group used. Among them, the left side of the first row
of each grid is that of the training set, and that of the test set
is on the right side. In the second row of each grid, the
transformation order is outside the brackets, and the feature
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Figure 9: (a) ROC curve and (b) S_TF curve of walking-fainting with the change of transformation order.

Table 10: %e evaluation value of each feature of walking-fainting motion state under each order of fractional Fourier transform.

Feature 0.1 order 0.2 order 0.3 order 0.4 order 0.5 order 0.6 order 0.7 order 0.8 order 0.9 order
Max 0.243 0.245 0.249 0.271 0.277 0.251 0.237 0.136 0.218
MA 0.243 0.245 0.249 0.271 0.277 0.251 0.237 0.136 0.218
Range 0.250 0.246 0.264 0.274 0.269 0.259 0.232 0.127 0.214
Std. 0.281 0.291 0.296 0.302 0.287 0.278 0.270 0.217 0.228
Var. 0.399 0.402 0.404 0.405 0.398 0.393 0.388 0.355 0.360
RMS 0.239 0.237 0.238 0.238 0.233 0.232 0.237 0.224 0.236
IQR 0.218 0.257 0.250 0.276 0.239 0.206 0.179 0.144 0.140
Mean 0.209 0.204 0.202 0.197 0.194 0.195 0.210 0.213 0.221
PM 0.168 0.176 0.192 0.175 0.171 0.152 0.124 0.107 0.174
PN 0.057 0.015 0.029 0.016 0.016 0.003 0.020 0.009 0.0050
Max 0.368 0.359 0.337 0.330 0.317 0.295 0.263 0.268 0.243
MA 0.368 0.359 0.337 0.330 0.317 0.295 0.263 0.268 0.243
Range 0.357 0.347 0.326 0.326 0.309 0.294 0.260 0.261 0.244
Std. 0.326 0.325 0.326 0.329 0.308 0.304 0.293 0.283 0.278
Var. 0.408 0.407 0.406 0.406 0.397 0.394 0.388 0.383 0.380
RMS 0.289 0.288 0.288 0.288 0.284 0.287 0.279 0.292 0.287
IQR 0.265 0.230 0.230 0.226 0.188 0.149 0.065 0.040 0.108
Mean 0.201 0.204 0.210 0.217 0.225 0.235 0.239 0.285 0.254
PM 0.164 0.211 0.124 0.142 0.059 0.122 0.025 0.082 0.035
PN 0.030 0.013 0.005 0.076 0 0 0.056 0.006 0.004
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group number is inside the brackets. %e feature combi-
nations are represented by numbers instead of feature
names, and the order is consistent with formula (12), 1–10
indicates the feature calculated from acceleration, and 11–20
indicates the feature calculated from angular velocity.

According to general laws, falls usually occur after the
state of regular motion. %erefore, the first layer of the
classifier is the classification of regular motion, which divides
the current motion into walking or jogging and then
monitors the occurrence of falls in real time and finally
divides the types of falls. Table 15 shows the optimal clas-
sification effect of the preimpact fall detection for walking
and jogging and its transformation order and feature group

used. Figure 10 shows the distribution of the features for
classification of walking and jogging with the three falling
states. According to the results, the preimpact fall detection
parameters of two conventional states are classified.

After separating the fallen state from the regular motion
state, the preliminary preimpact fall detection has been
completed. %e next step is to classify the three falling states.
Using the samemethod, find the best classification order and
feature group that separates one of the three falling states.
Finally, separate the remaining two falling states according
to Table 14. At this point, the preimpact fall detection and
the classification of falling states are completed. Table 16
shows the optimal classification effect of a falling state

Table 11: STF of the trained SVM model composed of the angular velocity var. and other features.

Feature 0.1 order 0.2 order 0.3 order 0.4 order 0.5 order 0.6 order 0.7 order 0.8 order 0.9 order
Max 0.977 0.974 0.974 0.974 0.971 0.971 0.971 0.969 0.971
MA 0.977 0.974 0.974 0.974 0.971 0.971 0.971 0.969 0.971
Range 0.977 0.977 0.974 0.974 0.971 0.971 0.971 0.969 0.971
Std. 0.977 0.977 0.974 0.974 0.974 0.971 0.971 0.969 0.971
Var. 0.974 0.974 0.974 0.974 0.971 0.971 0.969 0.969 0.969
RMS 0.971 0.971 0.971 0.971 0.969 0.969 0.969 0.969 0.969
IQR 0.971 0.971 0.971 0.971 0.969 0.966 0.964 0.964 0.964
Mean 0.969 0.971 0.969 0.969 0.969 0.969 0.969 0.969 0.969
PM 0.971 0.969 0.966 0.969 0.969 0.969 0.966 0.966 0.966
PN 0.961 0.958 0.953 0.953 0.953 0.948 0.948 0.945 0.945
Max 0.966 0.961 0.961 0.958 0.953 0.948 0.951 0.943 0.721
MA 0.966 0.964 0.961 0.958 0.953 0.948 0.953 0.943 0.938
Range 0.966 0.964 0.961 0.956 0.953 0.948 0.953 0.945 0.922
Std. 0.961 0.961 0.953 0.953 0.953 0.953 0.948 0 0
Var. 0.958 0.958 0.953 0.953 0.953 0.948 0.864 0.909 0.919
RMS 0.969 0.961 0.956 0.953 0.951 0.948 0.953 0.969 0.953
IQR 0.964 0.961 0.961 0.958 0.953 0.953 0.948 0.945 0.945
Mean 0.977 0.964 0.958 0.953 0.951 0.953 0.956 0.961 0.958
PM 0.961 0.961 0.958 0.953 0.951 0.948 0.948 0.945 0.945
PN 0.958 0.956 0.953 0.961 0.948 0.948 0.945 0.945 0.280

Table 12: %e test result of the above model, STF.

Feature 0.1 order 0.2 order 0.3 order 0.4 order 0.5 order 0.6 order 0.7 order 0.8 order 0.9 order
Max 0.971 0.969 0.971 0.971 0.971 0.969 0.969 0.965 0.967
MA 0.971 0.969 0.971 0.971 0.971 0.969 0.969 0.965 0.967
Range 0.973 0.973 0.971 0.971 0.971 0.969 0.971 0.965 0.967
Std. 0.969 0.973 0.971 0.971 0.971 0.971 0.969 0.967 0.965
Var. 0.971 0.971 0.971 0.971 0.969 0.969 0.969 0.967 0.967
RMS 0.963 0.963 0.965 0.965 0.965 0.965 0.965 0.965 0.965
IQR 0.959 0.967 0.967 0.961 0.947 0.941 0.935 0.939 0.939
Mean 0.961 0.959 0.959 0.953 0.957 0.957 0.959 0.965 0.963
PM 0.959 0.959 0.955 0.943 0.937 0.943 0.951 0.945 0.953
PN 0.929 0.933 0.929 0.933 0.931 0.929 0.931 0.933 0.937
Max 0.931 0.931 0.933 0.931 0.931 0.931 0.931 0.933 0.268
MA 0.931 0.933 0.933 0.931 0.931 0.931 0.931 0.935 0.935
Range 0.933 0.933 0.931 0.931 0.929 0.931 0.931 0.931 0.953
Std. 0.929 0.931 0.931 0.931 0.931 0.931 0.931 0.006 0.0260
Var. 0.929 0.929 0.931 0.931 0.931 0.931 0.353 0.942 0.949
RMS 0.925 0.929 0.929 0.929 0.931 0.933 0.877 0.933 0.846
IQR 0.929 0.929 0.929 0.931 0.937 0.927 0.927 0.935 0.933
Mean 0.894 0.925 0.929 0.929 0.931 0.931 0.881 0.939 0.877
PM 0.931 0.929 0.929 0.927 0.931 0.933 0.933 0.933 0.933
PN 0.931 0.929 0.933 0.931 0.931 0.933 0.933 0.933 0.362
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separated from the three falling states, its transformation
order, and the feature group used. %e classification that
prioritizes the fainting state for separation works best, while
the classification parameters of separating slipping and
tripping states can be found in Table 14, which are 0.9 order
and No. 5, 11, and 19 features. According to the above, a
multilayer dichotomy classifier is constructed, as shown in
Figure 11.

In Figure 11, the training set accuracy of classifier a-g is,
respectively, 99%, 95%, 94.5%, 87.3%, 87.3%, 85%, and 85%.
%e accuracy of the testing set is 95%, 94%, 91.5%, 92%, 92%,
88%, and 88%, respectively.

4. Experiment and Analysis

4.1. Experimental Design. In the experiment of this section,
we use the method described in Chapter II-A to obtain data,
and the software is used to preprocess the collected data,
specify order fractional Fourier transform, extract feature,
and classify motion state.

In the experiment, we recorded 50 fall events for each
tester. Since walking and jogging are indistinguishable in
static pictures, the following only shows the cases of fainting,
tripping, and slipping in the walking state in the experiment,
as shown in Figure 12.

4.2. Experimental Result. %e classification result of the
collected motion data is shown in Figure 13. Among them,
Figures 13(a), 13(c), and 13(e) are the preimpact fall de-
tection effects of fainting, tripping, and slipping during
walking; Figures 13(b), 13(d), and 13(f) are the preimpact
fall detection effect of fainting, tripping, and slipping during
jogging. Walking, jogging, fainting, tripping, and slipping
are numbered 1–5 in sequence. It can be seen that during

Table 13: %e product of training result STF and testing result STF.

Feature 0.1 order 0.2 order 0.3 order 0.4 order 0.5 order 0.6 order 0.7 order 0.8 order 0.9 order
Max 0.949 0.944 0.946 0.946 0.944 0.942 0.942 0.935 0.940
MA 0.949 0.944 0.946 0.946 0.944 0.942 0.942 0.935 0.940
Range 0.951 0.951 0.946 0.946 0.944 0.942 0.943 0.935 0.940
Std. 0.947 0.951 0.946 0.946 0.946 0.944 0.942 0.937 0.938
Var. 0.946 0.946 0.946 0.946 0.942 0.942 0.939 0.937 0.937
RMS 0.936 0.936 0.938 0.938 0.935 0.935 0.935 0.935 0.935
IQR 0.932 0.940 0.940 0.934 0.918 0.909 0.901 0.905 0.905
Mean 0.931 0.932 0.929 0.923 0.927 0.927 0.929 0.935 0.933
PM 0.932 0.929 0.923 0.914 0.908 0.914 0.919 0.913 0.921
PN 0.893 0.894 0.886 0.889 0.888 0.881 0.883 0.882 0.886
Max 0.900 0.895 0.897 0.892 0.888 0.883 0.885 0.880 0.194
Std. 0.893 0.895 0.888 0.888 0.888 0.888 0.883 0 0
Var. 0.890 0.890 0.888 0.888 0.888 0.883 0.305 0.856 0.872
RMS 0.896 0.893 0.888 0.886 0.885 0.885 0.836 0.904 0.806
IQR 0.895 0.893 0.893 0.892 0.893 0.884 0.879 0.884 0.882
Mean 0.874 0.891 0.890 0.886 0.885 0.888 0.842 0.903 0.841
PM 0.895 0.893 0.890 0.884 0.885 0.885 0.885 0.882 0.882
PN 0.892 0.888 0.889 0.895 0.883 0.885 0.882 0.882 0.101
Max 0.949 0.944 0.946 0.946 0.944 0.942 0.942 0.935 0.940
MA 0.949 0.944 0.946 0.946 0.944 0.942 0.942 0.935 0.940

Table 14: %e optimal classification effect between every two motions and the transformation order and the feature group used.

Motion Walking Jogging Fainting Tripping Slipping

Walking 0.94-0.98 0.865-0.825 1-0.98 0.98-1
0.3-(5, 18) 0.5-(5, 11, 18) 0.5-(5, 6) 0.1-(5, 7)

Jogging 0.941-0.98 0.865-0.902 0.9-0.884 0.902-0.96
0.5-(5, 14) 0.1-(15, 7, 11) 0.7-(15, 7, 17) 0.5-(15, 13, 9)

Fainting 0.865-0.864 0.865-0.902 0718-0.791 0.81-0.845
0.5-(5, 7, 20) 0.2-(15, 7, 10) 0.1-(10, 11, 18) 0.9-(10, 7, 14)

Tripping 1-1 0.9-0.92 0.739-0.768 0.846-0.81
0.4-(5, 8) 0.1-(15, 11, 20) 0.4-(10, 11, 19) 0.9-(5, 11, 19)

Slipping 1-0.98 0.921-0.98 0.826-0.843 0.846-0.810
0.2-(5, 6) 0.5-(15, 8) 0.9-(10, 7, 15) 0.9-(5, 11, 19)

Table 15: %e optimal classification effect of the preimpact fall
detection for walking and jogging and its transformation order and
feature group used.

Motion
states

Optimal
order

Feature
group

Training
set

Testing
set

Walking 0.7 6,7,17 0.921 0.946
Jogging 0.1 15,3,13 0.868 0.902
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walking, the occurrence of falls can be better warned, the
average delay time is 89ms, and the average lead time is
456ms; the inertial data caused by jogging fluctuate greatly,
so it is easy to be confused with falling. %erefore, the
preimpact fall detection during jogging is generally inferior
to walking, with an average delay time of 322ms and an
average lead time of 240ms.

%e algorithm proposed in this paper is compared with
the threshold method and machine learning method, as
shown in Table 17.

5. Discussion

A key goal of this article is to achieve efficient classification and
early warning of falls for the elderly. %e previous assumption
is that it has higher classification performance and accuracy.
From the experimental results, we can see that compared with
other methods such as threshold method, this article proposes
the algorithm which had enhanced the classification ability of
falls and improves the accuracy and time of early warning.%is
will provide useful help for future fall detection research.
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Figure 10: (a)%e feature distribution of walking state with three falling states. (b)%e feature distribution of jogging state with three falling
states.

Table 16:%e optimal classification effect of a falling state separated from the three falling states and its transformation order and the feature
group used.

Separated state Transformation order Feature group Training set STF Separated state STF

Fainting 0.1 10,9,5 0.78 0.76
Tripping 0.2 10,11,4 0.639 0.691
Slipping 0.9 5,19,14 0.619 0.605
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Figure 11: Structure diagram of multilayer dichotomy classifier.
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(a) (b) (c)

Figure 12: (a) Fainting, (b) slipping, and (c) tripping, while in the state of walking.
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Figure 13: Real-timemotion state classification renderings. (a)%e preimpact fall detection effects of fainting while in walking state. (b)%e
preimpact fall detection effect of fainting while in jogging state. (c)%e preimpact fall detection effects of tripping while in walking state. (d)
%e preimpact fall detection effect of tripping while in jogging state. (e)%e preimpact fall detection effects of slipping while in walking state.
(f ) %e preimpact fall detection effect of slipping while in jogging state.
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However, the physical fitness of the experimenters in this
study has limitations. It can be seen from the previous
experiments that it has some influence on the fall classifi-
cation results. In the follow-up, we consider collecting more
fall data of the elderly to further improve the training of the
classification model.

6. Conclusion

According to Section IV-B, the method proposed in this
paper can better adapt to the movement feature of different
people and distinguish different falling states compared to
the threshold method. Compared with most machine
learning methods, fewer feature values are used, which
improves accuracy and lead time. Meanwhile, the classifi-
cation boundary function of each subclassifier using SVM is
a quadratic polynomial, which is more suitable for running
on embedded systems.

%e experiment results show that compared with other
methods, the method proposed in this paper has a better
preimpact fall detection effect during walking. It can ensure
better preimpact fall detection effect and classification ac-
curacy using fewer features. %e average lead time reaches
456ms, and the average delay time is 89ms. For the pre-
impact fall detection during jogging, the average lead time of
the method proposed in this paper is 240ms, and the average
delay time is 322ms.
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