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Household load forecasting provides great challenges as a result of high uncertainty in individual consumption of load profile.
Traditional models based on machine learning tried to explore uncertainty depending on clustering, spectral analysis, and sparse
coding with hand craft features. Recently, deep learning skills like recurrent neural network attempt to learn the uncertainty with
one-hot encoding which is too simple and not efficient. In this paper, for the first time, we proposed a multitask deep con-
volutional neural network for household load forecasting. .e baseline of one branch is built on multiscale dilated convolutions
for load forecasting. .e other branch based on deep convolutional autoencoder is responsible for household profile encoding. In
addition, an efficient encoding strategy for household profile is designed that serves a novel feature fusion mechanism integrated
into forecasting branch. Our proposed network serves an end-to-endmanner in training and inference process. Sufficient ablation
studies were conducted to demonstrate effectiveness of innovations and great generalization in point and probabilistic load
forecasting at household level, which provides a promising prospect in demand response.

1. Introduction

Smart grid is considered as an electric grid that specializes
in delivering electricity in a controlled and intelligent
approach from points of generation to consumers, both
of which form an integral part of the smart grid when
customers are able to modify their purchasing patterns
and behavior according to the received information,
incentives, and disincentives [1–3]. Attractions of smart
grid depend on its capability of improving reliability
performance spontaneously, encouraging customers’
responsiveness and advanced efficiency decisions be-
tween customers and utility providers [3, 4]. Conse-
quently, demand side management (DSM) occupies an
essential integral part of smart grid [5–7]. Meanwhile, the
smart meter plays a crucial role in DSM that is able to
achieve energy savings, exploit renewable energy re-
sources, and encourage customers’ participation in en-
ergy market depending on deep cognition to residential
load profiles or behaviors [8].

As a crucial component of demand response (DR), load
forecasting is categorized with different horizon: very short-
term load forecasting (VSTLF), short-term load forecasting
(STLF), medium-term load forecasting (MTLF), and long-
term load forecasting (LTLF) [9]. Related cut-off horizons
involve days, weeks, and years [10]. A large number of
comprehensive researches pay more attentions on point
forecasting at high aggregated level [11–24]. However, there
are relatively few studies on household load forecasting that
provides great uncertainties or volatilities as a result of
various lifestyle and randomness of consumption behavior
in residential lives [25–29]. Some researches have evaluated
popular models for VSTLF and STLF at household level
[27, 29–37], most of which rely on machine learning ap-
proaches of time series analysis such as autoregressive in-
tegrated moving average model (ARIMA), fuzzy clustering,
sparse coding, and support vector regression (SVR).

Particularly, deep learning skills, for example, recurrent
neural networks (RNNs) or convolutional neural networks
(CNNs), have been confirmed to have superior performance
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[27, 29, 37] rather than traditional methods at load fore-
casting in different aggregated level due to excellent capa-
bility of extracting discriminative correlation features in
sequence. Chitalia et al. [38] presented a robust short-term
electrical load forecasting framework that can capture
variations in building operation, regardless of building type
and location using advanced deep recurrent neural net-
works. Deng et al. [9, 29, 39] devised a novel convolutional
neural model with multiscale dilated kernel for short-term
load or price forecasting, which provides more predomi-
nance of extracting significant features in time-series
analysis. Sideratos et al. [40] gave an advanced fuzzy-based
ensemble model for load forecasting using hybrid deep
neural networks following a two-stage architecture includ-
ing radial basis function neural network (RBFNN) and
CNN. Li et al. [41] developed a convolutional long short-
term memory-based neural network with selected autore-
gressive features to improve short-term household electricity
load forecasting accuracy by employing three strategies:
autoregressive features selection, exogenous features selec-
tion, and a “default” state to avoid overfitting at times of high
load volatility. Dong et al. [42] designed a deep learning
approach based on K-nearest neighbors to capture uncer-
tainty and reflect the range of electrical load fluctuation.
Dudek et al. [43] presented a hybrid and hierarchical deep
learning model for midterm load forecasting. .e model
combines exponential smoothing (ETS), advanced long
short-term memory (LSTM) and ensembling. ETS extracts
dynamically the main components of each individual time
series and enables the model to learn their representation.
Multilayer LSTM is equipped with dilated recurrent skip
connections and a spatial shortcut path from lower layers to
allow the model to better capture long-term seasonal rela-
tionships and ensure more efficient training.

Although deep learning skills have achieved better
performances in short-term load forecasting, proper lag
selection and hyperparameters setting in deep learning are
required for searching optimal training results. It is rather a
hard problem for which an optimal solution cannot be found
in a polynomial time. .is hardness is accentuated by the
complexity of electricity-consumption data patterns [44].
One effective strategy to acquire an optimal configuration in
forecasting model depends on metaheuristics approaches
[45–56] with excellent capability of finding near-optimal
solutions in a very large space. However, there are some
great challenges in specific field of household short-term
load forecasting.

1.1. Reducing Uncertainty. Generally, load forecasting
concentrates on different aggregation levels, such as system,
feeder, and regional ones. In some level, individuals could be
inferred from one forecasting model with shared parameters
as a result of their similar behaviors. For instance, load
patterns of commercial buildings serve a larger granularity,

where different rooms provide regular consumptions under
external factors such as weather or central air conditions.
Load profiles of manufactory enterprises reflect little vari-
ations with relatively stable plans of production. However,
the load profiles of residences exhibit more volatilities and
uncertainties because of their different lifestyles and ran-
domness of behaviors providing great challenges in fore-
casting accuracy. Researches [29, 37] demonstrated that
original household load profile can be decomposed into
regular pattern, uncertainty, and noise. Regular pattern
refers to periodical load profile. Uncertainty depends on
some aperiodic and external factors such as weather, family
activities, and individual preferences. Noise represents the
residue that cannot be physically explained [11, 13, 37].

Most machine learning skills are competent in learning
linear relationships and exploring regular patterns effectively. In
contrast, these approaches with hand craft features cannot deal
with uncertainty at household level that accounts for a great
proportion. Different household holds different behavior and
remarkable variations in time series delivering great stochas-
ticity and nonlinear salience. Consequently, relying on shared
model based on traditionalmodel is almost doubtful. To address
these problems, three categories of methods have been pre-
sented [37]:

(1) Clustering approaches [36, 57, 58] were designed to
group households based on similar behavior at high
level, which decreases uncertainty in each category and
extracts more regular patterns to facilitate household
load forecasting. However, how to segment subjects
appropriately prohibits an acceptable result generally
and this strategy is excessively sensitive to different
dataset. Meanwhile, some researches [18–21] proposed
aggregate load forecasting (ALF) to cancel uncertainty.
ALF is actually considered as a larger granular level not
specialized in household ones.

(2) Some spectral analyses such as Fourier transforms
[23], wavelet analysis [22], and empirical mode
decomposition were introduced in order to extract
the regular pattern located in load profile. .is
strategy is not suitable for household load forecasting
since regular information occupies relatively smaller
proportion.

(3) In the domain of power delivery systems, sparse coding
has been applied to the problem of energy disaggre-
gation [59, 60]. Recently, sparse coding becomes pre-
ferred at household level that provides each house a
profile description and an efficient approach to separate
uncertainty, learning, and representing gross patterns of
individual consumption [37, 61]. Yu et al. [61] analyzed
and decomposed the dataset into fixed patterns that
constitute ultimate format of encoding, which lacks
flexibility to show various uncertainties. Shi et al. [37]
used one-hot encoding to increase individual features in
deep RNN to extract uncertainty achieving the state-of-
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the-art performance. However, sparse encoding cannot
handle massive users and express similarity among
households effectively.

.rough investigations, most of researches tried to adopt
clustering, pattern separation, or sparse coding to learn
uncertainties of load profile at household level. .ese
strategies based on machine learning offer a restricted ca-
pability of modeling with hand craft features in time series
analysis. In recent years, deep learning has appeared as a
powerful tool in areas such as image processing and data
analysis. With deeper architecture and sophisticated oper-
ations, deep neural networks provide superior ability of
learning discriminative features and nonlinear relationships,
which benefits extracting uncertainty at household load
forecasting [29, 37].

1.2. Building Effective Network. Deep learning skills have
been applied in load forecasting, and most of them rely on
RNN or long short-term memory (LSTM)
[27, 37, 62–66, 66]. LSTM is derived form RNN, both of
which are successful in the target of sequence to sequence
learning such as speech recognition and natural language
processing in time series analysis. However, when managing
long-term sequence, RNNs suffer from the problem of
gradient disappearance severely, even though LSTM alle-
viates this case partly. Specifically, latest researches [9, 29]
revealed that convolutional neural network (CNN) offers
more advanced accuracy as a result of powerful capability of
discriminative feature extraction. In addition, some mech-
anisms like residual connection cannot cause dramatical
gradient disappearance even in deeper network. Conse-
quently, related skills could be optimized to identify and
learn both regular pattern and uncertainty in load profile at
household level.

In this paper, we propose a multitask convolutional
neural network with household profile encoding (MCNN-
HPC). .e novel encoding branch serves more effective
description on household behavior especially focusing on
uncertainty. In coordination with multiscale dilated con-
volutional neural network [9], our proposed model provided
the state-of-the-art performance of VSTLF at household
level. .e key contributions are as follows:

(i) We propose a multitask neural network that con-
sists of two branches. .e baseline of one branch is
built on multiscale dilated convolutions for load
forecasting. .e other branch based on deep con-
volutional autoencoder is responsible for household
profile encoding.

(ii) A novel encoding strategy is designed to explore
uncertainty in household behavior effectively.
Compared with traditional technique in deep neural
network, our proposed method has great predom-
inance to express individual behavior feature and
nonlinear correlation in time series analysis.

(iii) We present a novel mechanism of feature fusion
between two branches, which is also interpreted as a

superior feature selection process and leads to re-
markable improvement in accuracy.

(iv) Our proposed network serves an end-to-end
manner in training and inference process. Sufficient
ablation studies were conducted to demonstrate
effectiveness of innovations and great generalization
in point and probabilistic load forecasting at
household level.

.e rest of the paper is structured as follows: Section 2
defines the problem and describes the details of our pro-
posed model. Section 3 introduces the experiment setups.
Section 4 exhibits and discusses the detailed results of
comparison experiments. .e conclusions are drawn in
Section 5.

2. Methodology

2.1. Problem Formulation. Our research focuses on VSTLF
at household level that pays more attention to load fore-
casting for the nearest point (the next 30minutes) in very
short term. In practice, we only employ the historical load
data (Xt) for training and inference process of our proposed
neural network. In electricity market, Xt is easily acquired
from households via smart meters. Consequently, our task
can be described to build nonlinear relationships between
historical load sequences and predicted points as follows:

Y � f Xt( , (1)

where Xt � [x1, x2, . . . , xt] denotes the historical load se-
quence happening in 1, . . . , t time, and
Y � [yt+1, yt+2, . . . , yt+n] represents the output of predic-
tion. t and n manifest the length of the input and output
sequence. When n � 1, the prediction target becomes the
single-step forecasting VSTLF. If n> 1, it belongs to a
multistep forecasting task. In point load forecasting, yt

becomes a scalar, while in probabilistic load forecasting yt

grows to a vector with length q, denoting q quantiles esti-
mated at t.

2.2. Construction of MCNN-HPC

2.2.1. Backbone Network. Our proposed deep neural net-
work consists of two branches corresponding to different
tasks, respectively, in Figure 1. Forecasting branch is re-
sponsible for household load forecasting as the baseline of
MCNN-HPC. Household profile branch provides more
advanced encoding information to learn uncertainty of
individual behavior based on historical load profile. Feature
Fusion 1 to 3 as an innovative concatenation of different
level network serves more excellent feature selection process
than traditional manners. Both branches are fused at the end
of the network with a fully connected layer providing an
end-to-end manner for training and inference of load
forecasting at household level.

2.2.2. Forecasting Branch. In forecasting branch, the base-
line of the network includes multiple convolutional blocks
with different dilated ratio kernels, which is able to extract
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multiscale features reflecting various nonlinear relationships
in sequence. .is strategy has been demonstrated an ad-
vanced optimization applied in CNNs for load forecasting
[9]. In practice, we set the input sequence a 48-dimensional
vector and each point denotes half an hour. Consequently,
the input vector refers to the load sequence of 24 hours
before the predicted time. Forecasting branch consists of 8
convolutional blocks with dilated rates 1, 2, 4, and 8 con-
volutional kernels, respectively, and each block produces 8 ×

48 × 1 feature maps. In order to avoid gradient disappear-
ance and enhance quality of training, forecasting branch
increases lots of residual connections between blocks, il-
lustrated in Figure 1.

2.2.3. Household Profile Branch. Profile encoding branch is
responsible for generating personalized code to learn and
reflect uncertainty in daily life of each household. .e input
of household profile branch comes from a deep convolu-
tional autoencoder (DCAE), illustrated in Figure 2.
Depending on deeper networks and convolutions, DCAE
serves more excellent capability of squeezing input sequence
into latent-space representation that superiorly expresses
inherent features and nonlinear relationships in time-series
analysis [67, 68]. Our designed DCAE holds a symmetrical
encoder-decoder structure with three convolutional blocks
on both sides. 336-dimensional vector is devised as original
and reconstructed input, where each point represents the
load that has happened in every half hour on average
52weeks in one year. .rough maxpooling and upsampling
operations, the output of middle layer (yellow color) is the
specific encoding result for each household profile with 42
dimensions, which also offers the input of household profile
branch in Figure 1. In practice, we use DCAE to generate 42-
dimensional household feature vector for individuals based
on historical load data reflecting discriminative uncertainty
in behavior prominently. In addition, we design fully
connected layers that constitute household profile branch.
After two shared layers, three kinds of fully connected layers
with different number of activation neurons are linked to
forecasting branch for feature fusion.

2.2.4. Feature Fusion. Feature selection is an essential
process where features are automatically or manually
selected and contribute most to prediction. In time series
analysis, models based on machine learning try to present
advanced supervised or unsupervised algorithms to ex-
plore more significant features to acquire potential
nonlinear relationships. For example, Cai et al. [69]
proposed a direct multistep model based on gated con-
volutional neural network (GCNN) for multistep load
forecasting. GCNN module imports gated mechanism to
select salient features in CNN achieving the state-of-the-
art performance. However, this model also suffers from
the problem of LSTM with limited feature expression and
gradient disappearance.

In this paper, we propose a novel feature selection
process shown in Figure 1, where outputs of household
profile branch as learnable weights are fused into baseline

of forecasting branch by multiplication operation. .ree
outputs of household profile branch are set to 1 × 48 × 1,
8 × 48 × 1, and 1 × 8 × 1, respectively. As shown in Fig-
ure 1, in operations of feature Fusion 1 and 2, compared
with traditional concatenation element-wise multiplica-
tion fusion makes sure of more effective feature selection
process. .e vector from household profile branch is
filtered by Sigmoid activation and values are located
within from 0 to 1. Moreover, in feature Fusion 3, as our
proposed model focuses on single-step forecasting, we
use the vector that consists of last points (red color) in
each channel of feature maps to join in feature selection,
which depends on an important assumption that the load
that happened in the last half an hour has the closest
relationship with the forecasting point. Relying on so-
phisticated studying in an end-to-end manner, the well-
trained household profile branch provides proper weights
for individuals to extract remarkable features, respec-
tively, in order to understand their regular and uncertain
pattern with the shared model. .erefore, the entire
MCNN-HPC is able to explore more nonlinear rela-
tionships in consumption behavior of each house
achieving more competent performance with great
generalization for load forecasting at household level.

3. Implementation

3.1. Data Description. .e dataset selected in experiments is
the Smart Metering Electricity Customer Behavior Trails
(CBTs), which belongs to a smart metering project launched
by the Commission for Energy Regulation in Ireland. .e
trails took place during 1st July 2009 and 31st December 2010
with over 5000 Irish residential consumers and small and
medium enterprise (SMEs) participating. .e full anony-
mized dataset is publicly available online and comprises
three parts: (1) half-hourly sampled electricity consumption
(kWh) from each participant; (2) questionnaires and cor-
responding answers from surveys; (3) customer type, tariff,
and stimulus description, which specifies customer types,
allocation of tariff scheme, and demand side management
(DSM) stimuli [37]. In detail, there were 929 residential
customers who did not join any demand program and
enjoyed controlled stimulus and tariff. In other words, their
consumption can realistically reflect behaviors filled with
regular pattern and uncertainty.

3.2. Software and Hardware Platform. All experiments were
conducted on a cloud server with two NVIDIA P4 com-
puting cards and the CPU with 8 cores. Deep neural models
were implemented by the Keras framework with TensorFlow
backend [70].

3.3. Program Implementation. Our proposed model con-
sists of two tasks: forecasting and household profile
branches. At the beginning, an individual vector of
historical load profile is encoded via a well-designed
DCAE, and the output 42-dimensional feature vector is
then delivered to household profile branch as input. With
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effective feature fusion, both branches are integrated
significantly with an end-to-end manner giving contri-
butions to load forecasting at household level. .e
implementation process is divided into three stages: (1)
data preprocessing; (2) household profile encoding; (3)
forecasting. Details are described in Figure 3. We trained
the proposed model for each customer with shared pa-
rameters for households. During the training, we used the
learning rate decay and early stopping strategies based on
the variation of validation loss to reduce computation
cost and prevent overfitting.

3.4. Benchmarks and Setup. For the data preprocessing, as
a result of noise interferences, we removed some re-
dundant data and filled the missing ones by linear in-
terpolation. For training process, the raw data from Irish
dataset is manipulated into input through two branches,
where household load profiles are captured from smart
meters half hourly. At forecasting branch, for each
household, the input sequence uses 24-hour load data
before the forecasting time, a 48-dimensional vector.

Consequently, there are nearly 25,000 datasets which are
divided into training set, validation set, and test set 80%,
10%, and 10%, respectively. 336-dimensional vector of
load profile in one year is encoded into a 42-dimensional
one based on DCAE, and then the feature vector is de-
livered to household profile branch as input for training
and inference.

For the principle of fairness, in ablation studies, we kept
the same configuration of compared neural models. .e
experiment setups and hyperparameters of convolutional
neural networks are presented in Table 1.

4. Results and Discussion

4.1. Evaluation Metrics. For evaluation of our proposed
model MCNN-HPC on smart metering load data from Irish
load profile database, popular metrics are employed on point
and probabilistic load forecasting at household level. Metrics
of point forecasting include mean arctangent absolute
percentage error (MAAPE) [71] and root mean squared
error (RMSE).

Fully connected

Fully connected

Fully connected

Sigmoid

Sigmoid

Sigmoid

Input sequence Household feature vector

Feature fusion 3

Feature fusion 2

Household profile branch

Forecasting branch

Feature fusion 1

Figure 1: .e architecture of MCNN-HPC. Our proposed network consists of the forecasting branch and household profile branch.
Forecasting branch is responsible for load forecasting. Household profile branch describes specific behavior of each individual. Both of two
branches are fused with an efficient approach for point or probabilistic forecasting.
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where yt is the forecast value and yt is the actual outcome
value at time t. .e mean absolute percentage error (MAPE)
is one of the most widely used measures of forecast accuracy,
due to its advantages of scale-independency and inter-
pretability. However, MAPE has the significant disadvantage
that it produces infinite or undefined values for zero or
close-to-zero actual values. In order to address this issue in
MAPE, MAAPE calculates the mean arctangent percentage
error between the forecast and the eventual outcomes.
MAAPE inherently preserves the philosophy of MAPE,
overcoming the problem of division by zero by using
bounded influences for outliers in a fundamental manner
through considering the ratio as an angle instead of a slope
[71].

For probabilistic forecasting evaluation, there are three
commonly used attributes: reliability, sharpness, and reso-
lution. Reliability refers to how close the predicted distri-
bution is to the ground truth. Sharpness means how tightly
the predicted distribution covers the actual curve. Resolu-
tion signifies how much the predicted interval varies over
time. Measures like Kolmogorov–Smirnov, Cramer–von
Mises, and Anderson–Darling statistics assess the uncon-
ditional coverage of a probabilistic forecasting rather than its
sharpness or resolution. In this paper, the performance of

the probabilistic forecasting is evaluated by the average
pinball score, which is a comprehensive measure metric
considering not only reliability but sharpness and resolution.
.e quantile scores have the same equation with quantile
loss, and pinball score is defined as follows:

Pinscore �
1

Ttest × Q


Ttest

t�1


Q

q�1
yt − yt,q  q − 1 yt < yt,q  ,

(4)

where yt is the truth at time t, yt,q denotes the forecast of
quantile q at time t, Q refers to the defined number of
quantiles, and Ttest represents the number of samples in the
test set. In addition, in order to make a proper evaluation on
candidates, the prediction interval (PI) should be assessed.
.e Winkler score is another comprehensive measure that
allows a joint assessment of the unconditional coverage and
interval width. A central PI of time t with 100(1 − α)%
confidence level is given as [Lt, Ut], where Lt and Ut are the
lower and the upper boundaries of the PI.

Winkler �

δt, Lt ≤yt ≤Ut,
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2 Lt − yt( 

α
, yt <Lt,
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2 yt − Ut( 

α
, yt >Ut,
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(5)

where the interval width δt is calculated by δt � Ut − Lt. In
this paper, we evaluate the PI coverage of 80% for Winkler

Input: typical load profile

Convolution_1
Maxpooling_1

Convolution_2
Maxpooling_2

Convolution_3
Maxpooling_3

Output: household feature vector

Upsampling_1
Convolution_4

Upsampling_2
Convolution_5

Upsampling_3
Convolution_6

Reconstructed typical load profile

Convolutional decoder

Convolutional encoder

Figure 2: .e network architecture of DCAE. .e middle layer output is used as the input into household profile branch.
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score. Lower pinball score and Winkler score indicate a
better performance.

4.2. Evaluation ofMultitask Network. In order to evaluate the
effectiveness of our proposed model with multitask, ablation
studieswere conducted on the contribution of household profile
branch. In detail, we randomly selected 10 households to
construct training set, validation set, and testing set, each of
which contains nearly 25,000 48-dimensional sets. Table 2 il-
lustrates results of this ablation study, which gives comparison
performances on our proposed forecasting branch with (our
proposed) or without (original) household profile branch
demonstrating the effectiveness of multitask. Specifically, ex-
periments were completed on 24 : 00, 20 : 00, 18 : 00, 16 : 00, 14 :
00, 12 : 00, 10 : 00, 8 : 00, and 4 : 00, respectively. As discussed in
research [29], at different times the load profile reveals com-
pletely distinct scale, for example, in the evening higher

consumption and slight ones in morning or after midnight,
which is necessary to be considered in study independently.
Table 2 explicitly manifests that our proposed neural network
with household profile branch has remarkable predominance
from 12 : 00 to 24 : 00 onMAAPE and RMSE reflecting its great
ability of learning uncertainties in different household. How-
ever, from4 : 00 to 10 : 00 the performances of bothmodels were
close, and even sometimes the original one performed better.
.e main reason includes that the actual load in this span is
relatively smaller and a little fluctuation in prediction could
cause obvious errors in metrics. Moreover, lower load profile
cannot be predicted easily, yet these errors produce minute
influence on load forecasting. Between 16 : 00 and 24 : 00 load
consumption behaviors of individuals are most active and filled
with great uncertainty, which requires pressing demands on
household load forecasting in DR significantly.

In addition, we increased additional households as
training set to evaluate MCNN-HPC on the same 10 selected

Start

Select sequence: historical load of last 24 hours

Data cleaning

Load entire dataset

Averaging weekly load curves in training set
to get typical load profile of each customer

Divide dataset into
training set, validation set, and testing set 

Set structure and hyperparameters for DCAE

Input 336-dimensional typical load profile and train DCAE 

Output 42-dimensional feature vector of each customer 

Mark historical load curves with feature
vectors of corresponding customers

Choose the forecasted moment and M
customers to generate subsets: training

subset, validation subset, and test subset

Setup forecasting model

Train forecasting model with multi-task
through training and validation subset

Evaluation on test subset

End

Stage 1:
data

preproccessing

Stage 2:
household

profile
encoding

Stage 3:
forecasting
networks

Figure 3: Flowchart for implementation of the proposed model.
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households as testing set, which exploits the influence of
growing dataset on the proposed model. As shown in Ta-
ble 3, columns 20, 30, 50, and 100 refer to expanded training
set and related percentages inspect the improvements of
MAAPE and RMSE on 10 testing households. Table 3 gives
results that present performance changes with the growth of
training set. When 20 houses were introduced, the model
served a significant improvement and 30 houses enhanced
this trend, which demonstrates that expanded dataset
benefits discriminative learning uncertainty of deep con-
volutional neural network.When the dataset was enlarged to
50 or 100 households, the performance of our model kept
little improvement and became degraded gradually. It owes
to the scale of tested convolutional neural network with
limited trainable parameters. If blocks were increased
leading to deeper network, more households could
strengthen the capability of MCNN-HPC to explore regular
pattern and uncertainty in individual behavior for load
forecasting at household level.

4.3. Evaluation of Household Profile Branch. To verify the
superiority of household profile branch, we compared our
proposed network with the state-of-the-art model [37] using
LSTMs to achieve predominant performance of load fore-
casting at household level. .is model identifies different
household with one-hot encoding that is concatenated by
traditional feature fusion approach into load profile as ad-
ditional channel of input sequence, which prompts to extract
regular pattern and uncertainty. It should be noted that they
adopt the method of concatenating representation vectors of
different branches, which is quite different from ours. In this
experiment, we randomly selected 20 houses that joined in
this study. For a more detailed comparison, we chose 11
different times to evaluate both methods increasing 6 : 00
and 22 : 00. Figure 4 shows compared average performances
between our proposed model and the state-of-the-art model
with one-hot encoding, where MCNN-HPC had a re-
markable predominance on MAAPE and RMSE. Specifi-
cally, over time when the load stays at low level, our
proposed model outperformed one-hot encoding indicating
more powerful capability of detecting discriminative non-
linear relationships in complicated cases. .is ablation study
proves more advanced mechanism of household profile

branch with advanced feature fusion process in load fore-
casting at household level.

In addition, we evaluated the effectiveness of feature
fusion and paid more attention to structure of fusion in
network. Four cases, including only Feature Fusion 1
mode, Feature Fusion 2 mode, Feature Fusion 3 mode,
and our proposed strategy, were compared. Results are
illustrated in Figure 1. .e last one we evaluated inte-
grates household profile encoding into each block by
learnable weights, called full fusion. We randomly se-
lected 30 households and benchmarked five cases com-
pared to the network without household profile branch.
Results are shown in Table 4, where Fusion 1, Fusion 2,
and Fusion 3 provide relatively poor performances on
MAAPE and RMSE. Full fusion strategy serves similar
performances with our proposed model, and even at some
time it performed better. However, full fusion model
caused great computation cost as a result of learnable
parameters explosion with increasing blocks and fully
connected layers. .erefore, we preferred our proposed
method of an alleviated approach to preserve the balance
between effectiveness and efficiency.

4.4. Evaluation of Generalization of Our Proposed Model.
To evaluate the generalization of our proposed model, we
independently trained one model without household profile
branch for each household. We adopted the 10 households
selected in Section 3.2 and acquired well-trained 10 indi-
vidual models, respectively. .en, the same 10 households
were used to train and test our proposed MCNN-HPC for
comparison with 10 models on average performances. Ta-
ble 5 shows the results and demonstrates that our proposed
model outperformed individual models on overall perfor-
mances of MAAPE and RMSE reflecting the great gener-
alization of MCNN-HPC. Meanwhile, the experiments gave
more promising prospect for application in electricity
market.

4.5. Evaluation of Our Proposed Model on Probabilistic Load
Forecasting. Probabilistic load forecasting plays a crucial
role in DR that can provide more significant information for
consumer behavior analysis. In this section, 10 households
selected in Section 3.2 were divided into training, validation,
and testing sets to evaluate the performance of our proposed
model on probabilistic load forecasting. We conducted an
ablation study to compare MCNN-HPC with and without
household profile branch to verify the effective encoding
strategy in this area. Table 6 gives the results where our
proposed items refer to the improvement ratio optimized by
MCNN-HPC. It is found that our proposed model has a
superior performance on Pinscore and Winkler80 at dif-
ferent time indicating the positive role of household profile
branch on probabilistic load forecasting at household level.

In the same way, we tested 10 well-trained individual
models for 10 households, respectively, the average per-
formances of which were then compared to evaluate the
generalization of our proposed model on probabilistic load
forecasting. Table 7 shows the experimental results on

Table 1: Shared parameters of neural networks and related selected
strategies.

Parameters CNN
Dilated rate 1, 2, 4, 8
Convolutional blocks 8
Kernels in block 24
Batch size 128
Input size 48, 336
Dropout rate 0.05
Loss function MSE, quantile loss
Optimizing method AMSGrad
Start learning rate 0.01
Learning rate decay 0.3
Training stop Early stopping
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Table 2: Comparison performances of models with or without household profile branch.

Time
MAAPE

Improvement Ratio (%)
RMSE

Improvement Ratio (%)
Original Proposed Original Proposed

24 : 00 0.3487 0.3291 0.0196 5.62 0.3892 0.3012 0.0880 22.63
20 : 00 0.3063 0.3203 −0.014 −4.57 0.5969 0.5903 0.0066 1.11
18 : 00 0.4782 0.4467 0.0315 6.59 0.8307 0.7949 0.0357 4.30
16 : 00 0.4499 0.4119 0.038 8.45 0.5767 0.5521 0.0246 4.27
14 : 00 0.4629 0.4605 0.0024 0.52 0.5047 0.5096 −0.0049 −0.97
12 : 00 0.4807 0.4758 0.0049 1.02 0.6657 0.6528 0.0129 1.94
10 : 00 0.4511 0.434 0.0171 3.79 0.5712 0.5776 −0.0064 −1.12
08 : 00 0.4437 0.4605 −0.0168 −3.79 0.3388 0.341 −0.0022 −0.65
04 : 00 0.3772 0.3494 0.0278 7.37 0.1058 0.1117 −0.0059 −5.58

Table 3: Performance improvement about certain 10 households of expanded training set with different scale relative to a training set with
only 10 households.

Time
MAAPE RMSE

20 houses(%) 30 houses(%) 50 houses(%) 100 houses(%) 20 houses(%) 30 houses(%) 50 houses(%) 100 houses(%)
24 : 00 1.70 5.62 4.86 7.57 1.28 1.75 −1.32 −0.88
20 : 00 2.50 2.00 3.93 6.93 1.01 2.33 0.27 0.14
18 : 00 3.00 1.3 0.81 2.10 0.16 0.23 0.80 0.72
16 : 00 −0.34 1.29 0.27 −0.98 0.39 1.27 0.77 2.12
14 : 00 −0.11 −1.17 −0.87 −1.19 0.55 2.01 1.97 0.05
12 : 00 0.67 −0.88 0.74 −1.95 1.28 1.86 1.10 1.11
10 : 00 −0.92 1.22 2.65 4.68 1.48 0.04 −0.35 −1.51
08 : 00 3.24 3.60 3.04 4.06 4.25 4.07 3.98 3.85
04 : 00 0.03 −0.52 −5.21 −4.55 5.20 14.18 −5.91 −4.30
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Figure 4: Comparison of our proposed model to the state-of-the-art method with one-hot encoding for 20 households. Red and blue curve
denote performances in metrics of MAAPE and RMSE, respectively. Brown curve refers to improvement ratio our proposed model
produced over the one with one-hot encoding.

Table 4: Performance improvement of different feature fusion strategies relative to the model without household profile branch.

Time
MAAPE RMSE

Fusion 1
(%)

Fusion 2
(%)

Fusion 3
(%)

Full fusion
(%)

Proposed
(%)

Fusion 1
(%)

Fusion 2
(%)

Fusion 3
(%)

Full fusion
(%)

Proposed
(%)

24 : 00 0.42 −3.65 0.18 −1.96 −0.39 8.19 −0.46 6.76 7.00 11.27
20 : 00 1.42 2.59 1.73 2.67 2.53 2.35 0.29 2.35 2.38 1.94
18 : 00 2.82 −0.29 1.91 4.49 4.07 1.90 −0.47 2.80 3.29 3.89
16 : 00 0.48 2.50 1.53 1.58 1.32 2.33 0.15 2.54 1.54 1.98
14 : 00 −0.86 −0.73 0.73 −0.52 0.86 −0.05 0.29 0.18 0.82 −0.19
12 : 00 2.11 −2.60 0.96 0.06 0.34 1.39 −0.37 0.89 1.36 1.41
10 : 00 2.91 0.35 4.05 3.18 4.32 1.67 1.98 1.79 2.35 2.70
08 : 00 2.48 −1.38 3.77 4.44 4.83 2.86 −1.37 3.22 4.18 4.18
04 : 00 9.85 15.90 10.94 11.25 13.35 8.04 17.60 5.07 12.16 16.48

Table 5: Comparison of 10 individual models with our proposed model on average performances for generalization evaluation of point load
forecasting.

Time
MAAPE RMSE

Individual Proposed(%) Individual Proposed(%)
24 : 00 0.3537 6.95 0.3127 3.68
20 : 00 0.3336 3.99 0.5992 1.49
18 : 00 0.4564 2.12 0.8036 1.08
16 : 00 0.4327 4.81 0.5734 3.71
14 : 00 0.4724 2.52 0.5109 0.25
12 : 00 0.4792 0.71 0.6497 −0.47
10 : 00 0.4297 −0.99 0.5739 −0.64
08 : 00 0.4642 0.8 0.3442 0.92
04 : 00 0.3793 7.88 0.1223 8.64
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Pinscore andWinkler80. Inmost times, MCNN-HPC served
better accuracy over individual models on average, which
provides great generalization of our proposed model in
probabilistic load forecasting at household level.

5. Conclusion

.is paper for the first time proposes a multitask deep neural
network for load forecasting at household level. One of two
branches is built on multiscale dilated convolutions for
forecasting. .e other branch that includes a deep con-
volutional autoencoder is responsible for extracting specific
behavior of different household, which serves a novel
mechanism of feature fusion between two branches, inter-
preted as a superior feature selection process leading to
remarkable improvement in accuracy. We made sufficient
ablation studies to verify performances of MCNN-HPC. All
findings demonstrated the state-of-the-art achievement in-
cluding the advancement of multitask design, the effec-
tiveness of household profile encoding, and great
generalization of our proposed model, especially in point
and probabilistic load forecasting. In other words, MCNN-
HPC is more competent in exploring regular pattern and
uncertainty in time-series analysis. .is paper focuses on
providing attempting and learnings for deep learning skills
for household load forecasting. Future works include de-
signing more efficient household encoding strategy based on
attention network. Moreover, more significant features like

holiday or weather would prompt more advanced
achievement of deep neural network remarkably.
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