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*is paper further investigates the problem of stability for a general linear system with time-varying delays. Firstly an improved
type of Lyapunov–Krasovskii functional is introduced with integral and nonintegral terms and time-correlation terms. Referring a
few existing papers, some valid inequalities mathematical analysis techniques are used in this paper in order to reduce the
conservatism of the system. Finally, two examples are presented to demonstrate the advantages of the proposed tactics in
this paper.

1. Introduction

It is widely acknowledged that, in practical systems such
as switched systems [1], T-S fuzzy systems [2], and neural
networks [3], time delays inevitably occur and affect the
system performance [4, 5]. *erefore, in recent decades,
researchers have paid so much attention to analyzing the
stability and accomplishing the stabilization of time-
delayed systems. *e Lyapunov–Krasovskii functional
(LKF), recognized as one of the most efficient tools for
these questions, offers both the methods as well as the
challenges for dealing with such problems. On one hand,
like in a previous work [6–9], the way to construct LKF
with augmented vector is commonly accepted. Mean-
while, adding more multi-integral seems also will be
helpful to reduce the conservatism in some cases [10]. On
the other hand, many innovative integral inequalities
have been proposed to deal with the derivative of LKF, for
example, Jensen inequality [11, 12], Wirtinger-based
inequality [13], Bessel–Legendre inequality [14], free-
matrix-based integral inequality [15, 16], and many new
refined types of these integral inequalities such as shown

in [17, 18]. Combining the recent studies of LMIs dis-
cussed above [13, 19] and improved quadratic integral
inequalities such as in [20, 21], a general type of LKF may
be employed for stability analysis of time-delayed systems
[22, 23], with both the construction of LKF and the way to
cope with the derivative of LKF been considered [24, 25].

Motivated by the contents above, an attempt to construct
the LKF has been made for the time-varying delay systems in
this paper. Consulting the method of LMIs in previous
articles with an augmented quadratic term, analysis of a
time-varying delay system with less conservatism is revealed.

*is paper consists of the following parts: Section 2 states
the description and definition of the system, as well as the
lemmas used later. *en, the achievements of this paper are
proved in*eorem 1. Two numerical examples are provided
to confirm the results at the end of this paper.

*roughout this paper, Rn denotes the n-dimensional
Euclidean space. P> 0 means that P is a real symmetric and
positive definite matrix. *e superscripts “− 1” and “T” in-
dicate the inverse and the transpose of a matrix, respectively.
SymX � X + XT, col . . . � [xT

1 , xT
2 , . . . , xT

n ]T, diag{. . .} rep-
resents the block diagonal matrix.
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2. Problem Statement

Firstly, we take the following system model with a time-
varying delay into account:

_x(t) � Ax(t) + Adx(t − d(t))

x(t) � ϕ(t) t ∈ [− d, 0]
􏼨 , (1)

where x(t) ∈ Rn represents the state vector. ϕ(t) is the initial
condition with t ∈ [− d, 0], d> 0.A, and Ad are system ma-
trices with compatible dimensions. *e time delay function
d(t) is continuous and defined as

0≤ d(t)≤ d, μ1 ≤ _d(t)≤ μ2. (2)

*e scalar μ1 and μ2, respectively, represent the lower
and upper bounds of the time-varying delay.

In order to deduce the results of this paper, some lemmas
are introduced before the main results.

Lemma 1 (See [26]). Let N ∈ N, ζ ∈ Rm and x be a con-
tinuous and differentiable function: [α, β]⟶ Rn. Matrix
Z(∈ Rn×n)> 0, M(∈ R(N+1)n×m). :e following inequality
holds:

− 􏽚
β

α
_x
T
(u)Z _x(u)du ≤ 2ζT

NΓ
T
NMξ +(β − α)ξT

M
T 􏽥ZMξ,

(3)

with

ΓN � πT
N(0), πT

N(1) . . . πT
N(N)􏽨 􏽩,

􏽥Z �
1
Z

,
1
3Z

. . .
1

(2N + 1)Z
􏼨 􏼩,

ζN �

x
T
(β) x

T
(α)􏽨 􏽩 if N � 0

x
T
(β) x

T
(α)

1
β − α

ΘT
0 . . .

1
β − α

ΘT
N− 1 if N> 0

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

πN(k) �

I − I􏼂 􏼃 if N � 0

I (− 1)
k+1

I θ0NkI . . . θN− 1
Nk I􏽨 􏽩 if N> 0

⎧⎪⎨

⎪⎩
,

θj

Nk �
(2j + 1) (− 1)

k+j
− 1􏼐 􏼑 if j≤ k

0 if j> k

⎧⎪⎨

⎪⎩
,

Fk(u) � (− 1)
k

􏽘

k

i�0
(− 1)

i
k

i

⎛⎝ ⎞⎠
k + i

i

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
u − α
β − α

􏼠 􏼡

i

,

Θk � 􏽚
β

α
Fk(u)x(u)du.

(4)

Lemma 2 (See [27]). Let f(d(t)) � a2d
2 + a1d + a0, where

a2, a1 and a0 ∈ R,
f(d)≤ 0, ∀d ∈ [0, d], (5)

if the following conditions hold:

(i) f(0)≤ 0

(ii) f(d)≤ 0
(iii) f(0) − d2

a ≤ 0

Lemma 3 (See [28]). For any symmetric positive definite
matrix M> 0, scalar c> 0, and vector function
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ω: 0, c􏼂 􏼃⟶ R such that the integrations concerned are
well defined, the following inequality holds:

􏽚
c

0
ω(s)ds􏼒 􏼓

T

M 􏽚
c

0
ω(s)ds􏼒 􏼓≤ c 􏽚

c

0
ωT

(s)Mω(s)ds􏼒 􏼓.

(6)

Lemma 4 (See [29]). Given positive integers m,n and a
scalar β ∈ (0, 1), given matrices R1 > 0, R2 > 0 and
H1, H2 ∈ Rn×m. For all vecotrs ξ ∈ Rm, the function
Θ(β, R1, R2) is given by

Θ β, R1, R2( 􏼁 �
1
β
ξT

H
T
1 R1H1ξ+

1
1 − β

ξT
H

T
2 R2H2ξ. (7)

*en, if there exists a matrix X ∈ Rn×n such that
R1 X

X
T

R2
􏼢 􏼣> 0, the following equality holds:

minΘ β, R1, R2( 􏼁
􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

β∈(0,1)

≥
H1ξ

H2ξ
􏼢 􏼣

T
R1 X

X
T

R2
􏼢 􏼣

H1ξ

H2ξ
􏼢 􏼣. (8)

3. Main Result

In this section, the stability of the system is analyzed. For
brevity, the following nomenclature is used to simplify
vector and matrix representations:

η1(t) � col x(t), x(t − d(t)), x(t − d), 􏽚
t

t− d(t)
x(s)ds, 􏽚

t− d(t)

t− d
x(s)ds􏼨

1
d(t)

􏽚
0

− d(t)
􏽚

t

t+θ
x(s)dsdθ,

1
d − d(t)

􏽚
− d(t)

− d
􏽚

t− τ(t)

t+θ
x(s)dsdθ􏼩,

η2(s) � col _x(s), x(s), x(t − d(t)), 􏽚
t

s
_x(θ)d(θ), 􏽚

s

t− d
_x(θ)d(θ), 􏽚

s

t− d(t)
_x(θ)d(θ)􏼨 􏼩,

η3(t) � col x(t), x(​ t − d(t), 􏽚
t

t− d(t)
x(s)ds,

1
d(t)

􏽚
0

− d(t)
􏽚

t

t+θ
x(s)dsdθ􏼨 􏼩,

η4(t) � col x(t − d(t)​ , x(t − d), 􏽚
t− d(t)

t− d
x(s)ds,

1
d − d(t)

􏽚
− d(t)

− d
􏽚

t− τ(t)

t+θ
x(s)dsdθ􏼨 􏼩,

ξ(t) � col ξ1(t), ξ2(t), ξ3(t)􏼈 􏼉, ξ1(t) � col x(t), x(t − d(t)), x(t − d), _x(t − d(t)), _x(t − d){ },

ξ2(t) � col
1

d(t)
􏽚

t

t− d(t)
x(s)ds,

1
d − d(t)

􏽚
t− d(t)

t− d
x(s)ds􏼨 􏼩,

ξ3(t) � col
1

d
2
(t)

􏽚
0

− d(t)
􏽚

t

t+θ
x(s)dsdθ,

1
(d − d(t))

2 􏽚
− d(t)

− d
􏽚

t− d(t)

t+θ
x(s)dsdθ􏼨 􏼩,

ei � 0n × (i− 1) In 0n×(9− i)􏽨 􏽩, i � 1, 2, . . . , 9.

(9)

Theorem 1. In this section, the stability of system (1) is
analyzed under the condition of the new LKF. With known
scalars μ1, μ2 < 1 and d> 0, system (1) is asymptotically stable

if there exist appropriately dimensional symmetrical matrices
P> 0, Q1, Q2 > 0, Z1,Z � Z2 + Z3 > 0, U1, U2 > 0, and
V1, V2 > 0 satisfying the following LMIS:
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Ψ
��
d

√
N1

∗ − 􏽦Z3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦< 0, (10)

Ψ
��
d

√
N2

∗ − 􏽦Z3
􏼢 􏼣< 0, (11)

Ψ
��
d

√
N2

∗ − 􏽦Z3
􏼢 􏼣 − d

2Ωd
2
(t)< 0, (12)

Φ1 � Sym ΠT
1 PΠ2􏽮 􏽯,

Φ2 � ΠT
3 Q1Π3 +(1 − _d(t))ΠT

4 Q2 − Q1( 􏼁Π4 − ΠT
5 Q2Π

T
5 + Sym ΠT

6 Q1Π8 + ΠT
7 Q2Π8􏽮 􏽯,

Φ3 � e
T
1 U1 + dZ1( 􏼁e1 + e

T
2 U2 − U1( 􏼁e2 − e

T
3 U2e3 + de

T
0 Z2e0 −

1
d
ΠT

13ΥΠ13,

Φ4 � de0Z3e0 + Sym N1Π14 + N2Π15􏼈 􏼉,

Φ5 � _d(t)ΠT
9 V1Π9 + d(t)Sym ΠT

9 V1Π10􏽮 􏽯 − _d(t)ΠT
11V2Π11 +(d − d(t))Sym ΠT

11V1Π12􏽮 􏽯,

Φ6 � (d − d(t)) N1
􏽦Z3

− 1
N

T
1􏼒 􏼓 + d(t)N2

􏽦Z3
− 1

N
T
2 ,

Ψ � Φ1 +Φ2 +Φ3 +Φ4 +Φ5 − Φ6,
Π1 � col e1, e2, e3, d(t)e6, (d − d(t))e7, d(t)e8, (d − d(t))9􏼈 􏼉,

Π2 � col ed, (1 − _d(t))e4, e5, e1 − (1 − _d(t))e2, (1 − _d(t))e2 − e3, e1 − (1 − _d(t))e6 − _d(t)e8, (1 − _d(t))e2 − e7 + _d(t)e9􏽮 􏽯,

Π3 � col ed, e1, e2, 0, e1 − e3, e1 − e2􏼈 􏼉,

Π4 � col e4, e2, e2, e1 − e2, e2 − e3, 0􏼈 􏼉,

Π5 � col e5, e3, e2, e1 − e3, 0, e3 − e2􏼈 􏼉,

Π6 � col e1 − e2, d(t)e6, d(t)e2, d(t) e1 − e6( 􏼁, d(t) e6 − e3( 􏼁, d(t) e6 − e2( 􏼁􏼈 􏼉,

Π7 � col e2 − e3, (d − d(t))e7, (d − d(t))e2, ​(d − d(t))e1 − e7􏼁, (d − d(t)) e7 − e3( 􏼁, (d − d(t)) e7 − e2( 􏼁􏼈 􏼉,

Π8 � col 0, 0, (1 − _d(t))e4, ed, − e5, − (1 − _d(t))e4􏽮 􏽯,

Π9 � col e1, e2, d(t)e6, d(t)e8􏼈 􏼉 Π9a � col e1, e2, 0, 0􏼈 􏼉 Π9b � col 0, 0, e6, e8􏼈 􏼉,

Π10 � col ed, (1 − _d(t))e4, e1 − (1 − _d(t))e2, − _d(t)e8 + e1 − (1 − _d(t))e6􏽮 􏽯,

Π11 � col e2, e3, (d − d(t))e7, (d − d(t))e9􏼈 􏼉 Π11a � col e2, e3, 0, 0􏼈 􏼉 Π11b � col 0, 0, e7, e9􏼈 􏼉,

Π12 � col (1 − _d(t))e4, e5, (1 − _d(t))e2 − e3,
_d(t)e9 +(1 − _d(t))e2 − e7􏽮 􏽯,

Π13 � col d(t)e6, e1 − e2, (d − d(t))e7, e2 − e3􏼈 􏼉,

Π14 � col e1 − e2, e1 + e2 − 2e6, e1 − e2 + 6e6 − 12e8􏼈 􏼉,

Π15 � col e2 − e3, e2 + e3 − 2e7, e2 − e3 + 6e7 − 12e9􏼈 􏼉,

ed � Ae1 + Ade2,

U1 �
Z1 U1

∗ Z2
􏼢 􏼣,

U2 �
Z1 U2

∗ Z2
􏼢 􏼣,

H �
H1 H2

∗ H3
􏼢 􏼣.

(13)
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Proof. We design the functional below for system

W(t) � 􏽘
3

i�1
Vi(t) + w(t), (14)

with each part of W(t) as

V1(t) � ηT
1 (t)Pη1(t),

V2(t) � 􏽚
t

t− d(t)
ηT
2 (s)Q1η2(s)ds + 􏽚

t− d(t)

t− d
ηT
2 (s)Q2η2(s)ds,

V3(t) � 􏽚
0

− d
􏽚

t

t+θ
x

T
(s)Z1x(s)dsdθ + 􏽚

0

− d
􏽚

t

t+θ
_x
T

(s)Z _x(s)dsdθ,

w(t) � d(t)ηT
3 (t)V1η3(t) +(d − d(t))ηT

4 (t)V2η4(t).

(15)

*e positive of W(t) can be proved with matrices
P, Q1, Q2, Z1,Z, V1, V2 > 0, respectively. *e derivation of
each part in W(t) is

_V1(t) � 2ηT
1 (t)P _η1(t) � ξT

(t)Sym ΠT
1 PΠ2􏽮 􏽯ξ(t), (16)

_V2(t) � ηT
2 (t)Q1η2(t) +(1 − _d(t))ηT

2 (t − d(t)) Q2 − Q1( 􏼁η2(t − d(t)) − ηT
2 (t − d)Q2η2(t − d)

+ 2􏽚
t

t− d(t)
ηT
2 (s)Q1 _η2(s)ds + 2􏽚

t− d(t)

t− d
ηT
2 (s)Q2 _η2(s)ds,

� ξT
(t) ΠT

3 Q1Π3 +(1 − _d(t))ΠT
4 Q2 − Q1( 􏼁Π4 − Π5Q2Π5 + Sym ΠT

6 Q1Π8 +ΠT
7 Q2Π8􏽮 􏽯􏼐 􏼑ξ(t),

(17)

_w(t) � ​ _d(t)ηT
3 (t)V1η3(t) − _d(t)ηT

4 (t)V2η4(t) + 2 d(t)ηT
3 􏼑V1 _η3(t) + 2(d − d(t))ηT

4 V2 _η4(t),

� ξT
(t) _d(t)ΠT

9 V1Π9 + d(t)Sym ΠT
9 V1Π10􏽮 􏽯 − _d(t)ΠT

11V2Π11 +(d − d(t))Sym ΠT
11V1Π12􏽮 􏽯􏼐 􏼑,

(18)

and _V3(t) could be divided into two parts:

_V3a(t) � ξT
(t) de

T
1 Z1e1 + de

T
0 Z2e0􏼐 􏼑ξ(t) − 􏽚

t

t− d
x

T
(s)Z1x(s)ds − 􏽚

t

t− d
_x
T
(s)Z2 _x(s)ds, (19)

_V3b(t) � ξT
(t) de

T
0 Z3e0􏼐 􏼑ξ(t) − 􏽚

t

t− d
_x
T
(s)Z3 _x(s)ds. (20)

Based on the formula of integration by parts, the fol-
lowing zero equalities hold for symmetric matrices U1 and
U2 with appropriate dimension.

0 � x
T
(t)U1x(t) − x

T
(t − d(t))U1x(t − d(t)) − 2􏽚

t

t− d(t)
x

T
(s)U1 _x(s)ds,

� ξT
(t) e

T
1 U1e1 − e

T
2 U1e2􏼐 􏼑ξ(t) − 2􏽚

t

t− d(t)
x

T
(s)U1 _x(s)ds,

(21)
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0 � x
T
(t − d(t))U2x(t − d(t)) − x

T
(t − d)U2x(t − d) − 2􏽚

t− d(t)

t− d
x

T
(s)U2 _x(s)ds,

� ξT
(t)e

T
2 U2e2 − e

T
3 U2e3􏼑ξ(t) − 2􏽚

t

t− d(t)
x

T
(s)U1 _x(s)ds.

(22)

Adding equations (21) and (22) to (20), one has

_V3a(t) � ξT
(t) e

T
1 U1 + dZ1( 􏼁e1 + e

T
2 U2 − U1( 􏼁e2 − e

T
3 U2e3 + de

T
0 Z2e0􏽨 􏽩ξ(t)

− 􏽚
t

t− d(t)

x(s)

_x(s)
􏼢 􏼣

T

U1
x(s)

_x(s)
􏼢 􏼣⎛⎝ ⎞⎠ − 􏽚

t− d(t)

t− d

x(s)

_x(s)
􏼢 􏼣

T

U2
x(s)

_x(s)
􏼢 􏼣⎛⎝ ⎞⎠.

(23)

*en, through applying Lemmas 3 and 4, equation (23)
would yield

_V3a(t)≤ ξT
(t) e

T
1 U1 + dZ1( 􏼁e1 + e

T
2 U2 − U1( 􏼁e2 − e

T
3 U2e3 + de

T
0 Z2e0􏽨 􏽩ξ(t)

−
1

d(t)
ξT

(t)
d(t)e6

e1 − e2

⎡⎢⎣ ⎤⎥⎦

T

U1

d(t)e6

e1 − e2

⎡⎢⎣ ⎤⎥⎦ξ(t) −
1

d − d(t)
ξ t

T
􏼐 􏼑

(d − d(t))e7

e2 − e3

⎡⎢⎣ ⎤⎥⎦

T

U2

(d − d(t))e7

e2 − e3

⎡⎢⎣ ⎤⎥⎦ξ(t)

≤ ξ(t)
T

e
T
1 U1 + dZ1( 􏼁e1 + e

T
2 U2 − U1( 􏼁e2 − e

T
3 U2e3 + de

T
0 Z2e0􏽮

−
1
d

d(t)e6

e1 − e2

(d − d(t))e7

e2 − e3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

U1 H

∗ U2

⎡⎢⎢⎣ ⎤⎥⎥⎦

d(t)e6

e1 − e2

(d − d(t))e7

e2 − e3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

ξ(t)

≤ ξ(t)
T

e
T
1 U1 + dZ1( 􏼁e1 + e

T
2 U2 − U1( 􏼁e2 − e

T
3 U2e3 + de

T
0 Z2e0 −

1
d
ΠT

13ΥΠ13􏼚 􏼛.

(24)

According to Lemma 1, with N � 2, the integration in
_V3b(t) is expressed as

− 􏽚
t

t− d
_x
T

(s)Z3 _x(s)ds � − 􏽚
t− d(t)

t− d
_x
T
(s)Z3 _x(s)ds − 􏽚

t

t− d(t)
_x
T
(s)Z3 _x(s)ds

≤ − (d − d(t))ξ(t)
T

N1Z
− 1
3 N

T
1 +

1
3
N1Z

− 1
3 N

T
1 +

1
5
N1Z

− 1
3 N

T
1􏼒 􏼓ξ(t) + 2ξT

(t)N1Π14

− d(t)ξT
(t) N2Z

− 1
3 N

T
2 +

1
3
N2Z

− 1
3 N

T
2 +

1
5
N2Z

− 1
3 N

T
2􏼒 􏼓ξ(t) + 2ξT

(t)N2Π15,

� ξT
(t) Sym N1Π14 + N2Π15􏼈 􏼉 − (d − d(t)) N1Z

− 1
3 N

T
1 +

1
3
N1Z

− 1
3 N

T
1 +

1
5
N1Z

− 1
3 N

T
1􏼒 􏼓􏼚

+ d(t) N2Z
− 1
3 N

T
2 +

1
3
N2Z

− 1
3 N

T
2 +

1
5
N2Z

− 1
3 N

T
2 􏼛􏼒 ​ ξ(t),

� ξT
(t) Sym N1Π14 + N2Π15􏼈 􏼉􏼈 − (d − d(t)) N1

􏽦Z3
− 1

N
T
1􏼒 􏼓 + d(t) N2

􏽦Z3
− 1

N
T
2 􏼛􏼒 ​ ξ(t).

(25)
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For equation (19), the expressions of η3(t) and η4(t) are
divided into two parts, respectively, i.e.,

η3(t) � ξT
(t) col e1, e2, 0, 0􏼈 􏼉 + col 0, 0, d(t)e6, d(t)e8􏼈 􏼉( 􏼁ξ(t) � ξT

(t) Π9a + d(t)Π9b( 􏼁ξ(t), (26)

η4(t) � ξT
(t) col e2, e3, 0, 0􏼈 􏼉 + col 0, 0, (d − d(t))e7, (d − d(t))e9􏼈 􏼉( 􏼁ξ(t) � ξT

(t) Π11a +(d − d(t))Π11b( 􏼁ξ(t). (27)

*erefore, all the quadratic terms of _W(t) exist in
equations (24), (26), and (27), and the coefficient Ωd2(t) of
the quadratic terms is

Ωd2(t) � _d(t)ΠT
9aU1Π9a + Sym Π9aU1Π10􏼈 􏼉 − _d(t)ΠT

11aV2Π11a

+ Sym Π11aV2Π12􏼈 􏼉 −
1
d

e
T
6 Z1 + U1 + H1 + H2( 􏼁e6􏽮

− Sym e
T
6 Z1 + U1 + H1 + H2( 􏼁e7􏽮 􏽯 + e

T
7 Z1 + U2 + H1 + H2( 􏼁e7􏽯.

(28)

Combining equations (16)–(18) and (24)–(28) and re-
ferring Lemma 4 simultaneously, _W(t) would be negative if
LMIs (10)–(12) hold through utilizing Schur complement.
Based on Lyapunov stable analysis of dynamic system, the
system discussed in this paper is stable. □

Remark 1. To consider both the conservatism and com-
putational complexity of the system, a nonintegral term of
w(t) is introduced into this with flexibal coefficients d(t)

and d − d(t). In addition, the vector ηi(t) is not fixed as well,
which makes the LKF more general for some conditions of
practical system. If the upper bound is much more high than
the lower bound, the part d(t)ξT

3 (t)V1ξ3(t) could be ignored
and so the same is in reverse.

Remark 2. Depending on the definition of Lemma 1, it is not
difficult to get tighter bounds of the system through
adjusting the number of order. With the increase of the
order N, the double integral state vectors in ξ1(t) are re-
quired to translate into triple or multiple integrals in order to
reduce the conservatism. *us, these state vectors may
satisfy the demand of a complex system.

4. Numerical Example

In this section, two numerical examples are provided while
comparing other results existed in previous research to
demonstrate the proposed methods.

We define the system matrices A and Ad as

A �
− 2 0

0 − 0.9
􏼢 􏼣,

Ad �
− 1 0

− 1 − 1
􏼢 􏼣.

(29)

*e example is aimed at searching the maximum value
for the upper bounds of the delay (MVUBD) with the
derivative of known delay. We set μ1 � − μ2 � μ and assign
a value to μ, and the results of the MVUBD computed by
*eorem 1 are shown in Table 1. Some other results from
former research are also listed in Table 1 for the sake of
comparison. Figures 1–3 show the state trajectories with
different μ and MVUBD. From the simulation results, it is
concluded that the achieved improvements in this paper
are less conservative than other results.

In this example, the state matrices A and Ad have been
set as

A �
0 1

− 1 − 2
􏼢 􏼣,

Ad �
0 0

− 1 1
􏼢 􏼣.

(30)

In this example, the value of μ1 is still set as μ2, and the
results of the MVUBD which is computed by*eorem 1 are
shown in Table 2. Figures 4–6 also show the state trajectory
with different μ and MVUBD. *e results of MVUBD with
different μ in Table 2 are much better, which means the
method proposed in not only valid but also advanced. It is
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Table 1: *e MVUBD under the condition μ1 � − μ2 with a certain μ.

μ 0.1 0.2 0.8
[16] 4.788 4.060 2.615
[4] 4.831 4.141 2.713
[30] 4.908 4.199 2.735
[31] 4.910 4.216 2.789
[26] 4.921 4.218 2.792
[32] 4.930 4.235 2.807
*eorem 1 4.940 4.264 2.868
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100 200 300
t

400 500 600
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0.2
0

x 2 
(t)

x
1 (t)

Figure 1: *e state trajectory with μ � 0.1 and MVUBD 4.940.
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Figure 2: *e state trajectory with μ � 0.2 and MVUBD 4.264.
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Figure 3: *e state trajectory with μ � 0.8 and MVUBD 2.868.
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Table 2: *e MVUBD under the condition μ1 � − μ2 and a certain μ.

μ 0.1 0.2 0.5
[13] 6.590 3.672 1.411
[16] 7.148 4.466 2.352
[4] 7.167 4.517 2.415
[32] 7.176 4.543 2.496
[31] 7.230 4.556 2.509
[26] 7.308 4.670 2.664
*eorem 1 7.348 4.759 2.897

1
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1000 1200600
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Figure 4: *e state trajectory with μ � 0.1 and MVUBD 7.348.
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Figure 5: *e state trajectory with μ � 0.2 and MVUBD 4.759.
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Figure 6: *e state trajectory with μ � 0.5 and MVUBD 2.897.
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worth noticing that the MVUBD reaches almost 18.97%
than the data published lately when μ is 0.5.

5. Conclusions

A further investigation of the stability for system with
time-varying delays has been figured out in this paper.
With different methods of solving inequalities, results of
less-conservative stability criteria have been achieved. At
the end of the paper, two examples, compared with results
from other papers, are represented in order to show the
availability of the such methods. Based on the con-
struction of LKF in this paper, some other problem such
as sampled data control may also be considered in the
same way. In the future work, the improved type of LKF
proposed in this paper will be extended to a chaotic Lurie
system, T-S fuzzy systems, Markov jump systems, qua-
ternion-valued or memristor-based neural networks, and
complex dynamical networks.
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