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In the present article, our aim is to approximate the solution of Fredholm-type integrodifferential equation with Atanga-
na–Baleanu fractional derivative in Caputo sense. For this, we propose a method based on Laplace transform and inverse LT. In
our numerical scheme, the given equation is transformed to an algebraic equation by employing the Laplace transform. +e
reduced equation will be solved in complex plane. Finally, the solution of the given problem is obtained via inverse Laplace
transform by representing it as a contour integral. +en, the trapezoidal rule is used to approximate the integral to high accuracy.
We have considered linear and nonlinear fractional Fredholm integrodifferential equations to validate our method.

1. Introduction

Fractional calculus is the branch of mathematics which
generalizes the concept of derivatives and integrals from
integer to any positive real order [1–5]. Fractional-order
derivatives are in fact definite integrals. For example, frac-
tional derivative of a function geometrically accumulates the
function. +e corresponding accumulation includes the
integer-order derivative as a special case. +is shows that
fractional calculus describes the global dynamics of real-
world problems, whereas the classical calculus describes the
local dynamics of the corresponding problems. Problems
involving arbitrary order operators from engineering and
other sciences are growing day by day. For example, ap-
plications of fractional calculus can be found in frequency-
dependent damping behavior of viscoelastic materials [6, 7],
heat diffusion [8, 9], economics [10], control theory [11],
robotics, and other problems in engineering sciences, see
[12] and references therein. Fractional-order operators can
be used for accurate modeling of real-world problems [13].
In the literature, we can find a large amount of valuable work

on fractional-order operators, see [14–19] and references
therein. Also, a great effort has been made by the researchers
for the existence and uniqueness of the analytical solutions
of equations involving fractional operators, for example, see
[13, 16, 20].

However, in many cases, the analytical solutions of
fractional differential equations cannot be obtained, so
numerical methods must be used. In this regard, several
numerical methods have been proposed for the approxi-
mation of differential or integrodifferential equations of
arbitrary order. For example, the Legendre collocation
method [21], sinc-collocation method [22], variational it-
eration method [23], Adomian decomposition method, see
[24, 25] and references therein.

Many real-world phenomena [26–29] are analyzed via
the solutions of fractional-order equations, which are de-
rived from or based on Caputo-Liouville’s operators
[15, 19, 30–32]. Meanwhile, the study of fractional-order
integrodifferential equations (FIDEs) is also much impor-
tant as these equations occur in many phenomena of applied
nature such as electromagnetic [33] and heat conduction
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[34]. Because of these interesting applications, FIDEs have
gained great attention of the researchers [13, 35–38]. In this
regard, numerous analytical and numerical methods have
been developed for solving FIDEs. For example, in [15], the
authors have approximated the FIDEs using the reproducing
kernel Hilbert space method. In [35], the FIDEs are solved
using the collocation technique. A collocation technique is
presented in [39] for obtaining the approximate solution of
FIDEs. Arikoglu and Ozkol [14] applied the differential
transform method for the solution of FIDEs. A Legendre
wavelet method [36] is proposed for the solution of FIDEs.
FIDEs of Fredholm type are used in many applications in
applied mathematics and physics and also for presenting
physical time variation [35, 40]. +ese can be used to resolve
many phenomena in electrodynamics, fluid dynamics, and
other fields of engineering and sciences [15].

In this article, the FIDEs of Fredholm type are consid-
ered with Atangana–Baleanu fractional derivative. In the
literature, numerous definitions of arbitrary order deriva-
tives are available, for example, the Caputo fractional de-
rivative and Riemann–Liouville’s fractional derivative
[13, 16, 37, 41–47]. However, these derivatives contain
singular kernel functions and they may face complications in
modeling nonlocal real-world phenomena. In order to
overcome these complications and model the nonlocal
systems effectively, it is better to use Atangana–Baleanu (AB)
derivative. In the literature, a large amount of work is
available for the solution of differential or integrodifferential
equations with AB derivative, see [15, 20, 48–51] and ref-
erences therein. In this article, we aim to approximate the
solution of integrodifferential equations of Fredholm type
with AB derivative of the form

ABC
0 D

α
t U(t) � H(t,U(t),TU(t)),

U(0) � β,
(1)

where

TU(t) � 􏽚
1

0
B(t, τ)Q(U(τ))dτ,

α ∈ ( 0, 1 ], t, τ ∈ J: [ 0, 1 ], β ∈ R,H,B,Q ∈ C[ 0, 1 ],

(2)

where ABC
0 D

α
t is the Atangana–Baleanu Caputo derivative of

order α.

1.1. Preliminaries. Some basic definitions and lemma
needed are as follows.

Definition 1. +e left Riemann–Liouville (RL) integral for
α> 0 is defined as [13]

0I
α
U(t) �

1
Γ(α)

􏽚
t

0

U(s)

(t − s)
1−α ds. (3)

Definition 2. +e right RL integral for α> 0 is defined as [13]

0I
α
U(t) �

1
Γ(α)

􏽚
0

t

U(s)

(s − t)
1−α ds. (4)

Definition 3. +e left RL derivative of order 0≤ α≤ 1 is
defined as [13]

0D
α
U(t) �

d

dt

1
Γ(1 − α)

􏽚
t

0

U(s)

(t − s)
α ds􏼠 􏼡. (5)

Definition 4. +e right RL derivative of order 0≤ α≤ 1 is
defined as [13]

0D
α
U(t) � −

d

dt

1
Γ(1 − α)

􏽚
t

0

U(s)

(t − s)
α ds􏼠 􏼡. (6)

Definition 5. +e Caputo derivative of fractional order
α ∈ [0, 1] is defined as [13]

c
0D

α
U(t) � −

1
Γ(1 − α)

􏽚
t

0
(t − s)

− α
U(s)ds. (7)

Definition 6. +e Mittag–Leffler function is defined as [13]

Eα(t) � 􏽘
∞

m�0

t
m

Γ(mα + 1)
, α> 0, −∞< t<∞. (8)

Definition 7. +e AB derivative of order α is defined as [52]

ABC
0 D

α
t U(t) �

M(α)

1 − α
􏽚

t

0
U′(s)Eα −α

(t − s)
α

1 − α
􏼢 􏼣ds. (9)

Definition 8. +e AB fractional integral of order α is defined
as [52]

ABC
0 I

α
U(t) �

1 − α
M(α)

U(t) +
α

M(α)0
I
α
U(t). (10)

+e following hypothesis will be needed for the
uniqueness and existence results of problems (1) and (2),
which are based on fixed-point techniques [53]:

A1: suppose U ∈ C[0, 1] and H ∈ Ω � (C[0, 1] × J ×

J × J,J) is continuous function and there exist
positive constants L1,L2, and L such that
‖H(t,U1,V1,W1) − H(t,U2,V2,W2)‖≤L1(‖U1 −

U2‖ + ‖V1 − V2‖ + ‖W1 − W2‖) for allU1,V1,W1Y,
L2 � maxt∈J‖H(t, 0, 0, 0)‖, and L � max L1,L2􏼈 􏼉.
LetX be a Banach space andY � C[X,J] be the set of
continuous functions defined on J with values in X

A2: there exist positive constants R1, R2, and R such
that ‖T1( t1, s1,U1 ) − T1( t2, s2,U1 )‖≤R1( ‖U1−

U2‖ ) for all U1,U2 ∈Y, R2 � max(t,τ)∈DT1(t, τ, 0),
and R � max R1,R2􏼈 􏼉

A3: suppose Br ∈ U ∈ Y: ‖U‖≤ r􏼈 􏼉⊆Y for each r> 0,
defined as r � (‖β‖/(1 − p)−1) and p � (L(‖U‖+

Rt‖U‖))
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A4: for each positive r0, let
Br0
∈ U ∈ (C[0, 1],J): ‖U‖≤ r{ }, then clearly Br0

is
closed, convex, and bounded subset in (C[0, 1],J)

Definition 9. U ∈ C[0, 1] is said to be the solution of (1)
and(2), if U(0) � β and there exist H ∈ Ω such that
t ∈ [0, 1], then the equation

U(t) � β+
AB
0 I

α
H t,U(t),T1U(t)( 􏼁, (11)

is satisfied.

Theorem 1. Let U ∈ C[0, 1] such that
ABC
0 D

α
U(t) ∈ C[0, 1]. Assume A1 − A4 are satisfied, and if

H( 0,U( 0 ), 􏽒
1
0 B( 0, τ )Q(U( τ ) )dτ ) � 0 and

( 1 − α/M(α) ) + (Iα/M(α)Γ(α))≤ 1, then problems (1)
and(2) have a unique solution.

2. The Laplace TransformMethod for Fredholm
Equations of Fractional Order

In this section, we develop our numerical method for the
approximation of the solutions of linear and nonlinear
Fredholm IDEs with AB derivative.

Definition 10. +e Laplace transform (LT) ofU(t) is defined
as [13]

L U(t){ } � 􏽢U(s) � 􏽚
∞

0
e

− st
U(t)dt. (12)

Definition 11. If 0< α≤ 1, then the LTof the AB derivative is
defined by [52]

L
ABC
0 D

α
t U(t)􏽮 􏽯 �

s
α 􏽢U(s) − s

α− 1
U(0)

s
α
(1 − α) + α

. (13)

Applying the LT to equations (1) and(2), we obtain

s
α 􏽢U(s) − s

α− 1
U(0)

s
α
(1 − α) + α

� 􏽢H, (14)

which can be rearranged as
􏽢U(s) � s

− α 􏽢G(s), (15)

where
􏽢G(s) � s

α− 1β + 􏽢H s
α
(1 − α) + α( 􏼁. (16)

+e solution U(t) of equation (1) can be retrieved by
writing it as a contour integral

U(t) �
1
2πi

􏽚
Γ
e
st 􏽢U(s)ds, Re(s)≥ σ0, (17)

where σ0 ∈ R is large enough and the contour Γ is a suitably
selected line Γ0 perpendicular to x-axis, with Ims⟶ ±∞.
+en, in (17), U(t) is the inverse Laplace of 􏽢U(s), with the
condition that the Γ0 lies to the right of all the singularities of
the transform 􏽢U(s). For our purposes, however, assuming
that 􏽢U(s) may be continued analytically in an appropriate

way, we shall want to take for Γ0 a deformed contour Γ in the
set Σδϕ � 0{ }∪ s≠ 0: |args|<ϕ􏼈 􏼉. +e deformed contour will
have asymptotic behavior as a couple of lines in the left
complex plane, with Res⟶ −∞ and Ims⟶ ±∞,
which force the factor est to decay in the direction of both
ends of the contour Γ. We define Γ with the parametric
representation of the form [54]

s( ] ) � δ + ξ − ξ sin( θ − ι] ) ), ] ∈ R, (18)

where

0< η<ϕ −
π
2

, ξ > 0, and δ > 0. (19)

Letting s � x + ιy, we notice that equation (18) serves as
the left part of the hyperbola defined by

x − δ − ξ
ξ sin θ

􏼠 􏼡

2

−
y

ξ cos θ
􏼠 􏼡

2

� 1, (20)

where for equation (20), the asymptotes are y � ± (x − δ −

ξ)cot θ and their x-intercept is s � δ + ξ(1 − sin θ). Equation
(19) ensures that the contour Γ lies in Σδϕ � δ + Σϕ ⊂ Σϕ and
extends into the left complex plane. From (17) and (18), we
obtain

U(t) �
1
2πι

􏽚
∞

−∞
e

s(])τ 􏽢U(s(]))s′(])d]. (21)

+e approximation of equation (21) can be obtained by
employing the trapezoidal rule as

Uk(t) �
k

2πι
􏽘

N

j�−N

e
sjt 􏽢U sj􏼐 􏼑sj

′, ]j � jk, sj � s ]j􏼐 􏼑, sj
′ � s′ ]j􏼐 􏼑.

(22)

2.1. Error Analysis of the Method. +e process of approxi-
mating the solution of the problem defined in equations
(1)–(3) involves the transformation of the given equation by
employing the Laplace transform, and this process incurs no
errors. We then obtain the solution of the transformed
equation, and this process also incurs no errors. Finally, the
solution of the problem is obtained via inverse Laplace
transform by representing it as Bromwich integral (21). +e
integral is then approximated to high accuracy via trape-
zoidal rule. +e process of approximating the integral (21)
converges at different rates depending on the contour of
integration Γ. Also, in this process, the convergence order is
dependent on the step k and on the chosen temporal domain
[t0, T]. For optimal results and best convergence, we chose
an optimal temporal domain. +e proof of the order
quadrature error is provided in the following theorem.

Theorem 2 (see [54], +eorem 2.1). Let (1) has solution
U(t) with 􏽢U(s) analytic in Σδϕ. Let Γ ⊂ Ωr ⊂ Σδϕ, and define
cosh(b) � ( ητ1 sin(θ) )− 1, for b> 0, where
0< τ0 <T, τ1 � (t0/T), 0< η< 1, and let β � (ηrN/bT).
Den, with k � (b/N)≤ (r/log 2), for equation (22), we have
|U(t) − Uk(t)|≤CQeδτ1 l(‖U0‖ + ‖ 􏽢H‖Σδϕ

)(ρrN)e− μN, for
μ � (r(1 − η)t/b), ρr � (ηrτ1 sin(η − r1)/b), r � 2πr1, r1 > 0,
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τ0 ≤ t≤T, l(x) � max(1, log(1/x)), and C � Cη,r1 ,β1. Hence,
we have

errorest � Uk(t) − U(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � O e
− μN

􏼐 􏼑l ρrN( 􏼁. (23)

3. Results and Discussion

In this section, we consider linear and nonlinear Fredholm-
type integrodifferential with AB derivative to validate our
method. In our numerical experiments, the optimal values of
the parameters δ � 2.0, η � 0.1, r � 2πr,

θ � 0.1541, τ � (t0/T), r � 0.1387, and [t0, T] � [0.5, 5.0]

are used. We use the commands ] � −N: k: N, for generating
the nodes along the contour of integration.

3.1. Problem 1. Here, we consider linear Fredholm IDE with
AB derivative of the form

ABC
0 D

α
t􏼐 􏼑U(t) − 􏽚

1

0
tτU(τ)dτ � 1 −

t

3
, t, α ∈ [0, 1].

(24)

+e problem has exact solution U(t) � t. Table 1 shows
the numerical solution for various α and t ∈ [0, 1]. It is
observed that the results obtained for α � 1 are almost exact,
whereas for other values of α, the approximate solutions are
in good agreement with the exact solution. Figure 1 displays
the approximate solutions for different values of α, while the
absolute errors are shown in Figure 2 for α � 1. It is observed
that the proposed method is an excellent alternative for
solving such type of equations.

3.2. Problem 2. Here, a nonlinear Fredholm IDE is
considered:

ABC
0 D

α
t􏼐 􏼑U(t) − 􏽚

1

0
tτ[U(τ)]

2dτ � 1 −
t

4
, t, α ∈ [0, 1].

(25)

+e actual solution isU(t) � t. +e results for different α
and various values of N are depicted in Table 2. Increase in
accuracy of the method is observed with increase in the
number of quadrature nodes. It is also observed the method
produced exact solution for the fractional order α � 1 with
large value of N, whereas the accuracy is decreased with
decreasing the value of α. +e plots of approximate solutions
for different α are displayed in Figure 3, while in Figure 4, for
α � 1, the absolute error is presented.

3.3. Problem 3. Here, we consider the following nonlinear
fractional Fredholm equation:

ABC
0 D

α
t􏼐 􏼑U(t) − 􏽚

1

0
t
2τ2[U(τ)]

2dτ � g(t), t, α ∈ [0, 1],

(26)

Table 1: +e numerical results for various α and N � 210.

t α � 1 α � 0.9 α � 0.8 α � 0.7
0 0 0.0583 0.1239 0.1964
0.1 0.1 0.2312 0.3789 0.5406
0.2 0.2 0.3395 0.4926 0.6550
0.3 0.3 0.4422 0.5950 0.7526
0.4 0.4 0.5415 0.6906 0.8408
0.5 0.5 0.6384 0.7815 0.9225
0.6 0.6 0.7333 0.8688 0.9994
0.7 0.7 0.8266 0.9533 1.0726
0.8 0.8 0.9186 1.0354 1.1426
0.9 0.9 1.0095 1.1154 1.2101
1 1 1.0993 1.1936 1.2754

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact
α = 1
α = 0.9

α = 0.8
α = 0.7

Figure 1: +e plots of approximate solutions for fractional order α
corresponding to problem1 are shown. From this figure, it is clear that,
for α � 1, the numerical and the exact solution are almost the same.
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Figure 2: +e plot of absolute error for α � 1 is shown.
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where

g(t) � 2 −
32
15

t
2
. (27)

+e problem has exact solution as U(t) � 1 + 2t. +e
values of numerical solutions for different α and t ∈ [0, 1]

are presented in Table 3. +e results obtained for α � 1 are
almost exact, whereas for other values of α, the approximate
solutions are in good agreement with the exact solution. +e
plots of approximate solutions for different α are presented
in Figure 5, and the absolute errors are presented in Figure 6
for α � 1.

3.4. Problem 4. Let us consider a nonlinear Fredholm
integrodifferential equation of the form

ABC
0 D

α
t􏼐 􏼑U(t) − 􏽚

1

0
tτ[U(τ)]

2dτ � 1 −
t
3

3
, t, α ∈ [0, 1].

(28)
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α = 0.7

Figure 3: +e plots of approximate solutions for fractional order α
for problem 2.
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Figure 4: +e plot of absolute error for α � 1.

Table 2: Absolute errors for various quadrature points and dif-
ferent α at t � 1.

N α � 1 α � 0.9 α � 0.8 α � 0.7
30 3.19×10− 4 3.83×10− 2 6.38×10− 2 7.76×10− 2

50 1.51×10− 6 3.57×10− 2 5.87×10− 2 7.00×10− 2

70 5.21×10− 7 3.58×10− 2 5.89×10− 2 7.04×10− 2

90 4.25×10− 8 3.58×10− 2 5.89×10− 2 7.04×10− 2

110 2.76×10− 9 3.58×10− 2 5.89×10− 2 7.04×10− 2

130 1.58×10− 10 3.58×10− 2 5.89×10− 2 7.04×10− 2

150 7.99×10− 12 3.58×10− 2 5.89×10− 2 7.04×10− 2

170 3.37×10− 13 3.58×10− 2 5.89×10− 2 7.04×10− 2

190 9.35×10− 15 3.58×10− 2 5.89×10− 2 7.04×10− 2

210 3.99×10− 15 3.58×10− 2 5.89×10− 2 7.04×10− 2

230 1.36×10− 15 3.58×10− 2 5.89×10− 2 7.04×10− 2

Table 3: +e numerical results for various α and N � 250.

t α � 1 α � 0.9 α � 0.8 α � 0.7
0.1 1.2000 1.4356 1.6723 1.9074
0.2 1.4000 1.6397 1.8740 2.0994
0.3 1.6000 1.8333 2.0557 2.2633
0.4 1.8000 2.0205 2.2254 2.4113
0.5 2.0000 2.2029 2.3867 2.5485
0.6 2.2000 2.3818 2.5416 2.6776
0.7 2.4000 2.5577 2.6914 2.8003
0.8 2.6000 2.7310 2.8370 2.9180
0.9 2.8000 2.9022 2.9790 3.0312
1 3.0000 3.0716 3.1179 3.1408
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Figure 5: +e plots of approximate solutions for fractional order α
corresponding to problem 3.

Mathematical Problems in Engineering 5



+e actual solution is U(t) � t. +e obtained results for
t ∈ [0, 1] and different αare given in Table 4. In Figure 7, the
plot of absolute error for α � 1is given, and in Figure 8, the
graph of absolute error vs. error estimate is given.

4. Conclusion

In this work, we solved the linear and nonlinear fractional
Fredholm-type IDEwithAB derivative.We employed the LTto
avoid the classical time-stepping method. +e solution of the
problem was obtained using inverse LT, by representing it as a
contour integral along a smooth curve in the left half of
complex plane. +e contour integral was approximated using
the trapezoidal rule. Error analysis and convergence of the
method were discussed. +e proposed scheme was applied to
linear and nonlinear IDEs which produced accurate results.
From the obtained results, it is observed that the proposed
numerical scheme can solve such type of problems accurately.
+e main advantage of this method is that it gives us the
solution at final timewithout any time instability issue, which is
commonly encountered in time-stepping methods.
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Figure 7: +e absolute error for value α � 1 corresponding to
problem 4 is shown.
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