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Simplicial depth (SD) plays an important role in discriminant analysis, hypothesis testing, machine learning, and engineering
computations. However, the computation of simplicial depth is hugely challenging because the exact algorithm is an NP problem
with dimension d and sample size n as input arguments. ,e approximate algorithm for simplicial depth computation has
extremely low efficiency, especially in high-dimensional cases. In this study, we design an importance sampling algorithm for the
computation of simplicial depth. As an advanced Monte Carlo method, the proposed algorithm outperforms other approximate
and exact algorithms in accuracy and efficiency, as shown by simulated and real data experiments. Furthermore, we illustrate the
robustness of simplicial depth in regression analysis through a concrete physical data experiment.

1. Introduction

With the development of computer technology and multi-
variate statistical analysis, scientists deal with a large amount
of multidimensional data in many fields, such as biogenetics
and industrial engineering. ,e demand for multivariate
data analysis tools has become increasingly urgent. As a
powerful multivariate nonparametric and robust statistical
tool, the statistical depth function extends the concept of
one-dimensional data order statistics and provides the
central-outward sorting of multivariate data [1–4]. In recent
years, the interest of researchers in statistical depth has
increased due to the extensive application of the statistical
depth function in multivariate statistical analysis, robust
estimation, discriminant analysis, hypothesis testing, ma-
chine learning, economics, and hydrological data analysis
[5, 6].

,e first statistical depth function concept, which was
proposed by Tukey in 1975, is known as the halfspace depth
(also known as the Tukey depth) [7–9].,e other concepts of
the statistical depth function include projection depth
[3, 10], simplicial depth (SD) [11, 12], and regression depth

[13, 14]. Zuo and Serfling defined a general structural
property of the statistical depth function [1]. Among the
many concepts of this statistical depth function, SD is a
relatively attractive one not only because of its simple form
and ability to achieve themaximum depth value in the center
and satisfy monotonicity but also because of its important
applications in sign test and centralization test [1, 12].

However, the computation of SD is complicated. ,e
exact calculation of SD is an NP problem, which is only
feasible when the dimension is no higher than three. Serfling
and Wang emphasized that the computation of SD for
higher-dimensional data still requires further study [12].,e
computation and application of the statistical depth function
are active research topics.

Similarly, Monte Carlo (MC) methods have become
important statistical, computational tools that are widely
used in finance, engineering computation, genetic biology,
computational chemistry, and other related fields [15–18].
As a critical MC strategy, the importance sampling (IS)
method concentrates most of the test samples in the im-
portant area of the objective function by introducing the
transfer probability density function [15, 19]. ,is method
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dramatically improves the computational efficiency and is an
important MC acceleration algorithm. In this study, we
apply an efficient IS algorithm to the approximate com-
putation of SD and demonstrate the advantages of such an
algorithm over other MC methods and exact algorithms
through simulated and real data examples. Furthermore, we
extend the SD to regression analysis and obtain a robust
estimation of regression analysis. ,e results of a real
physical data experiment show that the estimation based on
the SD method is more robust than that based on the tra-
ditional least squares (LS) method.

,e remainder of this paper is organized as follows. In
Section 2, we review the preliminary concept and existing
algorithms for SD. Section 3 describes the IS algorithm used
for the computation of SD. ,e advantages of the IS algo-
rithm are illustrated through simulated data examples in
Section 4. ,e extension of SD to regression analysis and a
real data experiment are presented in Section 5. Lastly, the
conclusions are provided in Section 6.

2. Preliminary of SD and the State of the Art

In this section, we present the preliminary of SD and the
existing algorithms for its computation.

Consider a sample set Xn � X1,X2, . . . ,Xn􏼈 􏼉 in
Rd, (d≥ 2), where Xn is one sample of size n in Rd and x is a
given point in Rd. ,e sample version [11] of SD of x with
respect to the sample set Xn is expressed as

SD x,Xn
( 􏼁 �

1
C

d+1
n

􏽘
1≤i1 <···< id+1≤n

1
x∈S Xi1 ,...,Xid+1

􏽨 􏽩􏽮 􏽯
, (1)

where 1 A{ } denotes the indicator function of event
A, and S[Xi1

, . . . ,Xid+1
] denotes the simplex determined by

the d + 1 sample points Xi1
, . . . ,Xid+1

􏽮 􏽯.
Serfling and Wang stated that no algorithms are faster

than simply generating all simplices and counting the ones
enclosing the given point (using O(nd+1) complex time)
when dimension d≥ 5 [12]. ,erefore, designing an efficient
approximate algorithm for the computation of SD is
necessary.

A direct MCmethod for the computation of SD contains
two steps: (1) randomly selecting d + 1 points from Xn and
then (2) taking the average of the points that enclose the
given point x (i.e., using 􏽣SD(x,Xn) to estimate the true SD
value SD(x,Xn)).

􏽣SD x,Xn
( 􏼁 �

1
M

􏽘

M

i�1
1

x∈S Xi1 ,...,Xid+1
􏽨 􏽩􏽮 􏽯

, (2)

where Xi1
, . . . ,Xid+1

􏽮 􏽯 is randomly chosen from Xn and M is
the trying number for the estimation.

Another approach for the computation of SD is the use
of the IS algorithm, which is the proposed method in this
study. ,e computation of SD is an expectation computa-
tion.,erefore, SD can be estimated by the IS algorithm.,e
simple MC method uses the randomly selected d + 1 points
to estimate the SD, whereas the IS approach selects d + 1
points with a high probability that they contain the given
point x. ,eoretically, the results of the latter will have a

smaller variance than those of the former. ,e simulated
data examples in Section 4 illustrate the advantage of the IS
algorithm over the MC method.

3. New Algorithm for SD in Rd

3.1. Overview of the IS Algorithm. Many engineering prob-
lems can be expressed as computations of a multidimen-
sional integral. Using the MC method to compute the
integral involves drawing samples from a uniform distri-
bution on a regular area and using the sample mean to
approximate the true integral. In higher-dimensional cases,
the efficiency of the MC method is extremely low if the
region where the target function is not equal to zero is
extraordinarily sparse. On the contrary, the IS algorithm
draws most samples in the important area. ,is strategy
improves the efficiency of the integral computation. ,e IS
algorithm plays an important role in the field of statistical
physics, molecular simulation, and Bayesian statistics.

For example, we want to compute the integral of h(x) on
region A; that is,

μ � 􏽚
A

h(x)dx, (3)

and the integral computation (3) can be treated as an ex-
pectation calculation:

μ � Eπ
h(X)

π(X)
􏼠 􏼡, (4)

where X is a random variable (r.v.) with its own probability
density function (p.d.f.) π(x); that is,X ∼ π(x). IfX1, . . . ,Xn

denote samples with size n from X, the MCmethod draws X
from a uniform distribution on region A. From the Law of
Large Numbers [20], the sample mean can be used to es-
timate the expectation in (4) as

􏽢μ �
1
n

􏽘

n

i�1
h Xi( 􏼁 · S(A), (5)

where S(A) is the area of A and X is the r.v. from the
uniform distribution on A (X ∼ U(x)).

However, the efficiency of the MC method (5) will be
extremely low if region A is extremely wide or sparse (es-
pecially in high-dimensional cases). By contrast, the IS
method uses a special p.d.f. g(x) instead of π(x) in (4) to
compute mean μ and utilizes the corresponding sample
mean to estimate the expectation in (4):

􏽥μ �
1
n

􏽘

n

i�1

h Xi( 􏼁

g Xi( 􏼁
, (6)

and the variance Var(􏽥μ) � 1/nVar(h(Xi)/g(Xi)), which
means that we can choose appropriate g(x) close to h(x) to
reduce the variance of 􏽥μ. In extreme situations, if we select
g(x)∝ h(x), that is,g(x) � c · h(x) (where c � 1/􏽒

A
h(x)dx ),

the variance of 􏽥μ will drop to zero, and 􏽥μ is equal to the exact
value 􏽒

A
h(x)dx. However, we cannot directly use the IS

method defined in (6) during such an extreme situation be-
cause we do not know the exact value of 􏽒

A
h(x)dx in advance.
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Nevertheless, it gives us a significant hint that the closer g(x)

and h(x) are, the more accurate the IS method’s result is. ,e
steps of the IS method for the computation of integral (3) are
listed as follows:

(1) Draw the samples ∞ from g(x).
(2) Compute the importance weights ωi � h(xi)/g(xi).
(3) Use the mean of the computed weights to estimate

the integral in (3):

􏽥μ �
1
n

􏽘

n

i�1
ωi. (7)

,e following theorem shows that the IS estimator in (7)
is unbiased.

Theorem 1. -e IS estimator 􏽥μ in (7) is an unbiased esti-
mator of μ.

Proof. To prove that the IS estimator is unbiased, we only
need to show that the expectation of 􏽥μ is equal to μ:

E(􏽥μ) � E
1
n

􏽘

n

i�1
ωi

⎛⎝ ⎞⎠

�
1
n

􏽘

n

i�1
E ωi( 􏼁

� E ωi( 􏼁.

(8)

Because ωi is a r.v. and ωi � h(Xi)/g(Xi),

E ωi( 􏼁 � E
h Xi( 􏼁

g Xi( 􏼁
􏼠 􏼡

� 􏽚
A

h(x)

g(x)
· g(x)dx

� 􏽚
A

(x)dx

� μ.

(9)

We obtain the expression E(􏽥μ) � μ, which verifies that
the IS estimator 􏽥μ in (7) is unbiased. So we complete the
proof of this theorem.

Aside from being an unbiased estimator of the integral
presented in (3), the IS estimator exhibits a more efficient
and powerful integral computation than the MC estimator
defined in (5), especially in higher-dimensional cases. □

3.2. ISAlgorithm for SDComputation. We use the previously
described ISmethod to compute the SD. Using the definition
of SD in (1) is not appropriate in computing the SD value of a
data point with respect to a dataset. ,e MC method in (6)
becomes extremely inefficient when dimension p or sample
size n is excessively large because the number of simplices

containing the original data point decreases with the in-
crease in p or n.

,e IS algorithm can transform the original p.d.f. into
a highly efficient one that can construct the simplex
containing the original data point. In the computation of
SD, the MC method randomly selects p data points to
construct the simplex, whereas the IS method chooses the
data points that are likely to let the original data point
inside the simplex. Figure 1 is a 2D example that is
composed of 20 sample data points. ,e data point x0 is
used to compute the SD value. After sampling the two data
points (x1 and x2), only two more (x3 or x4) are needed to
construct the simplex that contains the original data point
x0. In this illustrated example, we do not need to count all
the simplices after getting x1 and x2; only x3 or x4 is
considered as the final vertex of the simplices containing
x0.

We list the details of the IS algorithm for the com-
putation of SD in high-dimensional cases. Suppose that
Xn is a sample with size n in Rd (i.e.,
Xn � X1,X2, . . . ,Xn􏼈 􏼉) and x is a given point in
Rd, (d≥ 2). ,e data points are in general position (i.e.,
any d data points can define a unique d − 1-dimensional
hyperplane in Rd). ,e procedure of using the IS algo-
rithm to compute SD (i.e., the computation of SD(x,Xn) )
is summarized as follows:

(1) Set the IS parameters, including the number of
samples tries N.

(2) Let t � 1, 2, . . . , N. Compute the importance weight
ωt for the t-th sample try.

(i) Randomly choose d sample points from
X1,X2, . . . ,Xn􏼈 􏼉, and denote them as
Xt
1,X

t
2, . . . ,Xt

d􏼈 􏼉.
(ii) Let k � 1, . . . , d, and compute the simplex data

point set Ut
k (i.e., the datasets consist of the

possible data points that can construct a simplex
containing the original data point x).

Replace the k-th data pointXt
k with the original

data point x to obtain a dataset Pt
k with size d

(i.e., Pt
k � Xt

1, . . . , Xt
k−1, x, Xt

k+1, . . . , Xt
d􏼈 􏼉).

Compute the unique director dt
k which is

perpendicular to the hyperplane determined
by Pt

k.
Project all data points X1,X2, . . . ,Xn􏼈 􏼉 and x
along dt

k, and compute the projected value
xl

t,k􏽮 􏽯,wheret � 1, . . . , N; k � 1, . . . , d; and
l � 0, 1, . . . , n, and x0

t,k is the projected value of
x along dt

k.
Compute the simplex data point set
Ut

k � Xl|(xl
t,k − x0

t,k) × (xt,􏽮 kk − x0
t,k)< 0, l �

1, . . . , n}.

(iii) Let Ut � ∩ d
k�1U

t
k, and set ωt � # Ut􏼈 􏼉/(n − d),

where t � 1, . . . , N.

(3) ,e sample mean of ωt(t � 1, . . . , N) can be treated
as the IS estimator of SD(x, Xn); that is,
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􏽦SD x,Xn( 􏼁 �
1
N

􏽘

N

t�1
ωt. (10)

Theorem 2. -e computational complexity of using the IS
algorithm to calculate SD is

O Nd
5
n􏼐 􏼑, (11)

whereN is the number of samples tries of the IS algorithm, d is
the dimension of the sample data, and n is the sample size.

Proof. According to the steps for computing SD using the IS
algorithm, we need to compute every ωi for i � 1, . . . , N. For
every ωi, every selected sample data pointXt

k for k � 1, . . . , d
must be replaced. ,e computational complexity of finding
the unique director perpendicular to the hyperplane is
O(d3), whereas that of projecting all data points to the
unique director is O(dn). ,e total computational com-
plexity is O(Nd5n). ,en we complete the proof of this
theorem.

,eorem 2 shows that the computational complexity of
the IS algorithm for the computation of SD is a polynomial
with dimension d and sample size n as its input arguments.
While all other exact algorithms for the computation of SD
are NP problems, especially when the dimension d≥ 5, there
is no algorithm that can run faster than simply generating all
simplices and computing the exact SD value (i.e., using
O(nd+1) time) [12]. According to the definition of the IS
algorithm in (7) and ,eorem 1, the IS estimator defined in
(10) is an unbiased estimator of SD(x,Xn). □

4. Performance Comparison

,is section presents simulated and real data examples of SD
computation. All results are obtained using R (version X64
3.6.2) and MATLAB (R2017a) on a Lenovo K42-80 laptop

computer (Intel(R) Core(TM) i7-6500U CPU@2.5GHz,
RAM 16.00GB, Windows 10). ,e R and MATLAB codes
for the results in this section are available upon request from
the corresponding author.

4.1. 2D Simulated Data Example. In the simulated data ex-
periment, we compare the computed SD results of the IS, exact,
and approximate algorithms, including the MC method. ,e
simulated dataset is sampled from a 2D multivariate normal
distribution (i.e., N( 0

→
2,E2 ), where 0

→
2 is 2D zeros vector and

E2 is a 2D unit matrix), and the sample size is 100.
We used the exact algorithm [21], the MC method, and

the IS algorithm to compute the SD.,e selected points x are
(0, 0), (0.5, 0.5), (1, 1), and (2, 2). We used the exact and
approximate algorithms to compute the SD of x with respect
to the dataset. ,e number of random simplices was set to
100 for the MC and IS algorithms. All computations were
repeated 50 times. ,e computed results (mean, standard
deviation (sd), and total CPU time (s)) are summarized in
Table 1 and Figure 2.

Since there is an exact algorithm for the SD computation
in the 2D case, we can evaluate the accuracy of the IS andMC
methods through their mean values and sd values. More-
over, the total CPU time consumed by every algorithm can
reflect its efficiency. So, in this experiment, we use these
three indicators (mean, sd, and total CPU time) to compare
the performances of these algorithms (exact, MC, and IS
methods) for the computation of SD.

,e results reveal that (1) the exact algorithm consumes
less CPU time (approximately 0.1 s), (2) the approximate
algorithms (MC and IS) can achieve accurate results because
their means are extremely close to the exact value, (3) IS
performs better thanMC as indicated by the smaller sd of the
results of the former compared with those of the latter under
the same CPU time, (4) all computed SD results from exact
and approximate algorithms are zeros at point (2, 2), which
means that (2, 2) is outside the data cloud, and (5), with the
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Figure 1: A 2D simulated example (sample size� 20) which indicates that only two possible trilaterals (or simplices) can contain the original
data point x0 (the vertexes of the trilaterals are x1, x2, x3􏼈 􏼉 and x1, x2, x4􏼈 􏼉).
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exact algorithm, the simulated example also indicates that
the IS algorithm can obtain highly accurate results.

4.2. Higher-Dimensional Simulated Data Example. In this
subsection, we compute the SD of different data points by

using the MC and IS algorithms in 3D and five-dimensional
simulated dataset. We did not use the exact algorithm [21]
because it cannot obtain any result within three hours.

In the 3D case, the dataset was sampled from N( 0
→

3,E3),
and the sample size was 1000. We used MC and IS methods
to compute the SD of points (0, 0, 0), (0.5, 0.5, 0.5), and
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Figure 2: Boxplots of the results from different algorithms (exact, MC, and IS) in 2D experiments. (a–d),e results from the computed SD
of (0, 0), (0.5, 0.5), (1, 1), and (2, 2), respectively.

Table 1: Computed results (mean, sd, and total CPU time in s) from different algorithms (exact, MC, and IS) in 2D experiments.

Exact MC IS
(0, 0) Mean 0.2407 0.2380 0.2437

sd 0 0.0420 0.0150
Time 0.099 1.545 1.229

(0.5, 0.5) Mean 0.1607 0.1528 0.1608
sd 0 0.0326 0.0177

Time 0.149 1.51 1.364
(1, 1) Mean 0.054 5 0.059 4 0.055 9

sd 0 0.024 5 0.012 7
Time 0.125 1.587 1.332

(2, 2) Mean 0 0 0
sd 0 0 0

Time 0.223 1.594 1.492
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(1, 1, 1). We set the number of random simplices to 100 and
repeated the computation 50 times. ,e computed results
are summarized in Table 2 and Figure 3.

Because the exact algorithm cannot get any computed
SD results within three hours when dimension d≥ 3, we can
only use MC and IS methods for the computation of SD in
this subsection. ,ree indicators (mean, sd, and total CPU
time) are summarized for the evaluation of the approximate
methods. ,e mean values can be seen as the final computed
SD results and the sd reflects the accuracy of the method (the
smaller, the more accurate). ,e total CPU time reflects the
efficiency of the method because it is more efficient if the
method consumes less CPU time in the same computation of
SD.

Table 2 and Figure 3 indicate that (1) the computed SD
results decrease when the data points are changed from
(0, 0, 0) to (1, 1, 1); the data point (0, 0, 0) is deeper than the
data point (1, 1, 1) with respect to the dataset; (2) the two
methods have similar computational efficiencies because
they consume almost the same total CPU time; (3) the sd
obtained by the IS method is smaller than that calculated by
the MC method, which means that the former is more
accurate than the latter in this case.

In the five-dimensional case, the dataset was sampled
from N( 0

→
5,E5), and the sample size was 1000. We used

MC and IS methods to compute the SD of points
(0, 0, 0, 0, 0), (0.5, 0.5, 0.5, 0.5, 0.5), and (1, 1, 1, 1, 1). ,e
number of random simplices was 100, and the computa-
tions were repeated 50 times. ,e computed results (mean,
sd, and total CPU time in s) are presented in Table 3 and
Figure 4.

Table 3 and Figure 4 show that (1) the computed SD
values decrease when the data points are changed from
(0, 0, 0, 0, 0) to (1, 1, 1, 1, 1), thereby suggesting that the
former is deeper than the latter; (2) the SD values in the five-
dimensional examples are slightly smaller than those in 3D
examples because the sparsity of the data points increases
when the dimension is increased from three to five; (3) the IS
algorithm performs better than the MC approach as indi-
cated by the smaller sd of the results of the former compared
with those of the latter; (4) the two approximate algorithms
consume almost the same CPU time; (5) even after using 100
random simplices, the MC algorithm cannot find any
simplex containing point, whereas the IS algorithm can
identify many simplices. In conclusion, the IS method
outperforms the MC method in terms of accuracy in these
simulated examples.

We also evaluated the MC and IS methods with other
numbers of random samples tries in different datasets. ,e
findings show that the result’s accuracy increases with the
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Figure 3: Boxplots of the results obtained by MC and IS methods in 3D experiments.

Table 2: Results (mean, sd, and total CPU time in s) were obtained by MC and IS methods with respect to different data points in 3D
experiments.

(0, 0, 0) (0.5, 0.5, 0.5) (1, 1, 1) Total CPU time
MC 0.1254(0.0330) 0.0460(0.0242) 0.0054(0.0073) 5.13
IS 0.1280(0.0121) 0.0449(0.0078) 0.0050(0.0033) 5.23
,e sd values are listed in the parentheses behind the mean values.
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increase in the number of random samples tries. In addition,
the number of random samples tries can be used by IS
method in lots of datasets. It is found in our experiments
that, if we set the number of random samples tries N� 1000,
the IS method can obtain the computed SD results within
one second when dimension d≤ 10 and sample size
n≤ 10000.

5. Application to Regression and Real
Data Example

One of the most important extensions of SD is the robust
estimation of regression based on SD. To demonstrate the
relevant concept, we consider the linear regression model as
follows:

Y � α + βX + ε, (12)

where random variables X and Y are in R1, ε ∼ N(0, σ2), and
α, β, and σ2 are unknown parameters.

Considering that SD(x,Xn) can measure the depth of x
with respect to Xn, we extend the definition of SD to re-
gression (12) and determine the simplicial regression depth:

SD θ,Wn
( 􏼁 �

n

3
􏼠 􏼡

−1

􏽘
i<j<k

A ri(θ), rj(θ), rk(θ)􏼐 􏼑, (13)

where θ � (α, β) are the parameters, Wn � (Yn, Xn) are the
samples of the model defined in (12), and ri(θ) � Yi − α −

βXi is the residual based on the i-th sample and

A ri(θ), rj(θ), rk(θ)􏼐 􏼑

�
1, ri(θ), rj(θ), rk(θ)have alternating signs,

0, otherwise.
􏼨

(14)

,e SD based estimator of (12) can be defined as the
maximum of SD(θ,Wn); that is,

􏽢θSD � argmax
θ

SD θ,Wn
( 􏼁. (15)

We consider the physical experiment data concerning
the relationship between the atmospheric pressure and
boiling point of water, which was discussed by a Scottish
physicist named James D. Forbes [22]. In the mid-nine-
teenth century, this experiment can illustrate whether the
simple measurement of the boiling point of water can
substitute for the direct reading of the barometric pressure.
,e dataset was collected in the Alps in Scotland (Table 4 and
Figure 5).

,e linear regression model in (12) was used to fit the
Forbes dataset. We used LS and SD methods to estimate the
parameters of the model in (12).,e function “lm” in R Stats
package (“stat”) can be used to determine the LS estimator of

Table 3: Results (mean, sd, and total CPU time in s) were obtained by MC and IS methods in five-dimensional experiments.

(0, 0, 0, 0, 0) (0.5, 0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1, 1) Total CPU time
MC 0.0360(0.0160) 0.0036(0.0066) 0(0) 7.67
IS 0.0315(0.0076) 0.0028(0.0023) 2.8 × 10−6(7.3 × 10−6) 8.42

,e sd values are listed in the parentheses behind the mean values.
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Figure 4: Boxplots of the results obtained by MC and IS methods in five-dimensional experiments.
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the model in (12). For the SD based method, we combined
quasi-Newton [23] and IS methods to find the maximum
point of (15). Moreover, we performed three statistical tests
(i.e., the R square value, normality test, and the test of
goodness of fit [24]) for every fitted regression model to get a
more insightful analysis. ,e R square (or adjusted R square)
value from the significance test gives the percentage that the
dependent variable (Y) can be explained by the fitted model
(α + βX) (see (12)).,e normality test is used to test whether
the residuals of the fitted model obey normal distribution
which is the basis of other statistical tests. For example,
under the assumption of normality, the F statistic value in
the test of goodness of fit can be used to determine whether
the fitted regression model makes sense.

We first used the LS method and SD approaches to
compute the linear regression model with the original
Forbes dataset (Table 4, denoted as original data in this
section).,e computed regression results are summarized in
Table 5 and Figure 5(a); their corresponding statistical tests
are summarized in Table 6 and Figure 6.

Table 5 and Figure 5(a) show that the LS and SD esti-
mators obtained the very similar intercept parameter and
slope parameter. ,is finding suggests that the SD method
can capture the same accurate regression results compared
with LS method.

,e statistical test results have also confirmed the finding
since the results from LS and SD methods were also very
similar. ,ey have very high R square values which indicate
more than variance of the dependent variable that can be
explained by the fitted model. Under significance level 0.01,
we accept the assumption of normality and they pass the
goodness of fit test (i.e., the p value of F statistic is almost
zero). In addition, if one needs a higher level of significance
(such as 0.05) in this example, then some statistical tech-
niques (e.g., Box-Cox transformation or strong influence
points detection) can be used to improve the regression
model (see more details in [22]). However, this is another

research topic and there is a lack of sample points in this
example; we only focus on the robustness of the regression
model computed from different methods, especially when
the dataset is contaminated, and that is what we do in the
next experiment.

In the following experiment, we worked with a con-
taminated dataset from Forbes data. We intentionally
changed the pressure of the 16th data point from 29.88 to
59.76.,e new dataset was denoted as the contaminated data
(Figure 5(b)). We compared the SD and LS methods’ per-
formances in the linear regression model with the con-
taminated dataset. ,e regression results are presented in
Table 5 and Figure 5(b). ,eir corresponding statistical tests
are summarized in Table 6 and Figure 7.

Table 4: Forbes data collected in Alps and Scotland. ,e tem-
perature is measured using the boiling point (°F) and the pressure is
obtained using barometric pressure (mmHg).

No. Temperature Pressure
1 194.5 20.79
2 194.3 20.79
3 197.9 22.40
4 198.4 22.67
5 199.4 23.15
6 199.9 23.35
7 200.9 23.89
8 201.1 23.99
9 201.4 24.02
10 201.3 24.01
11 203.6 25.14
12 204.6 26.57
13 209.5 28.49
14 208.6 27.76
15 210.7 29.04
16 211.9 29.88
17 212.2 30.06
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Figure 5: Regression analysis results from original (a) and con-
taminated (b) datasets.
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Table 5: Computed regression analysis results (original and contaminated) from Forbes data.

Original data Contaminated data
α β α β

LS estimator −81.0637 0.5229 −181.527 1.0266
SD estimator −78.2631 0.5086 −78.2623 0.5085

Table 6: ,e statistical tests for regression analysis with original data and contaminated data using LS and SD methods.

Original data Contaminated data
R2(AdjustedR2) F(p − value) S − W(p − value) R2(AdjustedR2) F(p − value) S − W(p − value)

LS 0.9944(0.9941) 2677(0) 0.8723(0.024) 0.7650(0.7493) 48.82(4.37 × 10−6) 0.6473(3.10 × 10−5)

SD 0.9922(0.9918) 1928(0) 0.8574(0.0140) 0.9917(0.9912) 1812(0) 0.2861(3.13 × 10−8)

Note: (Adjusted) is the adjusted R square value, F and pvalue are the F statistic value and its corresponding p value, and S–W and p value are the
Shapiro–Wilk test statistic value and its corresponding p value.
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Figure 6: Quantile-quantile (QQ) plots of the residuals from LS and SD methods with the original data. (a) ,e QQ plot from the LS
method. (b) ,e QQ plot from the SD method.
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Figure 7: Quantile-quantile (QQ) plots of the residuals from LS and SD methods with the contaminated data. (a) ,e QQ plot from the LS
method. (b) ,e QQ plot from the SD method.
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,e results show that the LS estimator is greatly influ-
enced by the contaminated data point, whereas the SD es-
timator can maintain satisfactory performance. ,e slope
parameter estimated by the LS estimator changes from
0.522 9 to 1.026 6, which cannot reflect the actual variation
trend of the pressure-temperature curve. By contrast, the SD
estimator is not affected by the contaminated data point and
can still provide the actual variation trend. ,e estimated
slope parameters obtained using SD method for two dif-
ferent datasets are 0.508 6 and 0.508 5, respectively. ,e
statistical test results show that, under the influence of the
contaminated data point, the residuals of the fitted models
from the two methods do not pass the normality test.
However, the R square (or Adjusted R square) value from the
SD method (0.991 7) is much large than that of the LS
method (0.765 0) which means that the regression line from
the SD method can explain more percentage of the variance
of dependence variable compared with that of the LS
method. ,ese results imply that the SD estimator out-
performs the LS estimator in the contaminated dataset
experiment in terms of robustness.

6. Conclusions

,e concept of statistical depth plays an important role in
mathematical sciences, engineering, regression analysis, and
life sciences. In this study, we computed the SD using the IS
method and found that this new approach performs better
than other exact and MC methods in terms of accuracy and
efficiency. ,e simulated and real data examples illustrated
the advantage of this new method. Finally, we tested the SD
method based regression analysis through a concrete
physical data example. ,e result indicated the excellent
robustness of the proposed method compared with the LS
estimation.

Given the many favorable properties of the proposed
method, further research can be conducted on different
angles. First, the IS parameter (i.e., number of sample tries N)
plays an important role in the computation of SD, so the
determination of N before the performance of IS algorithm is
yet to be thoroughly investigated. Second, the IS method for
the SD computation can be improved by sampling the data
points via other more important simplices (not the last data
point in the possible simplices). ,ird, with the development
of modern computer science, multicore high-performance
computer is gaining popularity. ,erefore, the IS method can
be extended to a parallel computation based version. Lastly,
the approximate algorithms (advanced MC methods) for
other statistical depths (e.g., halfspace depth, projection
depth, and regression depth) can be further explored.
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