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For the concrete diaphragm wall (CDW) supported excavation, excessive wall deflection may pose a potential risk to adjacent
structures and utilities in urban areas. *erefore, it is of significance to predict the CDW deformation with high accuracy and
efficiency. *is paper investigates three machine learning algorithms, namely, back-propagation neural network (BPNN), long
short-term memory (LSTM), and gated recurrent unit (GRU), to predict the excavation-induced CDW deflection. A database of
field measurement collected from an excavation project in Suzhou, China, is used to verify the proposed models. *e results show
that GRU exhibits lower prediction errors and better robustness in 10-fold cross validation than BPNN and executes less
computational time than LSTM. *erefore, GRU is the most suitable algorithm for CDW deflection prediction considering both
effectiveness and efficiency, and the predicted results can provide reasonable assistance for safety monitoring and early warning
strategies conducted on the construction site.

1. Introduction

In recent years, there has been a rapid development of
metro construction in China. *e metro stations are
generally constructed using the cut and cover method, and
concrete diaphragm wall (CDW) is one of the most widely
used support techniques especially for deep excavation in
saturated soils. *e lateral deformation of CDW caused by
excavation is a major concern to both engineers and
researchers as it poses potential risks to the surrounding
facilities and structures especially in urban areas [1–4].
*erefore, it is essential to implement accurate and
prompt prediction on CDW deflection in engineering
practice.

Traditionally, methods to predict the excavation-induced
CDW deformation can be categorized into two groups:
empirical formula and numerical simulation. *e empirical
formula based on historic projects is relatively simple in
model and easy to conduct [5–8], but the predicted results
usually tend to be broad and the formula is unable to rep-
resent the dynamic evolution of wall deflection. *e elaborate

numerical simulation is theoretically more precise by con-
sidering the soil-structure interaction, but it is still difficult to
take all the instinct and extinct factors into account, and a
disparity of estimated results and field measurement fre-
quently occurs [9, 10].

Alternatively, soft computing technique such as machine
learning (ML) is fast becoming a widely accepted method for
predictive models in geotechnical application, which is ca-
pable of capturing nonlinear characteristics with high di-
mensions and has demonstrated superior predictive ability
[11]. Artificial neural network (ANN) is one of the most
prevailing ML algorithms used in geotechnical engineering.
Goh et al. [12] presented a back-propagation neural network
(BPNN) model to provide initial estimates of maximum wall
deflections for braced excavations in soft clay. Kung et al.
[13] demonstrated that the wall deflection can be accurately
predicted by ANN, using hypothetical cases from finite
element simulation for model training and 12 excavation
case histories in Taipei for model validation. Zhang et al. [14]
employed ensemble learning methods (ELMs), including the
eXtreme Gradient Boosting (XGBoost), and Random Forest
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Regression (RFR) to predict the maximum lateral wall
deformation.

Deep learning (DL) algorithms, considered as a subset
or an evolution of ML, have deeper structure and can
learn much more complex nonlinear features than con-
ventional neural networks. For example, long short-term
memory (LSTM) has achieved good practical application
results in the dynamic and deep processing of massive,
long-term, dependent data series [15, 16]. Qu et al. [17]
established the concrete dam deformation prediction
model based on LSTM. Li et al. [18] developed an LSTM
model to predict the TBM performances including the
total thrust and the cutter-head torque in a real-time
manner. In recent years, gated recurrent unit (GRU) has
been successfully applied to spatial-temporal data and has
been quite popular in many fields. Khan et al. [19]
adopted a GRU-based deep learning approach to predict
hourly traffic volume. Li et al. [20] proposed a prediction
model utilizing GRU algorithm for the electricity gen-
eration. As for the evaluation of retaining structure be-
haviors, few studies have considered the data-driven
models using DL algorithms.

*is paper proposes a dynamic prediction model for
CDW deflection based on data-mining algorithms. *e
applicability and generality of three algorithms BPNN,
LSTM, and GRU were studied and compared, among
which BPNN represents the classic ML algorithm appli-
cable for predictive problem, and LSTM and GRU rep-
resent more advanced DL algorithms specialized in
sequential data. Accordingly, the algorithm with best
performance is recommended as a useful solution for
predicting excavation-induced CDW deflections, and the
predicted results can be an early alert for field engineers.
*e remaining part of the paper proceeds as follows: in
Section 2, BPNN, LSTM, and GRU prediction models are
presented as well as the performance evaluation indica-
tors. In Section 3, a real-life excavation project is adopted
to testify the applicability of the proposed prediction
models. In Section 4, the prediction results of three
prediction models are compared and discussed. Finally,
Section 5 summarized the conclusions obtained from the
study with the highlights of major findings.

2. Methodology

2.1. Machine Learning Algorithm

2.1.1. BPNN. BPNN is a classic feedforward neural network
consisting of an input layer, one or several hidden layers, and
an output layer [21], as shown in Figure 1. Neurons in the
input layer have the function of receiving and transmitting
data. Hidden layer and output layer are composed of M-P
neurons with activation functions.

*e mathematical relationships of M-P neurons in
hidden layer and the output layer are expressed by the two
following equations, respectively:

bh � f 

d

i�1
vih · xi + ch

⎛⎝ ⎞⎠, (1)

yj � f 

q

h�1
whj · bh + θj

⎛⎝ ⎞⎠, (2)

where bh is the result of hth hidden neuron, xi is the ith input
value out of d inputs, yj is the jth output value, q is the total
number of hidden neurons, f is the activation function of
sigmoid, ]hi and whi are the weight terms, and ch and θj are
the bias terms.

2.1.2. LSTM. LSTM is a deep neural network designed for
data with sequence characteristics [22]. As shown in
Figure 2, there are two states in an LSTM neuron: cell
state C(t) containing long-term memory and hidden state
h(t) containing short-term memory, where new infor-
mation is selectively recorded using three “gate” modules.
*e “gate” modules effectively solve the gradient van-
ishing problem in long-term series. *e gate signal ranges
from 0 to 1, where the value 0 means abandoning all the
input data and the value 1 indicates that all the new
information is highly relevant and should be memorized.

*e “forget gate” f(t) is used to calculate the forget ratio of
the cell state at time t, expressed as

f
(t)

� σ Wf h
(t−1)

, x
(t)

  + bf . (3)

*e “input gate” i(t) determines the proportion of new
information to be added to the cell state, expressed as

i
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*e “output gate” o(t) calculates the output and updates
the hidden state, expressed as

y
(t)

� σ Wo · h
(t− 1)

, x
(t)

  + bo , (7)

h
(t)

� ot · tanh C
t

 , (8)

where C
(t) is the candidate cell state of LSTM neuron at time

t; W and b are weight and bias terms; σ is the activation
function of sigmoid; tanh is the activation function of hy-
perbolic tangent.

2.1.3. GRU. GRU was proposed as a modification for LSTM
by Cho et al. [23] in 2014, which was initially used for
language models. Figure 3 is the typical structure of GRU
neuron, where the “update” gate is designed to combine the
functions of “forget” and “input” gates in the LSTM neuron.
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*eGRU network structure is simplified and less parameters
need to be trained; therefore, GRU can achieve high pre-
diction accuracy but lower computational cost [24].

*e first module is termed as “reset gate” r(t), which de-
termines the proportion of last hidden state to be added to the
new hidden state, governed by equation (3):

r
(t)

� σ Wr · h
(t−1)

, x
(t)

  + br , (9)

where the superscript t denotes the time sequence, x(t) is the
input at time t, h(t−1) is the hidden state of GRU neuron at
time t − 1, W is the weight term, and σ is the activation
function of sigmoid.

*e second module is called “update gate” z(t), which is
used to calculate the memorize ratio of the new input,
expressed as equation (4):

z
(t)

� σ Wz · h
(t−1)

, x
(t)

  + br . (10)

*en, the output of the GRU neuron is obtained via
equations (5)–(7).
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where h
(t)

is the candidate hidden state.

2.1.4. Performance Analysis. Prediction error inevitably
exists between output value yi and real value ŷi for each
training sample. *e prediction error can be evaluated
through loss functions, so as to update the parameters of
neural network and assess the accuracy of predictionmodels.
*ree commonly used loss functions are summarized in
Table 1.

2.2. Development of Prediction Models

2.2.1. Inputs and Outputs. Lateral displacements of CDW
were measured by inclinometers embedded in the wall. *e
observation value collected from each inclinometer is
denoted as xi

t, indicating the deformation value of mea-
suring point i on day t. In the process of construction, the
inclinometers might be covered or interrupted, leading to
the discontinuity of the recorded time series. In the data
preprocess stage, the missing value can be filled by linear
interpolation or other data augmentation methods.

*e input layer and output layer of prediction model
are listed in Table 2. *e input information length N and
output prediction step M will directly affect the training
speed and prediction accuracy. Generally, the richer the
input information, the higher the prediction accuracy and
the longer the training time. However, the continuity of
measured data might be restricted by the actual conditions
of construction site. Long-term prediction can provide
plenty of time for precaution and implementation of
deformation control measures, but whether the prediction
accuracy is acceptable needs to be discussed. *erefore,
four prediction tasks are designed to verify the dynamic
prediction ability of BPNN, LSTM, and GRU models for
CDW deformation prediction. *ese tasks differ in pre-
diction time spans, that is, short-term and long-term
predictions, and in input information, that is, prediction
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Figure 1: Schematic view of BPNN.
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Figure 2: Schematic view of LSTM neuron.
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Figure 3: Schematic view of GRU neuron.
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using abundant information and prediction using limited
information. *e four tasks are listed in detail as follows:

Task 1: 1-day deformation prediction using last 3-day
monitored data
Task 2: 7-day deformation prediction using last 3-day
monitored data
Task 3: 1-day deformation prediction using last 15-day
monitored data
Task 4: 7-day deformation prediction using last 15-day
monitored data

2.2.2. Optimization. Training epoch, learning rate, and
hidden neurons size were the three hyperparameters
manually set before training. Training with small epochs
may lead to insufficient learning and incomplete data
characteristics extraction, termed as “under fitting,” but
large epochs will lead to “overfitting,” where prediction
performance on validation data is poor even when the
prediction accuracy on training data has been improved to
a great extent; small learning rate is time-consuming, but
with large learning rate gradient may drop too fast and
miss the best convergence point; less hidden neurons may
limit the learning ability of the prediction model, whereas
a large number of hidden neurons may lead to compu-
tational inefficiency.

*e parameters of weight and bias in prediction models
are obtained through autonomous learning of training
samples. Since MAE loss and MAPE loss are not smooth at
the error close to 0, MSE loss is the most commonly used loss
function in training process. For BPNN, stochastic gradient
descent (SGD) is applied to minimize the MSE loss of
training samples and update the parameters. As for LSTM
and GRU, deep network architecture will lead to difficulties
in parameter optimization; therefore, adaptive moment
estimation (ADAM) is employed. Compared with SGD
algorithm, ADAM algorithm sets adaptive learning rate for
different parameters and obtains more opportunities to
reach the global optimization point by considering an ad-
ditional gradient moment.

2.2.3. Generalization. *e prediction model usually shows
an excellent regression level on training sets, but it is more
practically significant to achieve sound performance on
datasets outside the training samples. *is paper adopts
K-fold cross validation (K-CV) method to evaluate the
generalization ability of the prediction model. K-CV is a
data partition technology, where the original database is
randomly divided into K subdatasets, and K-1 subdatasets
are used as training set with the remaining dataset used for
testing [25]. *e process is repeated K times so as to
ensure that each sample is both trained and tested.
*erefore, the randomness of database division can be
eliminated, and the distribution characteristics of the
original database are preserved to the maximum degree.
*e prediction performance of each model is determined
by the average MSE of K validation sets, and the model
with the lowest MSE is chosen to be the most appropriate
one for CDW deformation prediction.

2.2.4. Model Development. Python (version 3.7.6) and
PyTorchmachine learning library are used to programCDW
deformation prediction models. Figure 4 illustrates the
prediction process: Firstly, preprocess the database and
divide the database into training sets and testing sets based
on 10-fold CV; secondly, apply BPNN, LSTM, and GRU to
learn the training samples, and obtain the optimal network
parameters; finally, compare the performances of BPNN,
LSTM, and GRU using evaluation index, and find the most
suitable prediction model accordingly.

3. Data Sources

3.1. Project Overview. Figure 5 shows the excavation layout
of subway station in Suzhou metro line 5, China. *e ex-
cavation area is divided into Area I and Area II by instal-
lation of 1m thick CDWs. *e layout of Area I is irregular
and its length is 87m.*ewidth is 27m at west and increases
to 36m at east. *e layout of Area II is virtually rectangular
with the width of 24m and length of 104m. As shown in
Figure 5, the inclinometers were installed along the pe-
riphery of the excavation zone. *ere were 9 inclinometers
installed in the CDWs with a spacing of roughly 20m in
Area I, while 14 inclinometers were installed in the CDWs in
Area II, and the monitoring spacing was condensed to 11m
in the north of Area II where buildings are adjacent to the
CDWs with a minimum distance of 1.7m leading to an
extremely sensitive construction environment.

Figure 6 shows the typical cross-sectional profiles of
excavation Area I and Area II. In Figure 6(a), the subsurface
soils in Area I consist of 3.3m thick ① miscellaneous fill,
7.8m ② silty clay, 11.2m ③ silty sand, 8.5m thick ④ silty
clay, and 4.9m thick ⑤ silty sand underlain with ⑥ silty
clay. *e groundwater table is at 2.0m below the ground
surface. *e excavation depth is 24.2m and the bottom is in
④. *e average length of CDWs is about 49m and the

Table 1: Performance indicators for evaluation on prediction error.

Type of loss function Calculation formula
Mean squared error MSE � 1/n 

n
i�1 (yi − yi)

2

Mean absolute error MAE � 1/n 
n
i�1 |yi − yi|

Mean absolute percentage error MAPE% � 1/n 
n
i�1 |yi − yi/yi|

Table 2: Input and output layers for the prediction models.

No. Input layer Output layer
1 xi

1, xi
2, · · · , xi

N−1, xi
N xi

N+M

2 xi
2, xi

3, · · · , xi
N, xi

N+1 xi
N+1+M

· · · · · · · · ·

T−N+ 1 xi
t−N+1, xi

t−N+2, · · · , xi
t−1, xi

t xi
t+M
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embedment ratio is roughly 1.0. In Figure 6(b), the similar
geological conditions for excavation in Area II are found.
*e excavation Area II has a depth of 24m and is supported
by 45m long CDWs with an embedment ratio of 0.875. *e
parameters of the subsurface strata are listed in Table 3 as
provided by the geotechnical data report (GDR) of the
project. During the excavation, six levels of struts containing
three concrete struts and three steel struts were installed.*e
procedure of excavation is detailed in Table 4.

3.2. In Situ Monitoring. *e monitoring report was
recorded daily from August 8th, 2018, to July 9th, 2019 (a
number of 336 pieces of monitored data for each incli-
nometer). *e size of the CDW deformation database after
missing data imputation is 7728. Figure 7 plots the time
curves of maximum lateral displacement of CDW during

excavation. *is plot shows that the development of wall
deflection at each inclinometer exhibits a similar pattern:
in the initial stage of construction, due to small excavation
depth and support of the first reinforced concrete strut,
the deflection is relatively small; as the excavation pro-
ceeds, the deflections continuously increase, and sub-
stantial deflection occurs in the exposure time without
supports, accounting for more than 60% of the total
deformation; after pouring the bottom slab, the wall
deflection is stabilized as a result of the synergistic effect of
the whole supporting system.

4. Results

4.1. 10-Fold CV. *e influence of data input size N on
prediction accuracy can be validated by comparing the re-
sults of task 1 and task 3 and the results of task 2 and task 4.
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As shown in Table 5, when the input size is fixed to 3 days,
the MSEs of BPNN are the largest and fluctuate fiercely in 10
subsets, which indicates poor generalization ability of BPNN

on new data sample. In contrast, the performances of LSTM
and GRU are relatively stable. When the input data increases
to 15 days, for BPNN, the variation of MSEs among 10
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Figure 6: Profile views of excavation in different areas (unit: mm). (a) Cross section 1-1. (b) Cross section 2-2.

Table 3: Soil strata and parameters.

Soil type csat (kN/m3) SPT (N-value) E (MPa) k (cm/sec) su (kPa) φ’ (°)
① Miscellaneous fill 18.5 3 3.5 5.0×10−5 — 27
② Silty clay 18.5 9 4.1 1.4×10−5 50 26
③ Silty sand 19.1 11 9.6 6.5×10−4 — 30
④ Silty clay 18.4 11 3.6 1.4×10−5 80 28
⑤ Silty sand 20.0 15 10.1 3.0×10−3 — 32
⑥ Silty clay 19.5 18 4.0 1.4×10−5 180 30

Table 4: Construction procedures in Area I.

Stage
Construction details

Area I Area II

1 Excavate to −0.1m Excavate to −0.1m
Install concrete struts (800×1000) at −0.5m Install concrete struts (800×1000) at −0.5m

2 Excavate to −4.9m Excavate to −6.35m
Install steel struts (Φ609/t� 16) at −4.4m Install steel struts (Φ609/t� 16) at −5.85m

3 Excavate to −8.4m Excavate to −9.95m
Install concrete struts (1000×1000) at −7.9m Install concrete struts (1000×1000) at −9.45m

4 Excavate to −13.76m Excavate to −13.75m
Install concrete struts (1200×1000) at −13.26m Install steel struts (Φ609/t� 16mm) at −13.25m

5 Excavate to −17.76m Excavate to −16.54m
Install double steel struts (Φ609/t� 16) at −17.26m Install concrete struts (1200×1000) at −16.04m

6 Excavate to −21.26m Excavate to −21.26m
Install steel struts (Φ609/t� 16) at −20.76m Install steel struts (Φ609/t� 16mm) at −20.76m

7 Excavate to −25.70m Excavate to −25.60m
Pour bottom slab Pour bottom slab
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subsets tends to be smooth; for LSTM, MSEs see a drop of
12.5% and 48.6% in short-term and long-term tasks; as for
GRU, the decreases are 27.0% and 26.0%, respectively.
*erefore, considering larger number of historical data can
improve the model stability as well as the prediction
accuracy.

*e performance between short-term predictions
(M� 1) and long-term predictions (M� 7) can be demon-
strated by comparing the results of task 1 and task 2 and the

results of task 3 and task 4. As shown in Table 5, when the
input information length is fixed to 15 days, long-term
predictions using BPNN achieve an average MSE of
12.79mm2, which is the double of short-term prediction
error. Average MSE of LSTM increases from 3.70 to
6.79mm2, and that of GRU increases from 0.81 to 4.23mm2

when prediction step extends from 1 day to 7 days.
*erefore, it can be inferred that the increase of prediction
step has an adverse effect on prediction accuracy, and GRU
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Figure 7: Time curves of the maximum diaphragm wall deflection.

Table 5: MSEs of different algorithms on 10-fold cross validation (unit: mm2).

Subset no.
Task 1 Task 3

BPNN LSTM GRU BPNN LSTM GRU
Short-term prediction tasks
1 3.47 2.21 0.91 1.39 1.22 0.38
2 12.49 2.36 1.22 1.86 2.07 0.64
3 7.14 3.79 0.78 10.46 6.70 0.39
4 4.11 1.24 0.53 0.18 0.38 0.30
5 9.22 1.86 0.61 0.65 0.76 0.37
6 5.41 1.35 0.46 32.95 20.14 0.73
7 17.25 8.56 1.76 0.27 0.27 1.56
8 125.36 4.86 1.07 0.41 0.19 0.69
9 624.14 5.93 1.27 13.84 5.00 1.62
10 63.04 10.09 2.50 0.27 0.26 1.46
Avg. 87.16 4.23 1.11 6.23 3.70 0.81

Subset no. Task 2 Task 4
BPNN LSTM GRU BPNN LSTM GRU

Long-term prediction tasks
1 181.38 19.47 3.50 8.29 5.51 2.21
2 44.18 14.67 6.99 6.61 4.85 2.36
3 75.09 14.38 6.94 7.78 6.34 3.79
4 44.07 4.42 2.78 5.01 5.05 1.24
5 101.18 2.68 3.53 4.67 3.44 1.86
6 7.04 41.55 2.69 8.05 18.82 1.35
7 402.82 2.23 5.55 16.89 6.60 8.56
8 185.21 3.67 9.34 17.76 1.34 4.86
9 98.77 24.87 9.24 29.57 12.02 5.93
10 194.29 4.17 6.62 23.31 3.95 10.09
Avg. 133.40 13.21 5.72 12.79 6.79 4.23
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achieves highest precision even in long-term prediction
tasks because it can extract the correlation of input data in
time sequence.

Table 6 shows the training times of each algorithm on
different tasks. BPNN trains the model more efficiently than
the other two DL algorithms because it has a simple network
structure and is relatively easy to train, but prediction ac-
curacy and robustness resulting from BPNN are inferior.
GRU trains the model slightly faster than LSTM, and the

superiority will be amplified when applied to a larger-scale
database. *erefore, to achieve balance between efficiency
and effectiveness, GRU is considered to be the most suitable
algorithm for CDW deflection prediction.

4.2. New Monitored Points. In order to further verify the
generalization ability of the deformation prediction model,
the optimal model obtained from 10-fold CV is selected to

Table 6: Training times of different algorithms (unit: s).

Task BPNN LSTM GRU
1 44.51 128.63 117.36
2 32.81 125.97 111.28
3 67.75 314.39 295.97
4 33.60 332.01 287.16
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Figure 8: Comparisons between the predicted and the measured deflections of new monitoring points. (a) Task 1. (b) Task 2. (c) Task 3. (d)
Task 4.

8 Mathematical Problems in Engineering



make prediction in three new measuring points excluded in
the original database, which are CX04, CX16, and CX23,
respectively. As shown in Figure 5, CX04 is noteworthy as it
is at the section with large excavation width in Area I. CX16
located in the center of the southern wall in Area II and
CX23 located in the center of the western wall in Area I were
chosen for verification because the deflections in the middle
of excavation zone are generally much larger than those near
the centers.

*e prediction model has an ideal performance on CX04
and CX16. It can be seen from Figures 8 and 9 that the
predicted deflections fit the measurement perfectly in short-
term predictions (task 1 and task 3). Long-term predictions
(task 2 and task 4) display higher dispersion degree, but
MAEs are under 3mm, which remain to be acceptable. *e
prediction results on CX23 deviate from the measured
deflections, that is, MAPE reaching 45.6% in task 4. CX23 is
in the transversal wall of excavation Area I, where the ge-
ometry and support system are quite different from all the
other inclination points in the longitudinal walls; besides the
measured data are limited due to the low monitoring fre-
quency at the specific point. All the above reasons lead to the
poor prediction performance on CX23; thereby, it should be
noted that the reliability of the trained model cannot be
guaranteed without similarity and quantity of data used in
training.

5. Conclusions

*is study established a dynamic prediction method for
excavation-induced CDW deformation based on classic
algorithm BPNN and DL algorithms LSTM and GRU, which
can automatically extract the temporal correlation of
monitored data. Four prediction tasks are designed to verify
the influence of data input size and prediction time spans. A
database of in situ measurement collected from a real-life
excavation project is considered to evaluate the applicability
of the proposed method. *e results show the following:

(1) Considering more historical deformation data not
only improves the stability of the model but also
reduces the prediction error. *e increase of pre-
diction steps reduces precision, but DL algorithms
maintain satisfactory performance even in long-term
prediction tasks.

(2) DL algorithms outperform BPNN in all prediction
tasks with a substantial improvement in accuracy
and exhibit less variation and strong robustness in
10-fold CV.

(3) BPNN trains the model much faster but yields un-
usable prediction results. GRU achieves good bal-
ance between effectiveness and efficiency. *erefore,
GRU is considered to be the most suitable algorithm
for dynamic prediction of CDW deformation.
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