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A real-time control is proposed for plug-in-hybrid electric vehicles (PHEVs) based on dynamic programming (DP) and equivalent
fuel consumptionminimization strategy (ECMS) in this study. Firstly, the resulting controls of mode selection and series mode are
stored in tables through offline simulation of DP, and the parallel HEV mode uses ECMS-based real-time algorithm to reduce the
application of maps and avoid manual adjustment of parameters. Secondly, the feedback energy management system (FMES) is
built based on feedback from SoC, which takes into account the charge and discharge reaction (CDR) of the battery, and in order
to make full use of the energy stored in the battery, the reference SoC is introduced. Finally, a comparative simulation on the
proposed real-time controller is conducted against DP, the results show that the controller has a good performance, and the fuel
consumption value of the real-time controller is close to the value using DP. 4e engine operating conditions are concentrated in
the low fuel consumption area of the engine, and when the driving distance is known, the SoC can follow the reference SoC well to
make full use of the energy stored in the battery.

1. Introduction

Hybrid electric vehicles use at least two power sources,
usually driven by an internal-combustion engine associated
with a motor, in order to minimize the fuel consumption
and/or emissions. 4e energy management of a PHEV is
often divided into two categories. 4e first concerns global
optimization based on offline simulation. In this case, the
vehicle speed is regulated to follow a speed cycle using a
torque at the wheel controller. Examples of such methods
include Pontryagin’s minimum principle [1, 2], dynamic
programming (DP) [3–7], and genetic algorithm [8]. A
second class of algorithms is real-time optimal control
strategy that can be used to control a vehicle. Several al-
gorithms have been proposed, some of which are based on
rulers [9, 10] and Equivalent fuel Consumption Minimi-
zation Strategy (ECMS) [11–16], and others are approxi-
mate real-time control strategies based on DP [17–19].
ECMS has strong dynamic adaptability and can get similar
results with DP in theory [20]; therefore, it has been ex-
tensively studied.

In this paper, a real-time control for PHEV based on DP
and ECMS is studied. Real-time implementation has remained
a major challenge in the design of complex control systems. To
address this hurdle, simple and efficient models and fast op-
timization algorithms are developed. 4e real-time controllers
must be simple in order to be implemented with limited
computation and memory resources. Moreover, manual tun-
ing of control parameters should be avoided to reduce the
calibration work efforts. DP can obtain global optimal solu-
tions, and ECMS can realize real-time computing and can
theoretically get similar results with DP. 4is study combines
the advantages of both to establish a real-time controller.

4e contribution of the paper is to use the DP algorithm
solving the optimal controls of driving cycle to establish the
framework of FEMS. In order to fully utilize the potential of
the battery, the charge and discharge reaction (CDR) of the
battery is taken into account in the DP-based FEMS, and the
reference SoC is introduced into the FEMS. 4e ECMS real-
time algorithm is used for the parallel HEV mode to reduce
the application of maps and avoid manual adjustment of
parameters.
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2. Hybrid Vehicle Modeling

For this study, two levels of modeling are considered. 4e
first, called plant model (PM), shown in Figure 1, is used to
simulate the vehicle over speed cycles [21]. It only represents
the longitudinal behavior and is designed for the energetic-
consumption simulation. It includes the following:

Dynamic response of engine torque
Motor model based on the characteristic map provided
by the motor supplier
Dedicated hybrid transmission (DHT) model (in-
cluding the shift strategy)
Full dynamic vehicle model
High-voltage lithium battery model based on battery
charge and discharge characteristics

An important part of PM is the fuel consumption model
of engine. 4is is done only for fuel consumption using
classical map and is validated according to real data results,
as shown in Figure 2.

Based on this PM, a simplified model, called Energy
Consumption Model (ECM), has been derived. 4e purpose
of this paper is not the vehicle modeling, but control law
synthesis. So, only ECM is used to derive the optimization
algorithm. PM is omitted here, but PM is used for the
simulation results at the end of this paper. Figure 1 is the
simulation model of PHEV.

2.1. Energetic Consumption Modeling. 4e power flows of
the PHEV and connections between components are shown
in Figure 3. 4e vehicle has three energy converters, an
internal-combustion engine (ENG), a drive electric motor
(DEM) connected through a dedicated hybrid transmission
(DHT), and a generator electric motor (GEM) as a generator
connected to the engine via DHT. Both electric machines
can work in both motoring and generating modes. 4e main
component parameters of the powertrain are listed in
Table 1.

As shown in Figure 3, the powertrain allows the vehicle
to be driven in the following four modes:

Mode 1: one-motor pure electric mode: only the DEM
is connected to DHT.
Mode 2: two-motor pure electric mode: the DEM and
GEM are connected to DHT.
Mode 3: series HEV: only the DEM is connected to
DHT. 4e ENG and GEM work as an auxiliary power
unit (APU), producing electric power.
Mode 4: parallel HEV: all energy converters are con-
nected to the DHT.

4e following relations can be described as shown in
Figure 3:

ωwh(k) �
ωe(k)

igb(n) · ired
�
ωgem(k)

igem · ired
�

ωdem(k)

igb(j) · ired
, (1)

Pm(k) � Pgem(k) + Pdem(k),

Tm(k) �
igem

igb(j)
Tgem(k) + Tdem(k),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

Twh(k) � iredηredηgb Te(k)igbn(k)􏼐 􏼑 + Tm(k)igb(j(k)),

(3)

where n and j correspond to the engine transmission gear
and the motor transmission gear, respectively.

3. Optimal Control Problem

4e objective in energy management for hybrid vehicles is to
minimize the cumulative fuel consumption, which is
equivalent to minimizing the power consumption of the
engine.

4e battery is considered as a dynamical system, with the
state of charge

x(k + 1) � x(k) + PBTΔt, (4)

x(k + 1) � x(k) + ηBTPm Tm(k),ωdem(k)( 􏼁Δt. (5)

From (1) and (3), formula (5) can be expressed as
follows:

x(k + 1) � x(k) + ηBTPm Te(k),ωe(k)( 􏼁Δt. (6)

4e objective function is

J � 􏽘
N−1

k�0
_mf Te(k),ωe(k)( 􏼁Δt. (7)

4e speeds and torques of both engine and motor are
limited by the following mechanical constraints.

Constraints on speeds:

ωm min ≤ωm ≤ωm max, (8)

0≤ωe ≤ωe max. (9)

Constraints on torques:

Tm min ≤Tm ≤Tm max, (10)

0≤Te ≤Te max. (11)

However, the constraints on state of charge are

xmin ≤ x≤ xmax, (12)

x(N) − x(0) � ΔSoC. (13)
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With ΔSoC, the desired electric energy consumption
over the speed cycle is called overall SoC variation.

4e relationships between the different torques and
speeds, (2)–(4), allow writing the constraints (8) and (11) as

Te min′ (k)≤Te(k)≤Te max′ (k), (14)

where

Te min′ � max 0,
Twh(k)/iredηredηgb􏼐 􏼑 − Tm max(k)igb(j(k))

igb(n(k))

⎧⎨

⎩

⎫⎬

⎭, (15)

Te max′ � min Te max,
Twh(k)/iredηredηgb􏼐 􏼑 − Tm min(k)igb(j(k))

igb(n(k))

⎧⎨

⎩

⎫⎬

⎭. (16)

For a given gear ratio igb, Te min′ and Te max′ define the
interval of admissible values for engine torque. Several cases
may happen, as follows:

Te min′ � Te max′ � 0: pure electric mode-engine speed is
not high enough to close the clutch

Te min′ � Te max′ ≥ 0: the desired torque Twh(k) should
be equal to the maximum torque of the powertrain
determined by igb

Te min′ ≥Te max′ : the desired torque Twh(k) is greater
than the powertrain torque capability
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Figure 1: Simulation model of PHEV in MATLAB-Simulink.
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Figure 2: Fuel consumption map.
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Te min′ ≤Te max′ : desired torque Twh(k) can be produced
by both motor and engine

3.1. DP Formulation. Dynamic programming (DP) is a
multistep decision process, which uses Bellman’s optimal
principle for making hierarchical decisions and solving
optimal controls [19].

For an optimal decision, regardless of the initial state and
initial decision (stage cost) d(xk, xk−1,i), the remaining de-
cisions (cost-to-go) Jk−1(xk−1,i) must be optimal for the first
decision.4at is, the second section of the optimal trajectory
is also the optimal trajectory.

4e following is the equation of the multistep decision
process:

Jk xk( 􏼁 � min
uk,i

d xk, xk−1,i􏼐 􏼑 + Jk−1 xk−1,i􏼐 􏼑􏽨 􏽩, (17)

where Jk(xk) is the optimal value function of k-stage de-
cision process starting state xk to the end state xf and uk,i is
the control strategy at starting state xk of k-stage decision

process so that the state is transferred to next state. In this
paper, reverse solution is used.

Figure 4 shows the optimal path of WLTC using DP
reverse solution (Figure 4(a)) and the cumulative fuel
consumption of the corresponding optimal path
(Figure 4(b)).

3.2. ECMS Formulation. After dividing by ηeqLHV, this re-
sults in the following objective function:

J �
1

ηeqLHV
􏽘

N−1

k�0
Pe Te(k),ωe(k)( 􏼁Δt. (18)

Introducing the Lagrangian parameter λ(k), the Ham-
iltonian function can be written as

H �
1

ηeqLHV
Pe Te(k),ωe(k)( 􏼁

+ λ(k)ηBTTm(k)ωdem(k).

(19)

In order to avoid exceeding the boundary value of the
constraint condition, introducing an additional cost func-
tion, then, (19) can be rewritten as

H �
1

ηeqLHV
Pe Te(k),ωe(k)( 􏼁

+(λ(k) + c(k))ηBTTm(k)ωdem(k),

(20)

where

c(k) �

0 if constraints are not active,

−K if upper constraints are active,

K if upper constraints are active.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (21)

In order to make the SoC meet the constraint condition
(12), a penalty function is introduced:
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Figure 3: Power flows of the hybrid vehicle powertrain. 4e arrows indicate the direction of the positive power flow.

Table 1: Powertrain parameters.

Components Parameters Values

ENG

Displacement (L) 1.5
Peak power (Kw) 103

Maximum speed (r·min−1) 5500
Peak torque (N·m) 220

GEM Peak power (Kw) 9.5
Peak torque (N·m) 50

DEM Peak power (Kw) 17
Peak torque (N·m) 62

DHT Engine gears number (—) 6
Motor gears number (—) 2

Hvbat

Capacity (Ah) 20
Energy (kWh) 2

Nominal voltage (V) 46
Maximum current (A) 400
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p(x(k)) � 1 −
x(k) − xxf(k)

xmax − xmin( 􏼁/2
􏼠 􏼡

a

. (22)

4en, the Hamiltonian function can be rewritten as

H �
1

ηeqLHV
Pe Te(k),ωe(k)( 􏼁

+(λ(k) + c(k))ηBTTm(k)ωdem(k)p(x(k)),

(23)

where

s(k) � λ(k) + c(k). (24)

s(k) is the equivalent factor.
According to Pontryagin’s minimum principle, the

optimal controls are obtained by solving the minimum value
of Hamiltonian function, shown as follows:

T
∗
m � argminH s(k), x(k), Tm(k),ωdem(k)( 􏼁. (25)

3.2.1. ECMS Algorithm. 4e following steps must be exe-
cuted to implement ECMS, as also illustrated in Figure 5:

(1) Identify the acceptable range of control
[Tgem,min(k), Tgem,max(k)] and
[Tdem,min(k), Tdem,max(k)]which satisfies the in-
stantaneous torque constraints

(2) Discretize the intervals
[Tgem,min(k), Tgem,max(k)] and
[Tdem,min(k), Tdem,max(k)] into a finite number of
controls Tdm ,i􏽮 􏽯 and Tgm,i􏽮 􏽯, where i � 1, 2, . . . , q

and j � 1, 2, . . . , p, a total of q × p control candidates
(3) Calculate the equivalent fuel consumption H cor-

responding to each control candidate
(4) Select the control values Tgem(k) and Tdem(k) that

minimize H

Steps 1 to 4 are computed at each instant of time over the
entire duration of the driving cycle. 4is approach has been
shown to closely approximate the global optimal solution.

4. Control Design

In order to reduce the amount of memory use and improve
the calculation speed, the offline simulation is used to

calculate the fuel cost in series mode and mode selection for
a given combination (Tw,ωw, SoC) [7, 19, 25]. Because the
efficiency of the battery does not change greatly with the
change of SoC in the desired operating region, the SoC is
found to have minor effects on the optimal solution, so that
effect is ignored.

However, not only are all control variables stored in
tables, but also some insights can be gained from the ki-
nematic relations in (1)–(3) to reduce the amount of
memory used:

Mode 1 and mode 2: Tm can be directly calculated from
Treq. 4erefore, no tables are required.
Mode 3: we only need to store the optimal line of
ωAPU opt (1-D) and Te opt (1-D) as shown in Figure 6.

4e above maps are approximate estimates of the op-
timal controls of DP, which can be generated with the help of
theModel-Based Calibration (MBC) toolbox ofMathWorks.

Mode 4 is implemented using ECMS algorithm, and the
algorithm flow is shown in Figure 4.4ere could be instances
where an engine torque command produces the minimum
cost but differs greatly from the previously selected engine
torque. 4is can occur when higher engine torque and lower
engine torque produce minimum costs that are close in
value, which causes the Min function to alternate between
higher and lower engine torque outputs. 4erefore, the
difference between the current engine power vector (P∗e (k))
and the previously selected engine power (P∗e (k − 1)) is
introduced into the Hamiltonian function and will help limit
the rate at which the engine power (and torque) can change
from time step to time step, and the Hamiltonian function
(23) can be rewritten as

H �
1

ηeqLHV
Pe Te(k),ωe(k)( 􏼁

+ s(k)ηBTTm(k)ωdem(k)p(x(k))

+ P
∗
e (k) − P

∗
e (k − 1)( 􏼁.

(26)

4.1. Controller. 4e structure of the controller is shown in a
block diagram in Figure 7, which consists of three main
subsystems. 4e first subsystem is the operation mode de-
tection, combined with formulas (14)–(16) as the boundary
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Figure 4: 4e optimal results of WLTC using DP.
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condition of the mode selection; the second subsystem is
operation mode management, which mainly realizes the
transition of the four modes by the state machine; the third
subsystem is torque distribution amnagement, which mainly
realizes the torque distribution of pure electric mode (modes
1 and 2), series mode (mode 3), and parallel hybrid mode
(mode 4).

5. Energy Management

Charge-depleting charge-sustaining strategy (CDCS) is to
make use of all the stored electric energy in the battery. 4e
PHEV is run as an electric vehicle until the SoC is under a
certain limit and then operates as a hybrid in the charge-
sustaining mode. It is guaranteed to make use of the stored
electric energy, and it does not need information about the
future driving mission, which is the main advantage of this
strategy. Global optimal strategy based on DP is to mix usage
of fuel and electricity throughout the driving cycle. Com-
paring the optimization-based strategies with the CDCS-
based strategies, the optimization-based strategies may re-
sult in a lower fuel consumption than the CDCS-based
strategies [24]. However, in order to use all the energy in the
battery for the global optimal strategy, the distance of the
driving cycle must be known.

In order to make full use of the electric energy in the
battery, in this paper a mix between global optimal strategy
and CDCS strategies is implemented, and in order to reduce
the application of maps and avoid manual adjustment of
parameters, parallel HEV is implemented based on ECMS
algorithm.

5.1. Charge-Discharge Reaction. In order to extend the life
cycle of the battery, the charge and discharge reaction (CDR)
of the battery is taken into account in the energy man-
agement strategy.

4e CDR of the battery is divided into 5 states: dis-
charging, effective (Eff) discharging, normal, effective (Eff)
charging, and critical (Crit) charging, as shown in Figure 8.
When the SoC is close to the maximum boundary value, the
CDR is in discharging state. With the SoC gradual decrease,
the CDR will be in the effective discharging state and the
normal state and then in the effective charging state, and
when the SoC is close to its minimum boundary value, the
CDR will be in the critical charging state to avoid the voltage
of the battery and the discharge depth of the battery into the
nonlinear region [22, 23].

In Figure 9, with SoC as the feedback variable, a feedback
energy management system (FEMS) is established to
maintain the SoC within an allowable interval, as shown in
Figure 10(d). When the SoC decreases, the CDR also de-
creases accordingly; then, the FEMS will select charging
maps, shown in Figure 11; when the SoC increases, the CDR
also increases; then, the system will select the discharging
maps. Each map is approximate estimates of the corre-
sponding optimal trajectory of DP, which can be generated
with the help of the Model-Based Calibration (MBC)
toolbox of MathWorks.

5.2. Reference SoC. In order to make full use of all the energy
stored in the battery, a blended strategy that the instanta-
neous optimal strategy based on ECMS is combined with
CDCS strategy is implemented. In order to avoid SoC not
reaching the final value of the reference SoC, when the end is
reached, the strategy is to underestimate the approximate
distance by 15% and use it as the horizon for the blended
strategy and then switch to CS mode. 4is is achieved by
setting a reference SoC [25], xrf , which is linear in the ratio of
traveled distance versus expected distance according to
equation (27). Minimum xrf is set to 0.3 in order to ensure
that the final SoC is 0.3. 4e shape of xrf is shown in
Figure 12.
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Dt �
Dreal

0.85Dcycle
,

xrf � xf − x(0)􏼐 􏼑Dt + x(0),

xmin ≤xrf ≤xmax,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where xf is the minimum reference SoC.
In order to improve the robustness of the system, the PI

controller is designed according to the following formula:

CDR � Kp xrf − x( 􏼁 + Ki 􏽚 xrf − x( 􏼁dt. (28)

5.3. Adaptive Optimal Supervisory Control. 4e adaptive
optimal supervisory control is designed based on SoC
feedback, which is to dynamically change s(k) (without
using past driving information or trying to predict future
driving behavior) to compare SoC changes and maintain its
value near the reference value [26–28].

An adaptation law based on the PI controller of the type:

s � s0 + Kp xrf − x( 􏼁 + Ki 􏽚 xrf − x( 􏼁dt. (29)

In (29), s0 represents the initial value of s at time t� 0,
and Kp and Ki are the proportional and integral gains of the
adaptation law. 4e initialization of this algorithm, i.e., the
choice of s0, is arbitrary, and it can be done by averaging
different optimal initial values obtained offline [28, 29].
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Figure 10: 4e simulation results of WLTC without reference SoC.
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Figure 12: 4e outline of the reference SoC shape.
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6. Simulation Result in MATLAB-Simulink

4e controller is evaluated in a closed loop together with
PM, and the simulation results are compared with the global
optimal results of DP offline simulation.

4e offline simulation results of using DP reverse to solve
WLTC are presented in Figure 4. Figure 4(a) shows the
optimal paths with different SoC initial values, and the
cumulative fuel consumption of the corresponding optimal
path is shown in Figure 4(b), and the SoC constraints are

25%≤ x≤ 100%,

x(N) � 75%.
(30)

In Figure 4, the optimal paths with different SoC initial
values converge to one path at 900 s, and the fluctuation
range of SoC is in a larger interval [30, 95]; the average fuel

consumption of all optimal paths after the WLTC is 820 g,
corresponding to the one-hundred-kilometer fuel con-
sumption which is 4.69 L.

Figure 13 shows that the engine operating points are
concentrated in the low fuel consumption area of the engine
and the speed is in the interval [1000 r/min, 3500 r/min]. It
can also be seen from Figures 10(b) and 14(a) that the engine
torque is mostly concentrated around 80Nm, and the
number of engine starts with the reference SoC (27 times) is
lower than the number of engine starts without the reference
SoC (31 times). Figure 10(c) is the trajectory of the equiv-
alent factor, and the overall trend of the equivalent factor is
stable with the peak upward. 4e larger the peak value, the
greater the desire for engine power. Conversely, as shown in
Figure 14(b), the equivalent fuel factor decreases with the
decrease of the reference SoC, the peak is down, and the
smaller the peak value, the greater the desire for motor
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Figure 13: Engine operating points’ distribution of WLTC.
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Figure 14: 4e simulation results of WLTC with reference SoC.
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power. 4e resulting SoC trajectories for the tested cycle are
shown in Figures 10(d) and 14(c). In Figure 10(d), the SoC
fluctuation range of the tested cycle is narrower than the DP
offline simulation result in Figure 4(a), which is located in
the interval [61, 65]. Compared with Figure 14(c), SoC can
better follow the reference SoC, and the range of SoC
variation is relatively large, indicating that the energy stored
in the battery can be fully utilized. As shown in Figure 10(a),
the measured vehicle speed can follow the target vehicle
speed very well.

In order to verify the adaptability of the controller to
different tested cycles, in addition to the WLTC tested cycle,
two tested cycles, China Urban Driving Cycle (CUDC) and
NEDC, are also selected for simulation comparison. 4e
results for the 3 tested cycles are shown in Table 2.

In fact, in WLTC testing, the final SoC may not reach
exactly the target value (75%) of DP; therefore, in order to
fairly compare fuel consumption results, a linear correlation
between final SoC and fuel consumption is visible, which is
easily approximated by the linear expression [30].

mf ≈ mf0 + σΔSoC, (31)

where mf is the actual fuel consumption, mf0 is the value
that would correspond to a zero SoC variation, and σ is a
curve fitting coefficient that translates ΔSoC into a corre-
sponding amount of fuel; here, σ ≈ s.

In Table 2, the fuel consumption of the WLTC without
reference SoC is 4.81 L/100 km with the final SoC 63%. After
correction, the fuel consumption is 4.83 L/100 km, which is
0.14 higher than the average fuel consumption of DP
simulation with the final SoC value 75%. For the 3 test cycles,
the fuel consumption without the reference SoC is higher
than the fuel consumption with the reference SoC; the final
value of the SoC without the reference SoC is close to the
target value of 75%; the final value of the SoC with the
reference SoC is close to 30%.

7. Conclusion

4is study proposes a real-time control of PHEV based on
DP and ECMS. In order to fully exploit the potential of the
battery, combined with the CDR and CDCS, the FEMS was
established, and the controller was evaluated by closed-loop
simulation. 4e conclusion is as follows:

(1) 4is study proposes a real-time control of PHEV
based on DP-ECMS, which is a suboptimal solution,

and the results show that the real-time controller has
good control ability and better robustness, and the
fuel consumption value of the real-time controller is
close to the offline simulation results of DP.

(2) 4e engine operating points are concentrated in the
low fuel consumption area of the engine, and the
engine starts and stops are evenly distributed. 4ey
effectively avoid alternating output between higher
and lower engine torques.

(3) When the future driving distance is unknown, the
controller can make the SoC within a admissible
interval, but the SoC change range is relatively
small, and the system cannot make full use of the
energy stored in the battery. When the future
driving distance is known, the system can make
the SoC better follow the reference SoC, which
can make full use of the energy stored in the
battery; therefore, fuel economy is effectively
improved.

Nomenclature

qLHV: Fuel lower heating value (J/Kg)
Ua: Vehicle speed (Km/h)
T: Torque (Nm)
i: Gear ratio (—)
η: Efficiency (—)
ρ: Air density (kg/m3)
g: Gravitational acceleration (m/s2)
Δt: Sample time (s)
Q: Battery capacity (As)
P: Power (W)
ω: Angular velocity (rad/s)
bh: Fuel consumption (Kg/h)
x: State of charge (—)
_mf: Fuel mass flow (g/s)

mf: Fuel consumption (L/100 km)
mf xf: Fuel consumption with reference SoC (L/100 km)
Dreal: Actual distance traveled (km)
Dcycle: Estimated driving cycle distance (km)
λ: Lagrangian parameter (—)
s: Equivalent factor (—)
Subscripts
wh: Wheel
req: Requirement
gb: Gear box
elec: Electricity
e: Engine
m: Motor
gem: Generator electric motor
dem: Drive electric motor
red: Reducer
opt: Optimal
rf : Reference
BT: Battery
APU: Auxiliary power unit
Acronyms
ENG: Engine
Eload: Electronic load

Table 2: Driving cycles’ simulation results.

Cycle info WLTC CUDC NEDC

Without reference SoC
mf 4.81 3.53 4.71

x(N) 63 61 59
non 31 7 16

With reference SoC
mf 4.21 3.23 4.23

x(N) 31 29 31
non 27 6 13

Δmf 0.61 0.2 0.48
Dcycle 23.16 5.9 10.95
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HvBat: High-voltage battery
DHT: Dedicated hybrid transmission
SoC: State of charge
DEM: Drive electric motor
GEM: Generator electric motor
Eff: Effective
Crit: Critical.

Data Availability

4e Models.slx data used to support the findings of this
study are currently under embargo while the research
findings are commercialized. Requests for data 6 months
after publication of this article will be considered by the
corresponding author.
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[26] A. Garćıaa, P. Carluccib, J. Monsalve-Serranoa, A. Valletta,
and S. Mart́ınez-Boggio, “Energy management strategies
comparison for a parallel full hybrid electric vehicle using
reactivity controlled compression ignition combustion,”
Applied Energy, vol. 272, Article ID 115191, 2020.

[27] C. Yang, S. Du, L. Li, S. You, Y. Yang, and Y. Zhao, “Adaptive
real-time optimal energy management strategy based on
equivalent factors optimization for plug-in hybrid electric
vehicle,” Applied Energy, vol. 203, pp. 883–896, 2017.

[28] C. Musardo, G. Rizzoni, Y. Guezennec, and B. Staccia, “A-
ECMS: an adaptive algorithm for hybrid electric vehicle
energy management,” European Journal of Control, vol. 11,
no. 4-5, pp. 509–524, 2005.

[29] J. T. B. A. Kessels, M. W. T. Koot, P. P. J. van den Bosch, and
D. B. Kok, “Online energy management for hybrid electric
vehicles,” IEEE Transactions on Vehicular Technology, vol. 57,
no. 6, pp. 3428–3440, 2008.

[30] G. Paganelli, M. Tateno, A. Brahma, G. Rizzoni, and
Y. Guezennec, “Control development for a hybrid-electric
sport-utility vehicle: strategy, implementation and field test
results,” in Proceedings of the 2002 American Control
Conference, Anchorage, AK, USA, 2002.

12 Mathematical Problems in Engineering


