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*e time-harmonic response of an elastic pile embedded in a radially inhomogeneous poroelastic medium and subjected to a
torsional loading is studied in the present article. In engineering practice, the surrounding soil may be weakened due to the
disturbance effect caused by pile driving. To simulate the weakened surrounding soil, a boundary zone model with the complex
shear modulus of the inner disturbed soil changing in a parabolic form along the radial direction is proposed. In view of the axis-
symmetric deformation of the surrounding soil under torsional load, the equation of motion of the saturated soil is solved in the
cylindrical coordinate system. *e vibration displacement and shear stress solutions for the inner disturbed soil are gained by
expanding the displacement as a power series, and those for the outer undisturbed soil are obtained by solving the partial
differential equation. By virtue of continuity conditions at the interface between inner and outer soil regions, the torsional
impedance of the radially inhomogeneous soil is solved. *en, via the boundary and continuity conditions of the pile-soil system,
the twist angle and torque of the pile are obtained in the frequency domain. Finally, selected numerical results are conducted to
investigate the influence of the material damping, softening degree, and softening range of the inner soil on the distribution of the
twist angle and torque of the pile along the depth direction.

1. Introduction

Foundations and pile foundations are commonly subjected
to dynamic torsional load due to the eccentricity in applied
lateral loads, and the corresponding dynamic analysis is of
great importance for the dynamic foundation design. Over
the past few decades, various theoretical methods (e.g.,
analytical, semianalytical, and numerical methods) were
proposed to solve the vibration of piles or foundations in
elastic/viscoelastic soil media. For instance, Novak and
Howell [1] analyzed the torsional vibration characteristics of
an end-bearing pile in a viscoelastic soil medium using an
analytical method. Wu et al. [2] proposed the fictitious
model to simulate the effect of the pile end soil and gained an
analytical solution for the torsional dynamic response of a
floating pile embedded in a layered soil. Wu et al. [3] in-
vestigated the vertical vibration characteristics of a variable
impedance pile embedded in a multilayered soil using a
quasi-analytical method. Militano and Rajapakse [4]

proposed a semianalytical method to study the dynamic
response of an elastic pile subjected to transient torsional
and axial loads. Lin et al. [5], Pan et al. [6], and Zhang and
Pan [7] studied the torsional and vertical vibration of rigid
circular foundation over and buried in a transversely iso-
tropic multilayered half-space via a semianalytical method.
Besides, the numerical methods (e.g., finite element method,
coupled finite element method-boundary element method)
[8, 9] were also applied into the study on the torsional vi-
bration of a pile embedded in a layered half-space.

Most of the above studies on piles had regarded soil as a
radial homogenous elastic/viscoelastic media. Since Biot’s
pioneer work [10, 11] on the general theory of acoustic
propagation in poroelastic medium, the dynamic response
of the buried patch load [12–14], and the torsional vibration
of pile or foundation in saturated soil were investigated in
detail [15–19]. Besides, Zhao and Xiang [20] investigated the
dynamic torsional response of pipe pile embedded in un-
saturated soil. However, in practice, the soil adjacent to the
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pile may be compacted or loosened during pile installation
[21], which results in soil properties changing continuously
along the radial direction. *at is to say, in this case, the soil
is inhomogeneous in the radial direction. To approximately
account for the inhomogeneity of the surrounding soil,
Novak and Sheta [21] first proposed a weakened annular
boundary zone model with an inner weakened massless
region. In light of the limitation of this study, Veletsos and
Dotson [22] further considered the mass of the soil, which
can better reflect the inertia effect of the weakened soil. After
that, various types of nonreflective boundary zone model
containing inner disturbed region and outer undisturbed
homogenous region were proposed, in which the shear
modulus of the inner disturbed region changes continuously
in the radial direction [23–25]. Moreover, Li and Gao [26]
and Zhang et al. [27] studied, respectively, the vertical and
torsional vibration characteristics of a pipe pile embedded in
a radially inhomogeneous soil using the rigorous continuum
soil model. However, these studies modeled the radially
inhomogeneous soil as a viscoelastic medium. Based on
Biot’s poroelastodynamic theory, Li et al. [28, 29] derived
quasi-analytical solutions for the dynamic torsional and
vertical response of an end-bearing pile embedded in a
radially inhomogeneous saturated soil.

To the best of our knowledge, an analytical solution for
the dynamic torsional response of a floating pile in a radially
inhomogeneous saturated soil is still unavailable. *erefore,
the objective of the present study is to propose an analytical
solution to study the time-harmonic torsional response of an
elastic pile embedded in a radially inhomogeneous saturated
soil. *rough the numerical calculation, the influence of the
material damping, softening degree, and softening range of
the inner soil on the distribution of the twist angle and
torque of the pile along the depth direction is investigated in
detail. *e present solution can be further served as
benchmarks for the complicated and powerful numerical
methods.

2. Establishment of the Mathematical Model

2.1. Geometric Model and Assumptions. Consider the dy-
namic torsional interaction between an elastic pile and a
radially inhomogeneous poroelastic medium, as depicted in
Figure 1. *e elastic pile is vertically with a uniform circular
cross-section and subjected to a time-harmonic torsional
load T0eiωt acting at its top end. *e length and radius of the
pile are H and r0, respectively. In engineering practice, the
poroelastic medium (i.e., saturated soil) adjacent to the pile
would be compacted or loosened due to pile installation,
which results in soil properties continuously changing in the
radial direction. Hence, in order to describe the radial in-
homogeneity of the soil in theory, the boundary zone model
with nonreflective boundary is proposed, and the sur-
rounding soil is then divided into an inner disturbed region
of radial thickness tm and an outer semi-infinite undisturbed
region (i.e., homogenous region). Furthermore, it is also
assumed that the displacement and stress at the interface of
the pile and inner soil region (and that of inner and outer soil
regions) are continuous. Since the applied torsional load and

the deformation of the surrounding soil are axis-symmetric,
we present and solve the pile-soil interaction problem in
terms of the cylindrical coordinate system (r, θ, z), and the
radially inhomogeneous poroelastic medium is within the
positive z domain. It should be also pointed out that under
the action of the time-harmonic torsional load, the response
is proportional to the factor eiωt, which will be suppressed for
brevity.

*e geometry of the radially inhomogeneous soil is
shown in Figure 2, in which the complex shear modulus of
the inner disturbed soil is assumed to continuously change
in a parabolic form proposed by Han and Sabin [24].
*erefore, the complex shear modulus of the soil in the inner
and outer regions can be written in terms of the mathe-
matical formulations as

G
∗
s (r) �

G
∗
sm, r � r0,

G
∗
s0f(r), r0 ≤ r≤R0,

G
∗
s0, r≥R0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where G∗s0 � Gs0(1 + iDs0) and G∗sm � Gsm(1 + iDsm) are the
complex shear modulus of the soil in the outer undisturbed
region and the soil at the interface of the pile and soil; Ds0 and
Dsm are, respectively, the corresponding soil damping coef-
ficients at the same locations; i=(‒1)0.5; R0 is the radial distance
from the interface of the two regions to the center of the pile;
and f(r) is a function reflecting the parabolic variation of the
complex shear modulus of the soil in the inner region and
considered to vary according to the following expression:

f(r) � 1 − β2
r − R0

r0
 

2

, (2)

in which

β2 �
1 − GR 1 + iDsm( / 1 + iDs0( 

tm/r0)
2
,

(3)
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Figure 1: Geometric model of pile-soil dynamic interaction.
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where GR=Gsm/Gs0 reflects the disturbance (i.e., softening or
hardening) degree of the inner soil and tm is the width of the
inner disturbed region, which reflects the disturbance range of
the inner soil. It is noted that GR< 1 denotes the weakened
inner soil and GR>1 denotes the strengthened inner soil.

2.2. Governing Equations. Based on Biot’s general theory of
acoustic propagation in the poroelastic medium [10, 11] and
under the plane strain assumption of the soil [4], the dy-
namic equilibrium equation of the saturated soil subjected to
torsional load can be written as

G
∗
s (r)

z
2
uθ

zr
2 +

1
r

zuθ

zr
−

uθ

r
2  +

dG
∗
s (r)

dr

zuθ

zr
−

uθ

r
 

� − ρω2
uθ − ρfω

2
wθ,

(4)

where uθ and wθ are, respectively, the amplitude of the
circumferential displacement of the soil skeleton and that of

the pore fluid relative to the soil skeleton; ρ= (1‒ϕ)ρs+ϕρf is
the density of the soil; ρs and ρf are the densities of soil
skeleton and pore fluid, respectively; and ϕ is the porosity of
the saturated soil.

*e general dynamic equilibrium equation of the pore
fluid for the poroelastic medium is proposed by Biot. Par-
ticularly for the saturated soil, the simplified dynamic
equilibrium equation of the pore fluid can be written as [30]

iω
ρfmg

kdm

wθ − ω2ρfmuθ − ω2ρfm

ϕm

wθ � 0, r0 ≤ r≤R0( ,

iω
ρf0g

kd0
wθ − ω2ρf0uθ − ω2ρf0

ϕ0
wθ � 0, r≥R0( ,

(5)

where ρm= (1 ‒ϕm)ρsm+ϕmρfm and ρ0 = (1 ‒ϕ0)ρs0 +ϕ0ρf0
are the densities of soil in the disturbed and undisturbed
regions, respectively; kdj, ρsj, ρfj, and ϕj (j=m, 0) are the
horizontal dynamic permeability coefficient containing the
viscosity of the fluid, density of soil skeleton, density of pore
fluid, and porosity of the saturated soil in the corresponding
region, respectively; g is the acceleration of gravity; and ω is
the circular frequency of excitation.

For the convenience of subsequent derivation, equation
(2) can be rewritten as

f(ξ) � 1 − β ξ0 − ξ(  
2
, (6)

where

ξ �
r

r0
,

ξ0 �
R0

r0
.

(7)

Introducing duθ/dr=duθ/(r0dξ) and then substituting
equations (5) and (6) into equation (4), yield

f(ξ)
d2uθ

dξ2
+

f(ξ)

ξ
+
df(ξ)

dξ
 

duθ

dξ
−

f(ξ)

ξ2
+
1
ξ
df(ξ)

dξ
+ λ2m uθ � 0, 1≤ ξ ≤ ξ0( , (8)

ξ2
d2uθ

dξ2
+ ξ

duθ

dξ
− 1 + λ20ξ

2
 uθ � 0, ξ ≥ ξ0( , (9)

where

λj � iωr0
1

G∗sj

ρj +
ϕjρfjω

ibj/ρfj − ω
 ⎡⎣ ⎤⎦

(1/2)

,

bj �
ϕjρfjg

kdj

, (j � m, 0).

(10)

After introducing x� β(ξ0− ξ) and duθ/dξ � − βduθ/dx,
equation (8) can be rewritten in a much concise form

x
2

− 1 
d2uθ

dx
2 +

x
2

− 1
x − a

+ 2x 
duθ

dx

+
1 − x

2

(x − a)
2 −

2x

x − a
+ b uθ � 0, 1≤ ξ ≤ ξ0( ,

(11)
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Figure 2: Geometry of the radially inhomogeneous saturated soil.
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where

a � βξ0,

b �
λm

β
 

2

.

(12)

Given that the elastic pile undergoes forced torsional
vibration, the dynamic equilibrium equation of the pile can
be expressed as

Gp

z
2

zz
2 φ(z)e

iωt
  +

4f(z)e
iωt

r
2
0

� ρp

z
2

zt
2 φ(z)e

iωt
 , (13)

where Gp, ρp, r0, and φ(z) are the shear modulus, density,
radius, and the twist angle amplitude of the pile, respectively,
and f(z) denotes the amplitude of the contact traction along
the pile-soil interface.

2.3. Boundary and Continuity Conditions. Considering that
the displacement of the soil tends to zero at infinity, the
boundary condition of the soil can be written as

uθ(r)|r⟶∞ � 0. (14)

*e continuity conditions of the inner and outer soil
regions can be expressed as

uθ(r)|r�R0−
� uθ(r)|r�R0+

,

τrθ(r)|r�R0−
� τrθ(r)|r�R0+

.
(15)

*e boundary conditions of the pile are

dφ(z)

dz |z�0 � −
T0

GpIp

,

dφ(z)

dz
+
φ(z)kpb

GpIp

 
|z�H

� 0,

(16)

where Ip � (πr40/2) denotes the polar moment of inertia of
the pile and kpb is the supporting stiffness coefficient of the
pile bottom. If the underlying half-space is elastic, kpb can be
approximately taken as (16Gsbr30/3) [4] with Gsb being the
shear modulus of the underlying half-space. If the under-
lying half-space is rigid, φ(z) should be equal to zero at the
level z=H. Generally, we can fix kpb=∞ to simulate the
rigid base case.

*e continuity conditions at the pile-soil interface can be
written as

uθ(r)|r�r0
� φ(z)r0, (17)

τrθ(r)|r�r0
� f(z). (18)

3. Solution of the Radially Inhomogeneous
Soil Layer

3.1. Solution of the Outer Soil Medium. For the saturated soil
in the outer region, the solution of equation (9) can be
expressed as

uθ � CK1 λ0ξ(  + DI1 λ0ξ( , ξ ≥ ξ0( , (19)

where I1(λ0ξ) and K1(λ0ξ) are the first-order modified Bessel
functions of the first kind and the second kind, respectively.
C and D are the constants determined by the boundary
conditions.

It is noted from equation (19) that D should vanish to
zero to guarantee bounded displacement given in equation
(14). *en, the amplitude of the circumferential displace-
ment and shear stress of the soil in the outer region can be
expressed as

uθ � CK1 λ0ξ( ,

τrθ � −
1
r0

CG
∗
s0λ0K2 λ0ξ( .

(20)

3.2. Solution of the Inner Soil Medium. In order to solve
equation (8), we express the circumferential displacement of
the soil as the following infinite series:

uθ � 
∞

m�0
Amx

m
. (21)

It is noted that we only need a finite number of m in
equation (21) to ensure the accuracy of the results.

Substituting equation (21) into equation (8), after some
algebraic operation (the detailed derivation forAm is listed in
Appendix A), the recursive relation of coefficient Am can be
written as

Am �
E1Am− 1 + E2Am− 2 + E3Am− 3 + E4Am− 4

m(m − 1)a
2 , m≥ 4,

Am �
2a(1 − b)A0 + a

2
(b + 2)A1 + 6aA2

6a
2 , m � 3,

Am �
a
2
b + 1 A0 + aA1

2a
2 , m � 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where

E1 � (m − 1)(2m − 3)a,

E2 � (m − 1)(m − 2)a
2

− (m − 2)
2

+ ba
2

+ 1,

E3 � − a[(m − 3)(2m − 3) + 2(b − 1)],

E4 � (m − 2)(m − 4) + b − 3.

(23)
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*e amplitude of circumferential shear stress of the inner
soil medium can be expressed as

τrθ � − G
∗
s (r)

β
r0

duθ

dx
+

uθ

r
  � − G

∗
s (r)

β
r0



∞

m�1
Ammx

m− 1
+
1
r



∞

m�0
Amx

m⎛⎝ ⎞⎠. (24)

Substituting equations (20), (21), and (24) into the
continuity conditions given in equation (15), we have

A0 � CK1 λ0ξ0( ,

A1 �
λ0ξ0K2 λ0ξ0(  − K1 λ0ξ0( 

βξ0
C.

(25)

*en, the circumferential shear stress amplitude of the
soil at the pile-soil interface can be expressed as

τrθ|r�r0
� −

G
∗
sm

r0
β 
∞

m�1
Ammx

m− 1
0 + 

∞

m�0
Amx

m
0

⎛⎝ ⎞⎠, (26)

where x0 � (1 − G∗sm/G
∗
s0)

(1/2).
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Figure 3: Influence of m on the torsional impedance of the soil (GR� 0.5).
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Figure 4: Comparison with the existing solutions for a purely elastic soil medium.
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*e torsional impedance of the soil can be finally
expressed as

Kθ � −
2πr

3
0τrθ|r�r0

uθ|r�r0

� 2πr
2
0G
∗
sm

β
∞
m�1 Ammx

m− 1
0


∞
m�0 Amx

m
0

+ 1 ,

(27)

where Kθ denotes the torsional impedance of the sur-
rounding soil. It is worth noting that Am is a function of C;
hence, the unknown constant C can be automatically
eliminated.

For the convenience of subsequent analysis, Kθ can be
further expressed as the following form:

Kθ � Gs0r
2
0 Sw1 + iSw2( , (28)

where Sw1 and Sw2 denote, respectively, the stiffness and
damping part of the torsional impedance of the radially
inhomogeneous saturated soil.

4. Solution of the Elastic Pile

Combining equations (17) and (21), we have



∞

m�0
Amx

m
0 � φ(z)r0. (29)

*en, the circumferential shear stress amplitude of the
soil at the pile-soil interface can be further expressed as

τrθ|r�r0
� −

Kθ

2πr
2
0
φ(z). (30)
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Figure 5: Influence of the softening degree of the inner soil on the distribution of normalized twist angle of the pile (f� 20Hz in (a) and (b);
f� 50Hz in (c) and (d)).

6 Mathematical Problems in Engineering



Substituting equation (30) into equation (18), the gov-
erning equation for the torsional vibration of the pile under
time-harmonic torsional load can be further written as

d2φ(z)

dz
2 + −

2Kθ

Gpπr
4
0

+
ρpω

2

Gp

⎡⎢⎣ ⎤⎥⎦φ(z) � 0. (31)

Solving the ordinary differential equation (31), we have

φ(z) � α1 cos(cz) + α2 sin(cz), (32)

in which

c � −
2Kθ

Gpπr40
+
ρpω2

Gp

 

(1/2)

, (33)

where α1 and α2 are the constants determined by the
boundary conditions.

Substituting the boundary conditions of the pile given in
equation (16) into equation (33) results in

α1 � −
T0

GpIpc tan(cH − δ)
,

α2 � −
T0

GpIpc
,

(34)

where δ � arctan[kpb/(cH)] denotes the phase angle and
kpb � (kpbH/(GpIp)) denotes the dimensionless pile bottom
supporting coefficient.

*e torque of the pile body can be further expressed as

z/
H

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Re[T(z–)/T0]

GR = 0.3
GR = 0.6
GR = 0.9

(a)

z/
H

1.0

0.8

0.6

0.4

0.2

0.0
–0.018 –0.012 –0.006 0.000

Im[T(z–)/T0]

GR = 0.3
GR = 0.6
GR = 0.9

(b)

z/
H

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Re[T(z–)/T0]

GR = 0.3
GR = 0.6
GR = 0.9

(c)

z/
H

1.0

0.8

0.6

0.4

0.2

0.0
–0.10 –0.08 –0.06 –0.04 –0.02 0.00

Im[T(z–)/T0]

GR = 0.3
GR = 0.6
GR = 0.9

(d)

Figure 6: Influence of the softening degree of the inner soil on the distribution of normalized torque of the pile (f� 20Hz in (a) and (b);
f� 50Hz in (c) and (d)).
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T(z) � − GpIp

dφ(z)

dz
� − GpIpc − α1 sin(cz) + α2 cos(cz) .

(35)

5. Numerical Analysis and Discussion

*e influence of the soil radial heterogeneity on the torsional
impedance of the soil and torsional complex stiffness at the
pile top has received detailed investigation in the past studies
[22–25, 28]. *erefore, the effect of the soil radial hetero-
geneity on the distribution of the twist angle and torque of
the pile body will be mainly analyzed in the present study. In
addition, it is found from the past studies [23–25, 28] that
the strengthened inner soil can improve the ability of the
pile-soil system to resist dynamic torsional deformation,
which is safe for the dynamic foundation design in general

cases. Hence, the emphasis of the present study is to analyze
the influence of the weakened inner soil on the torsional
vibration characteristics of the pile-soil system. In the cal-
culation, it is assumed that the porosity, permeability co-
efficient, density of the soil skeleton, and density of the pore
fluid of the soil in the inner region are equal to the corre-
sponding parameters of the soil in the outer region. Unless
otherwise specified, the parameters of the saturated soil and
pile used in calculation are Gs0 =Gsb= 20MPa, ρsm= ρs0 =
2650 kg/m3, ρfm= ρf0 =1000 kg/m3, ϕm=ϕ0 = 0.4, kdm= kd0 =
10− 7m/s, Dsm=Ds0 = 0, ρp= 2500 kg/m3, Gp= 12.1GPa,
H= 10m, r0 = 0.3m, tm/r0 = 0.5.

In order to solve the torsional vibration of the inner
disturbed soil, an infinite series is used to express the cir-
cumferential displacement of the soil. Hence, the number of
calculation items (i.e., value of m) has great influence on the
reliability and accuracy of the present solution.*e influence
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Figure 7: Influence of the softening range of the inner soil on the distribution of normalized twist angle of the pile (GR� 0.5; f� 20Hz in (a)
and (b); f� 50Hz in (c) and (d)).
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of the value of m on the reliability and accuracy on the soil
torsional impedance is shown in Figure 3. It can be seen that
whenm is small (e.g.,m� 2, 5, 20), the infinite series has not
converged to a stable value, and the curves corresponding to
different m are quite different. However, the soil torsional
impedance will be convergent when m is greater than 50. In
order to ensure the accuracy of calculation,m� 100 are used
in subsequent calculations.

Figure 4 shows the comparison of the reduced purely
elastic soil medium (i.e., ρf � 0) of the present solution with
other existing solutions. It can be seen from Figure 4 that, in
the low-frequency range, the real and imaginary parts of the
present solution and Dotsos and Veletsos’s solution [23] are
lower than those of Militano and Rajapakse’s homogenous
solution [4]. It is noted that the present solution assumes
that the shear modulus of the inner soil continuously
changes in a parabolic form along the radial direction, while
the solution by Dotsos and Veletsos [23] assumed that the

shear modulus of the inner soil continuously changes in an
exponential form. *is indicates that regardless of the
changing form of the shear modulus of the weakened soil in
the inner region, its torsional impedance is necessarily lower
than that of the undisturbed soil (i.e., homogenous soil). It
can be also observed from Figure 4 that the real and
imaginary parts of the present solution are larger than those
of Dotsos and Veletsos [23].*is phenomenon indicates that
the changing form of the shear modulus of the weakened soil
has a great influence on the impedance of the soil, although
the values of GR and tm/r0 remain constants.

Figure 5 depicts the influence of the softening degree
(GR) on the distribution of the normalized twist angle of the
pile for different frequencies. It should be pointed out that
smaller GRmeans a larger softening degree of the inner soil.
*e normalized twist angle is defined as (φ(z)/T0), where
T0 � (T0r0/(GpIp)). Re[ ] and Im[ ] denote, respectively, the
real and imaginary parts of the corresponding physical
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Figure 8: Influence of the softening range of the inner soil on the distribution of normalized torque of the pile (GR� 0.5; f� 20Hz in (a) and
(b); f� 50Hz in (c) and (d)).
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quantity. It can be observed from Figure 5 that the softening
degree has a marked influence on the distribution of the twist
angle of the pile along the depth direction. *e following
trends can also be observed from Figure 5: (1) the real part
dominates the twist angle distribution, and it gradually de-
creases along the depth direction. (2)*e real part of the twist
angle of the pile top and the pile body increases with de-
creasing GR. *is indicates that the twist angle of the pile will
increase with the increase of softening degree. (3) *e
changing trend of the imaginary part is relatively complicated.
When f� 20Hz, there exists a turning point. Above this point,
the absolute value of the imaginary part increases with in-
creasing GR. Below this point, the imaginary part decreases
with increasing GR. However, when f� 50Hz, the absolute
value of the imaginary part decreases with increasing GR.

Figure 6 shows the influence of the softening degree (GR)
on the distribution of the normalized torque of the pile for
different frequencies. *e normalized torque of the pile is
defined as (T(z)/T0). It can be seen from Figure 6 that GR
has a marked influence on the distribution of normalized
torque along the depth direction. *e real part also domi-
nates the distribution of torque. At a fixed depth, the real
part increases with the decrease of GR, while the absolute
value of the imaginary part decreases with the decrease of
GR. *is indicates that the higher the softening degree of the
inner soil, the smaller the load borne by the soil and ac-
cordingly the greater the load borne by the pile. It can be also
seen from Figure 6 that the imaginary part has a peak at the
critical depth. Above the critical depth, the absolute value of
the imaginary part increases with increasing z. Below the
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Figure 9: Influence of the material damping of the inner soil on the distribution of normalized twist angle of the pile (GR� 0.5; f� 20Hz in
(a) and (b); f� 50Hz in (c) and (d)).
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critical depth, the absolute value of the imaginary part
decreases as z increases.

Figure 7 describes the influence of the softening range
(tm/r0) on the distribution of the normalized twist angle of
the pile for different frequencies. It can be observed from
Figure 7 that the real part increases with increasing softening
range.*is indicates that a large softening range is associated
with the large twist angle of the pile with this trend being
more remarkable when the frequency is relatively high (e.g.,
f� 50Hz). *e changing trend of the imaginary part is also
dependent on the frequency. At different frequencies, the
changing trend is totally different.

Figure 8 shows the influence of the softening range (tm/r0)
on the distribution of the normalized torque of the pile for
different frequencies. It can be seen from Figure 8 that the real
part increases with the increase of tm/r0 (especially when z/
H� 0.3–0.6) for different frequencies with the increase being
more pronounced as frequency increases.When f� 20Hz, the
absolute value of the imaginary part decreases with increasing
tm/r0. However, the changing trend of the imaginary part is
more complicated when f� 50Hz.

Figure 9 depicts the influence of the material damping of
the inner soil on the distribution of the normalized twist
angle of the pile for different frequencies. It can be seen from
Figure 9 that the material damping of the inner soil has a
slight influence on the distribution of the real part only when
the frequency is relatively high (e.g., f� 50Hz). However, the
material damping of the inner soil has an obvious influence
on the imaginary part. *e absolute value of the imaginary
part increases with the increase of the material damping of
the inner soil.

Figure 10 shows the influence of the material damping of
the inner soil on the distribution of the normalized torque of
the pile. It can be seen from Figure 10 that the material
damping of the inner soil has negligible influence on the real
part of the torque when f� 20Hz. However, the material

damping of the inner soil has an obvious influence on the
imaginary part. *e absolute value of the imaginary part
increases with the increase of the material damping of the
inner soil. *rough further calculation, the same changing
trend is observed for f� 50Hz and the corresponding result
is not presented here.

6. Conclusions

In this paper, we solve the dynamic response of an elastic pile
subjected to time-harmonic torsional load and embedded in
a radially inhomogeneous saturated soil with its complex
shear modulus in the inner region continuously changing in
a parabolic form along the radial direction. According to
Biot’s poroelastodynamic theory and introducing a power
series to express the circumferential displacement of the
saturated soil in the inner region, the analytical solution of
the twist angle and torque of the pile is obtained. Selected
numerical results are carried out to analyze the influence of
the material damping, softening degree, and softening range
of the inner soil on the distribution of twist angle and torque
along the depth direction. *e main features observed from
the numerical studies in the low-frequency range are con-
cluded as follows:

(1) *e changing form of the shear modulus of the
weakened soil has marked influence on the torsional
impedance of the soil. *at is to say, a different
changing form of the shear modulus of the weakened
soil corresponds to a different torsional impedance
of the soil, although the values of GR and tm/r0 re-
main fixed constants.

(2) *e softening degree and softening range of the inner
soil have a marked influence on the distribution of
the twist angle of the pile along the depth direction.
*e real part dominates the twist angle distribution.
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Figure 10: Influence of the material damping of the inner soil on the distribution of normalized torque of the pile (GR� 0.5; f� 20Hz in (a)
and (b)).
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At fixed depth, the real part increases with the in-
crease of softening degree (i.e., decreasing GR) and
softening range (i.e., increasing tm/r0). *e changing
trend of the imaginary part is relatively complicated
and is different for different frequencies.

(3) *e softening degree and softening range of the inner
soil have a marked influence on the distribution of
torque of the pile along the depth direction. *e real
part also dominates the torque distribution and
increases with the increase of softening degree and
softening range.

(4) *e absolute value of the imaginary parts of the twist
angle and torque increases with the increase of the
material damping of inner soil. However, the ma-
terial damping of the inner soil has negligible in-
fluence on the corresponding real parts.

Appendix

A. Detailed Derivation Procedure for Am

*e first- and second-order derivatives of the power series
given in equation (21) can be expressed as

duθ

dx
� 
∞

m�1
mAmx

m− 1
,

d2uθ

dx
2 � 
∞

m�2
m(m − 1)Amx

m− 2
.

(A.1)

Substituting equation (A.1) into equation (11) results in

x
2

− 1  

∞

m�2
m(m − 1)Amx

m− 2
+

x
2

− 1
x − a

+ 2x  

∞

m�1
mAmx

m− 1
+

1 − x
2

(x − a)
2 −

2x

x − a
+ b  

∞

m�0
Amx

m
� 0. (A.2)

Multiplying both sides of equation (A.2) by (x‒ a)2 and
simplifying the power series, we have

P + 
∞

m�2
QAmx

m− 2
� 0, (A.3)

where

P � bA1x
3

+ (b − 3)A0 − a(3 + 2b)A1 x
2

+ 2a(1 − b)A0 + a
2
b + 2a

2
 A1 x + a

2
b + 1 A0 + aA1, (A.4)

Q � [m(m + 2) + b − 3]x
4

+[− am(2m + 3) + 2a(1 − b)]x
3

+ a
2
m(m + 1) − m

2
+ a

2
b + 1 x

2
+ a(2m − 1)mx − a

2
m(m − 1).

(A.5)

*e second term in the left side of equation (A.3) can be
further written as



∞

m�2
QAmx

m− 2

� 
∞

m�6
[(m − 4)(m − 2) + b − 3]Am− 4x

m− 2
+ 
∞

m�5
[− a(m − 3)(2m − 3) − 2a(b − 1)]Am− 3x

m− 2
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m�4
a
2
(m − 2)(m − 1) − (m − 2)

2
+ a

2
b + 1 Am− 2x
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m�3
a(2m − 3)(m − 1)Am− 1x

m− 2
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∞
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2
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(A.6)
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Combining equations (A.3), (A.4), and (A.6), we have



∞

m�2
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m�2
E3Am− 3x
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∞

m�2
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m(m − 1)Amx

m− 2
� 0,

(A.7)

where

E1 � (m − 1)(2m − 3)a,

E2 � (m − 1)(m − 2)a
2

− (m − 2)
2

+ ba
2

+ 1,

E3 � − a[(m − 3)(2m − 3) + 2(b − 1)],

E4 � (m − 2)(m − 4) + b − 3.

(A.8)

In order to satisfy equation (A.7), the following relation
holds:

E4Am− 4 + E3Am− 3 + E2Am− 2 + E1Am− 1 − a
2
m(m − 1)Am � 0.

(A.9)

Form≥ 4, the recurrence formula ofAm can be expressed
as

Am �
E1Am− 1 + E2Am− 2 + E3Am− 3 + E4Am− 4

m(m − 1)a
2 . (A.10)

It is noted that Am � 0 when m< 0. *en, substituting
m� 2 and m� 3 into equation (A.10), we have

A2 �
aA1 + a

2
b + 1 A0

2a
2 ,

A3 �
6aA2 + a

2
(2 + b)A1 + 2a(b − 1)A0

6a
2 .

(A.11)
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tions in soils,” Géotechnique, vol. 30, no. 4, pp. 385–395, 1980.

14 Mathematical Problems in Engineering


