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Distribution centers (DCs) typically receive orders from the customers (mostly retail stores) located in their vicinity and deliver
the ordered goods the next day morning. To maintain high item fill rate, DCs have to hold a high level of inventory, which will
increase inventory cost. As an alternative, cross-filling is that, after closing the daily order receipt, DCs exchange surplus items
during the night to reduce the shortage. The economic justification of such cross-filling will depend on the tradeoff between extra
transshipment and handling cost versus saved shortage cost. In this paper, as an extension of Rim and Jiang, 2019, vehicles are
allowed to drop and pick up items at the intermediate DCs in the route. We present a genetic algorithm to determine the routes

and amount to pick up/drop at each DC to minimize the total cost.

1. Problem Description

The landscape of the logistics industry has been rapidly
changing in recent years due to the evolution of the in-
formation technology. Quick delivery of goods to the
consumers is becoming the key of the fast logistics business.
Factories, distribution centers (DCs), and retailers are
physical entities of the most manufacturers’ supply chain.
Moreover, online commerce also employs DCs as an im-
portant element of its supply chain for efficient storage and
order fulfillment for fast delivery of goods. Order fulfillment
has been one of the critical performance indicators in most
DCs [1]. Besides, the shortage at DCs will very likely lead to
the shortage of the item at the retail stores, which will result
in sales loss and negative impact on the consumers’
satisfaction.

To avoid shortage, DCs are forced to hold high level of
inventory, which will incur significant cost. As an alterna-
tive, cross-filling has been studied in academia and practiced
in business for decades. Cross-filling is, after closing the daily
order receipt, to ship the surplus items to other DCs that lack
the same item to avoid shortage with relatively lower level of
inventory. Such a lateral transshipment is also referred to as

lateral resupply, reallocation of stock, and stock transfer [2].
Since extra trucking and handling during the night will
clearly incur cost, a major concern is whether such a cross-
filling can be economical or not, which will depend on the
cost parameters such as shortage penalty, trucking, and
handling cost. Also, we need to be able to determine the
optimal transshipment routes of trucks within a very short
length of time. This paper presents a viable solution pro-
cedure for this problem.

The problem we address in this paper is as follows:
consider a set of DCs of a company and multiple stores.
Each DC supplies multiple items to multiple retail stores
located in its own geographical area. Each DC receives
orders from its retail stores during a day, closes the receipt
of orders at a certain time in the late afternoon, processes
the received orders, and tries to fulfill the orders using its
own inventory. For shortage items, DCs try to find a
surplus of the same item from other DCs. To minimize the
total cost, we need to determine how many of which items
to transship from which DC to which DC in what se-
quence. Trucks transship the items among the DCs during
the night and deliver the items to the retail stores the next
morning.
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In determining the transshipment routes, we assume
that a truck may depart from any DC, but must return to its
starting DC. Except the starting DCs, each intermediate DC
in the routes can be visited by at most one truck, mainly due
to the short length of transshipment time window. Also,
trucks can not only drop some items but also pick up some
items at the intermediate DCs, which makes the problem
more complicated, but will improve the performance of the
cross-filling. Transshipment must be completed within a
certain time window so that transshipped items can be used
for delivery to the retail stores along with the inventory
stored in the DC.

Before the transshipment trucks depart, each DC places
orders to the factory for replenishment of items, which arrive
the next day morning. Each DC may use various replen-
ishment policies. In this paper, we assume that all DCs use
base stock policy, that is, to order up to a certain level for
each item every day since it is known to be optimal [3].
Figure 1 shows an example of the resulting routes among ten
DCs for cross-filling, where shaded DCs 3, 5, and 9 represent
the DCs the transshipment trucks depart from. Recall that
the truck departing from DC 3 can pick up some items at DC
10 and drop some of them at DC 8, 1, or 3.

Unlike most existing research on this problem where
transshipment cost is considered to be proportional to the
number of transshipped items, to be more realistic, we
assume that the transshipment cost comprises two elements;
trucking cost is proportional to the travel distance of trucks,
regardless of the quantity loaded in them; and material
handling cost is proportional to the number of transshipped
items. We assume that each DC is visited at most once, and
only one truck can depart from any DC because moving
more than one truckload a day for cross-filling seems
unrealistic.

We name this problem as the transshipment vehicle
routing with simultaneous pickup and delivery (TVRSPD)
problem. In this paper, we propose a genetic algorithm, in
which a chromosome defines a set of routes; and we present
an algorithm to determine the optimal amount to pick up/
drop each item at each intermediate DC for each route so as
to minimize the total cost for a day. Since the system re-
generates every day, the optimal decision for one day will
result in the optimal average performance over the infinite
horizon [3].

This paper is organized as follows: Section 2 reviews the
related research in the literature.Section 3 describes a genetic
algorithm-based solution procedure, along with illustrative
numerical examples.Section 4 reports the average perfor-
mance of the proposed method. Conclusion and future
research are given in Section 5.

2. Related Literature

To the best of our knowledge, the problem we address in this
paper has not been presented in the literature. Our problem
TVRSPD is positioned at the overlapping area of the two
well-known problems: vehicle routing problem (VRP) and
the transshipment problem. VRP has long been studied over
six decades since the first work of Dantzig and Ramser [4].
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FIGURE 1: An example of three transshipment routes among ten
DCs.

For a comprehensive review on VRP including its variants,
formulations, and solution methods, readers may refer to
Toth and Vigo [5]. Among many variations, VRP with si-
multaneous pickup and delivery (VRPSPD) was introduced
by Min [6]. Its comprehensive review is available in Ber-
beglia et al. [7] and Koc et al. [8]. TVRSPD has clear dis-
tinctions from VRPSPD as follows: (1) for the objective
function, most of the VRP and its variants try to minimize
the total travel distance. However, from the business
viewpoint, we believe that the total travel distance of vehicles
does not appropriately represent the total cost. Instead, to be
more realistic, TVRSPD considers the total cost comprising
shortage cost and handling cost, in addition to the trucking
cost proportional to the travel distance of vehicles. (2) In
VRPSPD, items are supplied from depot to the customers,
while in TVRSPD, no depot is involved, and items are
supplied from some DCs which have surplus. (3) In
VRPSPD, vehicles must bring all the pickup amount to the
depot, while in TVRSPD, vehicles are allowed to reallocate
items, that is, to drop the items that are picked up from the
DCs visited earlier at any DC to visit later. (4) In VRPSPD,
all pickup and delivery demands at each customer must be
met as constraints, while in TVRSPD, it is not a constraint
but only the objective function of minimizing the total cost
will determine how many of which items to pick up and drop
at where.

TVRSPD is different from multiple depot VRP [9, 10] in
which the locations of the multiple depot are predetermined,
whereas in TVRSPD, any DC can be selected as the starting
node of the route. TVRSPD is also different from the lo-
cation-routing problem [11] which involves simultaneously
locating a number of facilities among candidate sites and
establishing delivery routes to a set of users in such a way
that the total system cost is minimized.

Among many related research studies, Zhang et al. [12]
studied a real-world problem found in fast fashion business
with a warehouse and multiple retail outlets, where trucks
depart from the warehouse and visit a sequence of outlets to
drop and pick up items for possible reallocation to other
outlets. Tasan and Gen [13] proposed a genetic algorithm
approach to VRPSPD. The volume feasibility is guaranteed
with a proper decoding procedure, and routes are deter-
mined due to the vehicle capacity. Nagy and Salhi [10]
proposed insertion-based heuristics for VRPSPD. They
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introduced the idea of weak and strong feasibility and ex-
tended the algorithm to the problems with multiple depots.

The VRP with backhauls (VRPB) is a related problem
with TVRSPD, where a vehicle picks up goods after finishing
all deliveries, and both actions are in one route [14]. VRPB
can be separated as two capacitated vehicle routing prob-
lems, in which the demands of each customer must be
tulfilled within the vehicle’s capacity. Customers who re-
quire deliveries from the depot are known as line hauls, and
customers who require pick-ups or send goods are backhauls
[15]. Several studies related to VRPB have been conducted in
the literature [16, 17]. The mixing of line hauls and backhauls
has proven to be very beneficial to the industry. The “milk
run” is a well-known concept that is obtained from the
achievements with VRPB. By applying milk runs, trans-
portation costs and total travel distance can be significantly
reduced, and the vehicle loading rate is increased [18].

The other avenue related with TVRSPD is the trans-
shipment problem. Transshipment can be classified by many
criteria. One of the classifications is that it is either a cen-
tralized or decentralized problem. Centralized transship-
ment problem is to minimize the total cost incurred on all
locations, while the decentralized one is that each location
tries to maximize its own profit by determining the quantity
and price of items for transshipment. Another classification
is that transshipment can be either proactive or reactive.
Proactive transshipment takes place at fixed points in time
before observing the demand and periodically rebalances the
whole system’s stock levels. For example, Van der Heide and
Roodbergen [19] addressed the problem of transshipping
and rebalancing books in libraries. They presented a sto-
chastic dynamic programming formulation and heuristic
algorithm. Contrarily, reactive transshipment responds to
the stocking points which face a shortage, while another has
surplus stock on hand [2]. The transshipment can be clas-
sified as either complete pooling or partial pooling. While
DCs are willing to share all of their stock in the complete
pooling [2] or complete network [20], partial pooling
transship only when its inventory level is above a fixed
threshold [21].

Among many research results, Wong et al. [22] proposed
a simple and efficient solution procedure to obtain a near-
optimal solution with lateral transshipments for the single-
item problem. The model is further extended to the case with
multiple locations. Bhatnagar and Lin [23] developed two
heuristic policies for the multilocation production/inventory
system problem with the joint transshipment and produc-
tion control policies, in which items are manufactured and
stocked at each location to meet the demand. Wei et al. [24]
explored the impacts of lateral transshipments on the sta-
bility, bullwhip effect, and other performance measurements
in the context of a two-tiered supply chain system composed
of one supplier and two retailers. Zhao and Sen [25] pre-
sented a comparison of sample-path-based simulation and
stochastic decomposition for multilocation transshipment
problems considering one supplier and N nonidentical re-
tailers who face uncertain customer demands, as proposed
by Herer et al. [3]. Archibald et al. [26] addressed a mul-
tiperiod periodic review model of a pair of retailers in which

lateral transshipments can occur during the period. Smirnov
and Gerchak [27] presented the single-period circular
unidirectional chain problem, assuming that a location
cannot both receive and ship items. They analyzed the
optimality of the problem and compared its performance to
that of no pooling and “pooling among all nodes” (namely,
“complete pooling”). Axsiter [28] addressed the unidirec-
tional lateral transshipment problem where transshipment is
allowed only in one direction. Tagaras [29] and Herer et al.
[30] addressed the problem of group configuration where
transshipment is allowed only within groups. Kukreja and
Schmidt [31] presented a model for lumpy demand partsina
multisite inventory system with feeders using analytical and
simulation techniques.

Wong et al. [32] proposed an integer programming
model with a nonlinear objective function and nonlinear
constraints for multi-item, multilocation spare part systems.
Rim and Jiang [33] proposed a linear programming model
for the simplified multi-item, multi-DC problem where
transshipment is allowed only between pairs of DCs. The
proposed LP model determines the optimal number of items
and number of trucks to transship. The model also allows the
“simultaneous chain transshipment,” which enables distant
locations to supply surplus to the location that faces
shortage. This simultaneous chain transshipment of items
can be a practical tool for the cases where surplus is not
available in its vicinity, but surplus from far distant sites can
reach the needing site by simultaneously moving the items in
a supply chain.

3. Solution Procedure

In this section, we will present a genetic algorithm as a
solution procedure for the TVRSPD. We do not attempt to
develop a mathematical formulation for the TVRSPD since
it will not be able to obtain the optimal solution within an
acceptable length of time for the problems of realistic size, as
TVRSPD is NP-hard. Among many, we chose genetic al-
gorithm (GA) since one of the features of our problem that
each truck must return to its original location can be suitably
modeled by designing the chromosomes in GA, as men-
tioned in the first paragraph of Section 3.2.

3.1. Framework of the Genetic Algorithm. Genetic algorithm
is a heuristic search based on the theory of biological
evolution, Darwinism. By continuously generating the
candidate solutions, evaluating how well the solutions fit
with the desired objective, and refining the best solutions,
GA obtains a good answer to the large search space prob-
lems. Depending on the problem type, the chromosome is
designed to operate in the most appropriate way for the GA
engine. At the crossover operator, two chromosomes are
randomly selected and mated at each generation; and at the
mutation operator, one of the best chromosomes in the
current population is selected and mutated. The two parent
chromosomes generate two child chromosomes using the
crossover operator, and then only the best chromosomes
enter the next generation. To boost the diversity of the



population, a mutation procedure is applied. Only the fol-
lowing three individuals advance to the next iteration: one
current best, one from crossover, and one from mutation.
The rest of N—3 chromosomes are randomly generated to
form the next population of size N. The GA engine stops
when M generations have been iterated or any stopping rule
applies.

Let n° and n denote the population size and the number
of feasible chromosomes in the population, respectively. The
following steps represent the basic framework of the pro-
posed genetic algorithm:

n=0

Step 1: if n=n", go to Step 3; else, randomly generate a
chromosome.

Step 2: determine the optimal pickup/delivery amount
at each DC for all routes in the chromosome. If volume-
wise and distance-wise feasible, add it to the pop-
ulation, n=n+1; else, discard it.

Go to Step 1.

Step 3: randomly select two parent chromosomes from
the population.

Step 4: execute the crossover to create two child
chromosomes; choose the better one (c1), and discard
the other. Select the best chromosome (c2) in the
current n° chromosomes, and execute the mutation to
obtain a new chromosome (c3). Update c2 as the
current best chromosome.

Step 5: if any stopping rule applies, stop; else, initialize
the population, and put c1, ¢2, and ¢3 in the population.
Set n=3; go to Step 1.

Stopping rules include the number of iterations or
computation time limit.

3.2. Generating a Chromosome. In Step 1, to randomly
generate a chromosome which represents a set of routes, we
first select a set of promising DCs as the “starting” DCs so
that the remaining DCs are defined as the intermediate DCs
and arrange the selected starting DCs in an arbitrary se-
quence. Since trucks must return to their starting DC, we
duplicate each starting DC and randomly assign the inter-
mediate DCs in the space between the pair of identical
starting DCs. Figure 2 shows an example of a chromosome
that represents the routes shown in Figure 1, in which DCs 3,
5,7, and 9 are selected as the starting DCs. Note that some
starting DCs may have no intermediate DCs, as DC 7 in
Figure 2.

To describe the heuristic algorithm to select a set of
starting DCs, we will use the notations given in Table 1.

Figure 3 illustrates the meaning of I and S in the daily
operation schedule of DCs [33].

In selecting the starting DCs, it is desirable to select DCs
that have larger value of weighted maximum possible
transshipment. Let X~ = {x}} denote the inventory-short-
age matrix before transshipment, where xj; =i, — d;;. Note
that x;, =, I}, if x; >0, and x;; = =S}, if xj; <0. Similarly, let
X* ={x}} denote the inventory-shortage matrix after
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FIGURE 2: An example of a chromosome representing three routes
shown in Figure 1.

transshipment is completed. We propose a heuristic algo-
rithm to select a set of starting DCs as follows:

(1) Compute X~ =I1°-D

(2) Compute the maximum possible transshipment
matrix Z={z;}, where z; =min{I, Zj#SJTk} if
Xy >0; or 0if x;; <0

(3) Compute W ={w;}, where w; = Y, przi

(4) Select m largest w; values to determine the corre-
sponding DCs as the set of starting DCs

We suggest that the value m can be arbitrarily selected as
an integer close to 0.4Y. Table 2 shows an example of ten DCs
and seven items to illustrate the above procedure. For m =4,
DCs 3, 5,7, and 9 are selected as the starting DCs, as already
shown in Figures 1 and 2.

3.3. Crossover. We randomly select two parent chromo-
somes from the current population to generate two child
chromosomes by the crossover operator. We use the partial
mapped crossover (PMX, [34]) method for the crossover
operator. It constructs the offspring by randomly selecting
two crossing sites. The two points are used to define the
mapping relationship. The numbers that follow the rela-
tionship represent which numbers are swapped in the parent
chromosomes. The example shown in the following will help
to explain our special PMX feature in detail. Unlike the
conventional way of PMX, we allow “null” as a gene. The
proposed crossover operator is as follows:

(1) Randomly select two blocks of adjacent intermediate
DCs of any length (0, 1, 2, ...) from each parent
chromosome. Note that the lengths of the two blocks
do not have to be equal. A length of zero means that
no intermediate DC is selected.

(2) Exchange these two blocks to create two offsprings.

(3) Determine the mapping relationship of the two
offsprings.

(4) Validate the two offsprings.

(a) If a gene appears twice in a chromosome, then
change one of the two genes according to the
mapping relationship

(b) If a gene is missing (this happens when two
blocks of unequal length are selected in Step (1)),
then insert the missing gene at a random location
in the chromosome according to the mapping
relationship

To illustrate case (a), in Figure 4, Step 1 selects (8, 6) and
(4, 1) in parents 1 and 2, respectively. Step 2 creates children
1 and 2. Step 3 determines the mapping relationship, where
number 8 is exchanged with 4 and 6 with 1. As the genes of
child 1 in Step 2 are examined, numbers 4 and 1 are found to
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TaBLE 1: Notations.

k Item (k=1, 2, ..., K)

i, j Distribution center (i, j=1,2, ..., Y)
Uy Order-up-to-level of item k at all DCs
I° = {i%} Initial inventory matrix of a day

D = {d;} Daily demand matrix of a day
Pr Unit price of item k
I s Inventory and shortage, respectively, of item k at DC i before transshipment after assigning on-hand inventory to the daily
ik ik demand
I, Sh Inventory and shortage, respectively, of item k at DC i after transshipment is completed
Demand realized Delivery
Replenishment lOrder lReplenishment
| | | | >
I | [ I "
0am . 0am .
‘«—  Transshipment .
Inventory U T I U
Shortage 0 S S s 0
FIGURE 3: Daily operation schedule and corresponding inventory/shortage notations.
TaBLE 2: An example of selecting a set of starting DCs out of 10 DCs with 7 items.
k v, be
L 1 2 3 4 5 6 7 8 9 10
1 0.3 300 =20 15 0 -5 -3 10 -5 -5 -14
2 0.8 500 0 3 6 10 15 -4 8 20 -2 3
3 0.04 50 -28 4 64 1 49 -6 29 6 25 =25
4 0.5 50 -10 -10 20 31 15 -6 27 15 49 -38 X"
5 0.35 200 =22 -10 28 -2 15 =12 59 -38 43 30
6 0.2 100 0 2 -10 23 10 14 42 15 40 20
7 0.4 80 10 25 -5 38 54 54 -17 -10 14
0 15 0 0 0 10 0 0 4 0
0 3 6 0 15 0 8 10 0 3
0 4 59 1 49 0 29 6 25 0
0 0 20 31 15 0 27 15 49 0 V4
0 0 28 0 15 0 59 0 43 30
0 2 0 10 10 10 10 10 10 10
10 25 0 32 32 32 8 0 0 14
800 8,400 12,550 5,160 17,260 6,560 20,240 7,050 14,500 9,620 w

appear twice. So, in Step 4, we swap genes 4 and 8 and genes
1 and 6 to obtain two valid children.

To illustrate case (b), in Figure 5, Step 1 selects “null”
gene between two 7s and (4, 1) from parents 1 and 2, re-
spectively. Step 2 creates children 1 and 2. Step 3 determines
the mapping relationship, where genes 4 and 1 are ex-
changed with the null gene, respectively. In Step 4, as the
genes of child 1 are examined, genes 4 and 1 are found to
appear twice, so we change numbers 4 and 1 to the null gene.
In child 2, genes 4 and 1 are missing, so we insert genes 4 and
1 at random locations.

3.4. Mutation. Among many ways to implement mutation
(see Soni and Kumar [35] for comprehensive reference), we
use the following approach, as shown in Figure 6:

(1) Select the current best chromosome in the

population

(2) Randomly select two genes in the chromosome,
which can be either intermediate DC or “null” be-
tween the two adjacent identical starting DCs

(3) Swap the two selected genes to form a new
chromosome
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3 1 4 10 3 5 8 6 5 7 9 2 9 | Parent 1
[ ———————— =T
Step 1 R -
3 4 1 3 5 10 2 5 7 8 9 6 9 Parent 2
3 1 4 10 3 5 4 1 5 7 9 2 9 | Child1
Step 2
3 8 6 3 5 10 2 5 7 8 9 6 9 Child 2
4 1
8§>4
Step 3
8 6 6¢>1
3 <6> @ 10 3 5 4 1 5 7 9 2 9 Child 1
Step 4
3 8 6 3 5 10 2 5 7 @ 9 @ 9 | Child2

FIGURE 4: An example of validating two offsprings when a number appears twice.

“Null”
il |
3 1| 4w /|3 |5 |8 |6 |5 | 7|7 2 | 9 |Parent1
Step 1 e e, -
3 4 1 3 5 10 2 5 7 8 7 6 9 Parent 2
e e e — — =
3 Cl) <4> 0|3 |5 |8 |6 |5 ]| 7| 4 7 | 9 | 2 | 9 |Chidl
Step 2
33| 5| w025 78] 7|96 Child 2
4 & “null”
Step 3
4 1 1 ¢ “null
3 w03 |5 |8 |6 |57 |41 |7 2 | 9 |cChid1
Step 4
30 3| 5| 0] 2 @ s |71 8| 7 | o @ 9 | Child2

FIGURE 5: An example of validating two offsprings when some genes are missing.
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“Null”

Step2|3|1|4|10|3 |5|8|6|5|7|7|9|2|9|Currentbestchromosome

Step3|3|1|10|3|5|8|6|5|7|4|7|9|2|9|Newchromosome

FIGURE 6: An example of the mutation operator (current best chromosome, new chromosome).

3.5. Optimal Pickup/Delivery Amount of a Route. In order to
evaluate the fitness of a chromosome, we present an algo-
rithm to determine the optimal pickup/drop quantity of each
item at every visit in each route defined in a chromosome as
follows. Let v, and v, denote the volume capacity of a truck
and unit volume of item k, respectively. A chromosome is
volume-wise feasible if the trucks of all routes defined in the
chromosome satisfy the volume constraint at all times
during the trip since pickup is allowed during the trip. To
illustrate, consider the first route 3-10-8-1-3 in Figure 2. The
corresponding seven columns of X~ are shown in Table 3.
Let Q" = {g;;} denote the quantity of item k in the truck of a
route after finishing drop and pickup at DC i. Once Q* is
obtained, the chromosome is volume-wise feasible if v, =
2xdn Vi <V for all DCs r for 1<r<R (where R is the
number of DCs in the route including the ending DC) and
for all routes defined in the chromosome. Table 3 shows an
example where route 3-10-8-1-3 is volume-wise feasible,
when vy =32m’.

Before the numerical example in Table 3, the flowchart in
Figure 7 will help understand the logic of the algorithm. In
computing Q*, we need a temporary matrix Q for the
backward computation. Once Q is obtained by the heuristic
algorithm described in Figure 7, then Q is forward adjusted
to obtain valid Q*. Recall that R denotes the number of DCs
in a route including the ending DC. Let g denote the first
index such that x7, >0 for g=1, 2, ..., R. Since excessive
quantity loaded in the truck will unnecessarily increase the
handling cost, each truck must have no leftover in it when it
returns to its starting DC, that is, g, = 0 for all k, for all
routes.

Starting from the ending node, g is calculated back-
wardly as gy = max (0, g, x — x;,, ;). To calculate the total
volume of items in the truck at each DC, we consider each
item’s status for all DCs in the route. In order to not carry
too much from the starting DC to transship (it may violate
the volume constraint), we only load enough amount of each
item that is already calculated based on the next DCs’ status.
The following cases illustrate how Q is determined using
X~ and Q under various situations.

(1) Ttem 1: g;; =0 for all i since x;; <0 for all i
(2) Item 2: g}, =0 for all i since x;, >0 for all i

(3) Item 3: gs53=0, g4 =max (0, gs3 — x5;) =max (0,
0-64) =0, g33 = max (0, g3 — x43) =max(0, 0 +28) =
28, g3 = max (0, g3 — x33) = max (0, 28-6) = 22, and

TABLE 3: An illustrative example of route 3-10-8-1-3.

f DC
3 10 8 1 3
1 0 ~14 -5 -20 0
2 6 3 10 0 6
3 64 25 6 -28 64
X 4 20 38 15 -10 20
5 28 30 -38 -22 28
6 -10 20 15 0 -10
7 -5 14 -17 10 -5
1 0 0 0 0 0
2 0 0 0 0 0
3 47 22 28 0 0
Q 4 38 0 10 0 0
5 30 60 22 0 0
6 0 0 10 10 0
7 3 17 0 5 0
1 0 0 0 0 0
2 0 0 0 0 0
3 47 22 28 0 0
Q4 20 0 10 0 0
5 28 58 20 0 0
6 0 0 10 10 0
7 0 14 0 5 0
A 2168 2678 1512 4 0
1 0 ~14 -5 -20 0
2 6 3 10 0 6
3 17 0 0 0 17
X" 4 0 -18 5 0 0
5 0 0 0 -2 0
6 0 20 5 0 0
7 0 0 -3 5 0
1 0 0 0 0 0
2 0 0 0 0 0
3 47 0 6 0 0
H 4 20 0 10 0 0
5 28 30 0 0 0
6 0 0 10 0 0
7 0 14 0 5 0

q13 =max (0, g,3 — x5;) =max (0, 22 +25) =47 < x5,
so it is valid; we set g} =g;; for all i

(4) Item 4: calculate backwardly as same as item 3, and
we found that g, =max (0, g,, — x3,) =max (0,
0+38)=38>x7, and x|, >0 and q;, =—x,, =38, so
it is invalid. Then, we only change g}, = x7, =20 and
keep g}, =g, for 2<i<R.



(5) Item 5: calculate backwardly, and we have g5 = max
(0, 55 — x55) =max (0, 60-30) =30 > x75 and x75 >0
and g5 #—x3, so it is invalid. Using forward ad-
justment A, h=4, q{;=x:=28, g;;=max (0,
qis + x55) =max (0, 28+30)=58, g;;=max (0,
G55 + x35) =max(0, 58-38)=20, and g};=max (0,
G35 + X35) =max(0, 20-22) =0, and keep g = g;5 for
h<i<R.

(6) Item 6: g, =0 since x7, <0 and g=2 and g, < x5,
so no further changes are needed.

(7) Item 7: q,, =3 since x7, <0 and g=2 and g,; > x5,
(17 > 14), so it is invalid. Using forward adjustment
B, set g}, = 0 (all values before the first positive value
of x; are set to be zero), b=2, g3, =max (0,
qi; + x5,) =max (0, 0+14) =14, and g}, =max (0,
q57 + X5;) =max (0, 14-17) =0, and keep the other
q;; for (b+g)<i<R.

The pseudo-codes of forward adjustment A and B are
given in Appendix. Using v = {v;}, the array of unit volume
of item k, we obtain A = {a,}, the array of the total volume at
DC i after pickup and drop as A = vQ". For example, for
v ={0.3,0.8,0.04,0.5,0.35,0.2,0.4}, a; < v, =32 m® for all ,
as shown in Table 3; the route in Table 3 is volume-wise
feasible. If all routes defined in a chromosome are volume-
wise feasible, then the chromosome is volume-wise feasible.
If not, the infeasible chromosome is discarded.

Regarding the distance constraint of a route, the total
distance, d, of a given route can be readily computed by
adding all Euclidean (straight line) distances between ad-
jacent DCs in the route, given the coordinates of DCs. Let d,
denote the distance limit of the routes due to the limited time
for transshipment. Ignoring the handling time, a route is
distance-wise feasible if d <d;. A chromosome is distance-
wise feasible if all its routes are distance-wise feasible.

3.6. Fitness Function. To define the fitness function for a
feasible chromosome, we use the cost parameters given in
Table 4.

Shortage cost is the sum of shortage after the trans-
shipment is completed (S}) multiplied by its price and
shortage cost rate. Trucking cost incurs proportionally to the
total distance of the route, regardless of the loaded quantity.
Extra material handling for transshipment includes picking,
loading, and unloading. We assume that the unit handling
cost 0 for any item at any DC is equal. Note that 0 includes
both one loading and one unloading operation, as a loaded
item will be eventually unloaded somewhere in the route. Let
H = {h;} denote the quantity of item k additionally loaded
in the truck at DC i (see Table 3). Then, hy, = gj;; and for
2<i<R, hy = max(0,q; — q{;_,y ), for all k. Then, the total
handling cost is 8) ;) hy.
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Lett, and t, denote the number of routes (having at least
one intermediate DC) and isolated DCs (having no inter-
mediate DC), respectively. Let R, and d denote the number
of DCs and total travel distance of route s, respectively. Now,
we define the fitness function Z of a chromosome as
equation (1). Note that the last term representing inventory
cost is a constant and can be eliminated.

t R, K 1+, R, K
zzz<6 Zhik+6ds>+ Z(V ZPkS:k>
s=1

i=1 k=1 s=1 i=1 k=1

B (1)
+ ﬁY Z PkUk'

k=1

4. Performance Evaluation

4.1. Parameters. To evaluate the average performance of the
proposed approach by simulation, we use the realistic cost
parameters as shown in Table 5. Demand for item k of all
DCs is assumed to follow normal distribution N (y, 07),
where ;. follows uniform (10, 100) and o4 =0.3y;. The
order-up-to-level for item k is determined as
Uy = Yy + 2,0y, where z,, is the coeflicient from the standard
normal distribution table with in-stock probability a.

4.2. Average Performance. For a given inventory level, we
compare the average total cost when transshipment is not
applied against the one when transshipment is applied.
The former will suffer substantial shortage cost, and the
latter will have less shortage cost but additional trucking
and handling cost. Using target in-stock probability « and
corresponding U, = pk + okz,, daily demand and result-
ing X~ are generated. With a population size of 100,
stopping rule of 500 iterations, and 20 replications,
Figures 8-10 show dramatic average cost savings by using
the proposed approach. The cost saving is larger as « is
smaller, y is larger, and § is smaller. For a practical value
of «=0.95, the average total cost is saved by 30.8% to
63.3%. Even for very high a=99%, the average total cost
saving ranges between 9.7% and 28.68%, which is sig-
nificant. The item fill rate is 100% in most cases as
transshipment is applied.

4.3. Computation Time. In order for the proposed GA to be
practical, the computation time has to be within a reasonable
range. Using MATLAB R2019a on a personal computer with
16.0 GB RAM and base speed 3.60 GHz, Table 6 shows that,
for 10 DCs and selected 100 items for transshipment, it takes
less than 6 minutes, which can be further reduced if the
number of iterations, population size, and/or the number of
items are reduced.
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> Fork=1,...,K

<
N

X <0foralli qi=0foralli

or X >0 forall i

Backward computation to obtain Q
where g;; = max (0, g;;  — xj,;,1) fori=R-1to 1

qix = qi for all i

gk >>

qik = X1k

Yes

Forward adjustment B

| Forward adjustment A | |

FIGURE 7: Flowchart to determine the optimal pickup/delivery amount.

TaBLE 4: Cost parameter notations.

|_

B Inventory cost rate
y Shortage cost rate
) Trucking cost per unit distance
0 Handling cost to load and unload an item
TaBLE 5: Parameters used for simulation with 10 DCs and 10 items.
k
1 2 3 4 5 6 7 8 9 10
Vi 0.3 0.8 0.4 0.04 0.05 0.2 0.5 0.3 0.45 0.7
Px 300 500 200 50 300 150 50 400 100 200
DC
1 2 3 4 5 6 7 8 9 10
Coordinate (units of 5km) (2, 5) (6, 4) (4, 3) (8, 1.5) (5, 6) 8, 5) (10, 3.5) 1, 3) (2, 0) (5.5, 1.5)
Px U($10~$500)
v U(0.03 m’~1 m?)
Vo 32m’
B 0.25/365=0.00068 per day
0 $0.5
y 0.1, 0.2, and 0.3 per shortage
é $0.5, $1, and $2 per km
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a=
c—— y=0.1
~~~~~~ y=0.2
— =03

85%
67.05
80.11
86.10

90% 95%
54.92 35.88
71.12 53.47
78.67 63.31

99%
9.70
20.02
28.04

FIGURE 8: The average total cost saving by transshipment when § = $0.5/km.

90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00
o=
== y=01
------ y=0.2
— y=03

Total cost saving (%)

85%
65.49
79.14
85.43

90% 95%
53.59 35.06
70.24 52.84
78.01 62.79

99%
10.47
20.72
28.68

FIGURE 9: The average total cost saving by transshipment when §=$1.0/km.

Total cost saving (%)

85%
61.38
76.66
83.71

90% 95%
49.38 30.83
67.55 49.79
76.03 60.39

99%
7.90
18.46
26.65

FIGURE 10: The average total cost saving by transshipment when § = $2/km.
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TABLE 6: Sample computation times.

Number of items Computation time (sec)

Number of items Computation time (sec)

10 87.55

20 147.77
30 185.73
40 206.00
50 233.58
60 266.63
70 300.84

80 337.10
90 369.74
100 407.62
200 802.87
300 1123.45
400 1291.46
500 1825.83

5. Conclusion

In this paper, we proposed a solution procedure for the
transshipment vehicle routing problem for cross-filling
multiple items among multiple DCs, where simultaneous
pickup and delivery is allowed in the routes (TVRSPD). Any
DC can be selected as a starting DC, and trucks must return
to their starting DC. We present an algorithm to determine
the optimal amount of each item to be picked up and/or
delivered at each DC in the route. Volume feasibility of the
truck is considered in the algorithm. Distance feasibility is
also considered in the stage of generating chromosomes.
Trucking cost is assumed to be proportional to the travel
distance of the truck.

Instead of maintaining higher level of inventory to avoid
shortage, cross-filling effectively reduces the shortage with
relatively lower level of inventory. For practical parameter
values, the proposed approach obtains significant saving of 9.7%
to 63.3% in the average total cost, which includes the shortage
cost and extra trucking and handling cost. Computation time
required for the proposed algorithm is acceptable for the
problem of reasonable size such as 10 DCs and 100 items.

Despite its successful GA modeling, our approach has
the following limitations: the number of items for trans-
shipment is limited to about one hundred major items due to
computational time; truck drivers may not be available
around the midnight for transshipment; or DCs may be too
dispersed in the rural area to apply this model.

In the near future, advanced transportation devices such
as drones and driverless trucks will make our model prac-
tically more useful. Furthermore, a new distribution channel
called microfulfillment center, which is relatively small but
automated distribution centers densely located in the urban
area to serve consumers in shorter response time, will
promote implementing our model to exchange the shortage
items among the microfulfillment centers. For further re-
search, one may allow each DC to be visited more than once
by trucks from more than one starting DC.

Appendix

A. Pseudo-Code of Forward Adjustment A

for i=2to R-1
9ix = X1k
if x_, <0 and x; >0 and x

i = min (123, k> o)

i+1,k <0

i1 = max (0, i + X7, 1)
else
Find the smallest i where g, =0
for j=2to h
Q. = max (0,7, + x5)
end for
end if
Find the largest s where x_; <0; set g3 = 0.

end for

B. Pseudo-Code of Forward Adjustment B

g =0fori=1,.,g-1
For b=g,...,R, find the smallest b such that g, =0
fori=1tob

% _ 5 —
Girgrge = mMax(0,q7, o + X0 1 4)
end for
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