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/is paper examines the problem of cancellation of cochannel interference (CCI) present in the same frequency channel as the
signal of interest, whichmay bring a reduction in the performance of target detection, in passive bistatic radar.We propose a novel
approach based on probabilistic latent component analysis for CCI removal. /e highlight is that removing CCI is considered as
reconstruction, and extraction of Doppler-shifted and time-delayed replicas of the reference signal exploited fully as training data.
/e results of the simulation show that the developed method is effective.

1. Introduction

Recently, there has been a growing interest in passive bistatic
radar (PBR) exploiting illuminators of opportunity [1–5].
Without the need for a dedicated transmitter’s deployment
and operation, PBR systems are significantly less expensive
to implement and operate than their conventional coun-
terparts. Due to their bistatic or multistatic configuration,
PBR systems provide RCS advantages to counter stealth
targets. Also, PBR systems have several advantages over
conventional monostatic radars, including smaller in size,
needing no additional frequency channel allocation since no
dedicated transmitter is used, and immune to antiradiation
missiles. Further, employing PBR systems in a multistatic
configuration provides spatial diversity similar to active
MIMO radar systems [6].

Many typical illuminators have already been employed
for target detection in passive radars including FM radio
[7, 8], Digital Audio Broadcast (DAB) [9], Digital Video
Broadcast (DVB) [10–13], satellite signal [14], Universal
Mobile Telecommunications System (UMTS) [15, 16], and
Global System for Mobile communication (GSM) [17, 18].
In addition, several studies have looked at the use of one
potential illuminator of opportunity, rapidly growing in
coverage, which is related to wireless local area networks

(LAN) [19–22]. Zhao et al. [23] employ the radio in HF band
(3–30MHz) to achieve wide-area moving target detection
and ocean remote sensing. In this paper, we will consider
DVB-T transmitters as illuminators of opportunity. /ey
have ubiquitous spatial coverage, are permanent in time, and
have a thumbtack-like function due to the noise-like be-
havior of the orthogonal frequency division multiplexing
(OFDM) modulation used. It should be noted that the
developed approach in this paper can be applied to any
transmission of opportunity.

/e weak signal reflected from the target is received by
PBR’s surveillance channel with a reference channel using a
directive antenna steered towards the exploited illuminator
of opportunity. Usually, the target echoes may be masked by
the small fraction of the direct signal received by the side
lobe of the antenna of the surveillance channel, strong
clutter, or multipath echoes, all of which can be considered
as Doppler-shifted and time-delayed replicas of the refer-
ence signal from the transmitter of opportunity, as well as
injected with CCI from other nuisance illuminating sources
such as intended jamming and involuntary disturbance.
Indeed, weak target echoes may be masked by the other
echoes from other targets of a higher level in large range-
Doppler separations. /erefore, it is very significant to
remove the disturbance for target detection, and there are
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increasing studies focusing on the solution to this problem.
Kulpa and Czekała [24] present a method of adaptive re-
moval of strong echoes from the received signal for the case
when strong echoes shadow a distant, weak target echo.
Raout et al. [12] achieve space-time clutter rejection and
target passive detection using the amplitude and phase
estimation method. An algorithm exploiting multichannel
adaptive filters for sea clutter cancellation in PBR is pro-
posed in [25]. Colone et al. [26] examine the problem of
cancellation of direct signal, multipath, and clutter echoes
in PBR and propose a multistage processing algorithm for
disturbance removal and target detection. However, most
of the above literature studies mainly focus on the can-
cellation of the direct signal, strong clutter or multipath
echoes, and the echoes from other vital targets, without
taking into account the problem of removal of CCI in a PBR
due to spectrum congestion in the frequency range from
VHF to 6 GHz in the complex electromagnetic environ-
ment. CCI from other transmitters may enter the sur-
veillance channel from the main lobe or side lobe of the
receiving antenna and degrade the performance of target
detection of PBR systems. To better play a role in the future
war, it is equally crucial for PBR systems to preprocess
signals and achieve CCI’s cancellation from other nuisance
transmitters. /erefore, we focus on the solution to this
problem.

In recent years, the latent variable model has been a
subject of research. Scholars have proposed a variety of
latent variable models [27–29]. Probabilistic latent com-
ponent analysis (PLCA) is discussed and applied to the
separation of sounds from single-channel mixtures in [30]
and radar signal detection in [31]. Likewise, the cancella-
tion of CCI can be considered as the separation of the
desired signal from the surveillance channel mixtures in a
PBR. Moreover, the reference signal can be used as training
data for PLCA.

Consequently, in order to make full utilization of the
reference signal without increasing the complexity of the
receiving system, PLCA is employed for the removal of CCI.
First, in this paper, the problem of disturbance removal in
the complex electromagnetic environment is proposed.
Below, the PLCAmethod for signal preprocessing to achieve
the cancellation of CCI is developed, which explicitly models
the collected signal as a mixture of marginal distribution
products. /e estimation of the most appropriate marginal
distributions, performed using the expectation-maximiza-
tion algorithm, is employed selectively to reconstruct the
desired signal, and eventually, the CCI suppression is
achieved.

/e paper is organized as follows. Section 2 describes the
addressed problem. PLCA is introduced, and the PLCA
method for the removal of CCI is developed in Section 3.
Section 4 gives the simulation results. Finally, Section 5
provides the conclusion.

2. The Problem

/e geometry of PBR is depicted schematically in Figure 1.
/e reference and surveillance antennas are assumed to be
colocated with the reference antenna steered toward the
transmitter and the surveillance antenna pointed in the
direction to be surveyed. /e reference channel receives the
direct signal from the transmitter, which is used to cancel the
multipath at the surveillance channel and evaluate the delay-
Doppler cross-correlation function (2D-CCF) between the
surveillance and the reference signal.

|χ(τ, v)|
2

� 
+∞

−∞
x(t)s

·
(t − τ)exp(j2πvt)dt





2
, (1)

where x(t) is the target echo signal, s(t) is the reference
signal, and v and τ are the Doppler frequency shift and the
sample time-delay parameters, respectively.

In practice, the surveillance channel collects a mixture of
Doppler-shifted and time-delayed replicas of the reference
signal from the transmitter of opportunity, involving target
echoes, direct signal, strong clutter, or multipath echoes, and
the CCI signals from other nuisance illuminators. Different
approaches have been proposed to cope with direct signal
and multipath [12, 24, 26, 32]. However, with respect to the
cancellation of direct signal and multipath, CCI rejection
requires different techniques for preprocessing before
matched filtering. Otherwise, detecting targets’ performance
and capabilities, incredibly weak targets, will degrade a lot in
a PBR./e PLCAmethod for signal preprocessing to remove
the CCI in a PBR will be discussed in what follows.

3. The Probabilistic Latent Component
Analysis Method

3.1. Probabilistic Latent Component Analysis. Probabilistic
latent component analysis (PLCA) is a straightforward ex-
tension of probabilistic latent semantic indexing (PLSI) [33]
which deals with an arbitrary number of dimensions. /e
basic model is defined as follows [30]:

P(x) � 
z

P(z) 
N

j�1
P x

j
| z , (2)

where P(x) denotes a distribution over the N-dimen-
sional random variable x and xj is j’th dimension. z is a
latent variable, and P(xj | z) is one-dimensional distri-
bution. Effectively this model represents a mixture of
marginal distribution products to approximate an N-
dimensional distribution. Subsequent processing is to
discover the most appropriate marginal distributions. To
perform the estimation of the marginals P(xj | z), the EM
algorithm is considered.

2 Mathematical Problems in Engineering



(i) E step: as seen from (2), P(xj | z) is independent of
each other:

P(x | z) � 
N

j�1
P x

j
| z . (3)

In this step, the posterior probability of the latent
variablez is estimated as follows:

P(z | x) �
P(z) 

N
j�1 P x

j
| z 

z′P z′(  
N
j�1 P x

j
| z′ 

. (4)

(ii) M step: a new z distribution is obtained as follows:

P(z) �  P(x)P(z | x)dx. (5)

Define

P
∗

x
j

| z  �  · · ·  P(x)P(z | x)dx
k
, ∀k≠ j. (6)

A new and more accurate estimation of z is obtained as
follows:

P x
j

| z  �
P
∗

x
j

| z 

P(z)
. (7)

A converging solution for the marginals P(xj | z) along
each dimension j and the latent variable priors P(z) will be
obtained by repeating the above steps in an alternating
manner multiple times. It should be noted that P(x) and z

are both discrete in practical application.

3.2. (e Probabilistic Latent Component Analysis Method.
Actually, we can consider the removal of CCI as recon-
struction and extraction of Doppler-shifted and time-
delayed replicas of the reference signal from the mixture
received in the surveillance channel. Moreover, the reference
channel offers us a source of training data for PLCA without
increasing the complexity of the receiving system. As a
consequence, PLCA is modified and employed for the re-
moval of CCI. /e PLCA method for the removal of CCI
explicitly models the collected signal as a mixture of mar-
ginal distribution products. /e estimation of the most
appropriate marginal distributions, performed using the
expectation-maximization algorithm, is employed selec-
tively to reconstruct and extract the desired signal. Even-
tually, the disturbance suppression is achieved.

To begin with, perform the short-time Fourier transform
of a signal s(t):

STFTs(t, f) � 
∞

−∞
s(τ)c
∗
(τ − t) e

− j2πfτdτ. (8)

/e spectrogram of s(t) can be treated as the distribution
of signal energy over time and frequency domain,
P(f, t) � abs[STFTs(t, f)].

Proper normalization will make the spectrogram of
signal a distribution of energy across the time-frequency
planeP(f, t). Adopting this view allows us to employ PLCA
directly for analysis of the signal. /e 2D model of PLCA is
defined as follows:

P(f, t) � 
z

P(z)P(f | z)P(t | z), (9)

where P(f, t) is a magnitude spectrogram of signal and
P(f | z)and P(t | z)are frequency marginals and time
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Figure 1: PBR geometry.
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marginals, respectively. /e marginals will contain a dic-
tionary of spectra which can best describe the signal rep-
resented by the input spectrogram./e application of PLCA
on the spectrogram of a drum loop and its corresponding
marginals are shown in Figure 2. Reconstruction of different
frequency marginals and time marginals will lead to ex-
traction of different components of the drum loop.

Notice that these marginals can be used as a model of a
class of acoustic signals. Likewise, we can model the signal
received by the surveillance channel as these marginals.
Next, we will apply the PLCA to the CCI removal. /e total
collected signal in the surveillance channel can be given by

x(t) � Asurvd(t) + 
M

m�1
amd t − τm( e

j2πfdmt

+ 
N

i�1
cid t − τci(  + 

K

k�1
jk(t) + nsurv(t),

(10)

where d(t) is the complex envelope of the direct signal (a
delayed replica of the transmitted signal from the illumi-
nator of opportunity); Asurvis the complex amplitude of the
direct signal received via the side/back lobe of the surveil-
lance; am, τm, and f0m are the complex amplitude, the delay
(with respect to the direct signal), and the Doppler frequency

of the mth target (m � 1, . . . , M); ci and τci are the complex
amplitude and the delay (with respect to the direct signal) of
the ith stationary ground scatter (i � 1, . . . , N); jk(t) is the
kth CCI contribution from other nuisance illuminators
(j � 1, . . . , K); and nsurv(t) is the thermal noise contribution
at the surveillance antenna.

Further, we define

S(t) � Asurvd(t) + 
M

m�1
amd t − τm( e

j2πfdmt

+ 
N

i�1
cid t − τci(  + nsurv(t),

(11)

J(t) � 
K

k�1
jk(t). (12)

After substitution of (11) and (12) into (10), we have

x(t) �� S(t) + J(t). (13)

/e complex envelope of the signal at the reference
channel is
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Figure 2: Application of PLCA on the spectrogram of a drum loop.
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sref(t) � Arefd(t) + nref(t), (14)

where Aref is the complex amplitude and nref(t) is the
thermal noise contribution at the reference antenna. Since
the direct signal is received by the main lobe of the reference
antenna, for simplification of analysis it is assumed that the
reference signal is free of multipath. It is also noted that the
effect of multipath on the reference channel has been an-
alyzed in [34] where a potential algorithm for its removal has
been introduced.

/e distribution Px(f, t) of signal energy across time-
frequency plane will be obtained by performing the short-
time Fourier transform of x(t). /e relevance between
sref(t) and S(t) implies that the data from the reference
channel can be utilized as training data. /e posterior
probability of the latent variable z is estimated as follows:

Ps(z|f, t) �
Ps(z)Ps(f | z)Ps(t | z)

z′P z′( Ps f | z′( Ps t | z′( 
. (15)

We can estimate the frequency marginals Ps(f | z) to
reconstruct S(t) by performing the EM algorithm men-
tioned above. According to (11), (12), and (13), the collected
signal in the surveillance channel can be treated as a mixture
of Doppler-shifted and time-delayed replicas of the refer-
ence signal from the transmitter of opportunity and the CCI
signals from other nuisance illuminating sources. /erefore,
the removal of CCI can be considered as the equivalent of
reconstruction and extraction of Doppler-shifted and time-
delayed replicas of the reference signal from the mixture.
/us, our objective is to discover a dictionary of PJ(f | z)

and PJ(t | z) to describe the source of CCI. Simultaneously,
the solution of the time marginals Ps(t | z) will be used to
reconstruct S(t).

To solve PJ(f | z), PJ(t | z), and Ps(t | z), extend the
frequency marginals of the training data

Px(f | z) � PS(f | z) PJ(f | z) . (16)

For a fixed z,

P(z|f, t) �
P(z)Px(f | z)Px(t | z)

z′P z′( Px f | z′( Px t|z′( 
. (17)

/e new latent variable prior is obtained as follows:

P(z) �   Px(f, t)P(z | f, t)dfdt. (18)

Define

P
∗
x(f | z) �  Px(f, t)P(z | f, t)dt,

P
∗
x(t | z) �  Px(f, t)P(z | f, t)df.

(19)

Compute the new marginals

Px(f | z) �
P
∗
x(f | z)

P(z)
� Ps(f | z) PJ(f | z) , (20)

Px(t | z) �
P
∗
x(t | z)

P(z)
�

Ps(t | z)

PJ(t | z)
 . (21)

Repeating (17), (18), (20), and (21) in an alternating
manner multiple times yields a converging solution for
PJ(f | z), PJ(t | z), andPs(t | z). Reconstruction of the signal
is obtained as follows:

Ps(f, t) � 
z

Ps(f | z)P(z)Ps(t | z). (22)

As a consequence, the CCI from other nuisance illu-
minators will be removed.

4. Simulation Results

In this section, the developed PLCA method’s performance is
verified using DVB-T signals in 2k mode for simulations. /e
numerical values for the OFDM parameters are listed in
Table 1. /e number of OFDM symbols is 30. Figures 3(a)–
3(d) show the spectrum, 2D autoambiguity function, and the
2D autoambiguity function’s major cuts at zero range and zero
Doppler. /e DVB-T-modulated signal achieves a fair range
resolution due to its high bandwidth. Besides, some side peaks
in the 2D autoambiguity function of a DVB-T-modulated
signal can be suppressed by the developed algorithm in [35],
thus yielding a reduction in false alarms.

For emphasis on evaluating the performance and ca-
pabilities of CCI removal of the PLCA method, we simplify
the scenario of simulation where two targets with the
identical signal-to-noise ratio (SNR) of 5 dB are placed at
(15 km, 600Hz) and (18 km, −300Hz), respectively, in the
range-Doppler domain in the absence of direct signal and
multipath clutter which can be cancelled by the examined
approach in [32] in the subsequent processing.

Assume that there are two nuisance sources, transmit-
ting noise-amplitude-modulated signal and noise-fre-
quency-modulated signal, respectively, and both the ratios of
powers of target echo signal and CCI (SIR) are −30 dB. If we
do not take measures to remove the disturbance in the first
step using somemethod, the subsequent target detection will
be affected severely. /e comparison of Figures 4 and 5
confirms this point. /e two target echoes are entirely
submerged in the background of CCI from other nuisance
illuminators without removal.

Now, the PLCA method is utilized for the removal of
CCI from other nuisance illuminators. /e reference signal
is exploited as training data modeled using 20 marginals
while the collected signal in the surveillance channel was
modeled using 40 marginals. /e number of iterations for
the EM algorithm is 200. Figure 6 shows the target echos, the
corrupted signal in the surveillance channel, and the
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reconstruction and extraction of the desired signal by using
the PLCA method, respectively, from top to bottom when
SIR� −30 dB, SNR� 5 dB, and SNRre� 5 dB (the ratio of

powers of the reference signal and noise). /e 2D-CCF
between the reconstructed signal by using the PLCAmethod
and the reference signal indicates that the CCI from other
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Figure 3: Spectrum and ambiguity function of DVB-T signal. (a) Spectrum; (b) 2D autoambiguity function; (c) zero range cut of
autoambiguity function; (d) zero Doppler cut of autoambiguity function.

Table 1: Numerical values for the OFDM parameters for the 2k mode.

Parameter 2k mode
Sampling frequency 64/7MHz
Number of carriers 1705
Bandwidth 7.61MHz
Duration of symbol part 224 μs
Duration of guard interval 14 μs
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nuisance illuminators is removed effectively, and the target
echoes stand out in Figure 7.

For further evaluation of the proposed PLCA method’s
performance in comparison with traditional methods, we
employ the methods based on LMS adaptive filter and wavelet
transform for CCI removal. Wavelet decomposition is per-
formed at level 2 with a selection of heursure threshold and the
orthogonal wavelet sym8 is adopted. We specify the order and
step size of the LMS filter as 5 and 0.001, respectively. Besides,
we define the signal-to-distortion ratio (SDR) as follows:

SDR � 10 log10
‖s(t)‖

2
2

‖s(t) − s′(t)‖
2
2

, (23)

where s(t) is the desired signal and s′(t) is the reconstruction
of s(t). /e comparison of CCI removal performance of the
PLCA method regarding traditional methods, including LMS
adaptive filter and wavelet transform, is depicted schemati-
cally in Figure 8. Obviously, the PLCA method is superior to
the LMS method and the wavelet method. Moreover, the
traditional methods can barely work to remove CCI and yield
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contribution to target detection, significantly when CCI ex-
ceeds target echoes over 20 dB in power. Figure 9 shows that a
wide variety in SNR does not bring a significant change in
SDR, while SDR changes sensitively with SNRre for the PLCA
method. /at is because the reference signal is exploited as
training data for modeling and reconstruction of the desired
signal in the corrupted signal in the surveillance channel. /e
purity of the reference signal is significant for the effectiveness
of the PLCA method.

5. Conclusions

In this paper, the problem of removal of CCI from other
nuisance illuminators was investigated in a PBR. /e PLCA
method was proposed and treated the removal of CCI as the
reconstruction and extraction of Doppler-shifted and time-
delayed replicas of the reference signal. Finally, some methods
were compared by simulation, and it was demonstrated that the
proposed PLCAmethod was effective and superior to the other
methods.
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