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At present, the prefabricated construction industry is in a situation of increasing types of prefabricated components and generally
high production costs. A hybrid optimization model considering continuity and discreteness for the production of fabricated
concrete members is established to minimize production costs through the analysis of the production characteristics of precast
concrete members. Under the premise of fully considering the staffing constraints, process constraints, construction period
constraints, process constraints, and special process time limits for component production, the production arrangement and
staffing of the components are rationalized and optimized. A discrete differential evolution (DDE) algorithm is introduced for
such NP-hard problems. ,e double genetic chromosome coding mode and the active scheduling decoding method are adopted.
Based on the improved POX (Precedence Operation Crossover) cross-evolution method, the global evolution operation is carried
out, and an interchange-based local search method and continuous work penalty mechanism are designed to find the global
optimal solution. ,e experimental results verify the practicality and effectiveness of the optimization model and algorithm.

1. Introduction

A prefabricated building is a new building form that selects
large-scale factories to produce components and assemble
them on-site [1].,e degree of development of prefabricated
buildings represents the degree of integration and devel-
opment of the upstream and downstream industrial chains
of the construction industry [2]. In recent years, the pre-
fabricated construction industry in China has entered a new
stage of development under the support of national policies
and has been highly valued by more and more enterprises
and scholars [3]. Now, the construction industry is actively
exploring the formation of a mature prefabricated con-
struction industry system [4]. However, as far as the situ-
ation in recent years is concerned, because domestic
prefabricated buildings are still difficult to form industrial-
scale benefits, the construction assembly rate in China is
only 5% [5], which is far lower than the level of western
developed countries. ,e high construction cost is the root
cause that affects the enthusiasm of developers and hinders

the development of construction industrialization [5]. ,e
study found that the main reason for the substantial increase
in the cost of prefabricated construction is the increase in the
cost of production and transportation of prefabricated
components. Among them, the key to the control of the
production cost of prefabricated components lies in large-
scale and standardized production, thereby reducing the cost
amortization of the production line and taking the advan-
tages of prefabricated components in labor and materials
saving [6].

At present, many scholars have proposed improvements
and optimization methods for the production stage of
prefabricated building components. Ko and Wang [7]
proposed a production planning system for prefabricated
components based on genetic algorithms; Jeong et al. [8]
constructed a production combination optimization model
for house construction to achieve the purpose of shortening
the construction period, reducing inventory, and saving
costs. From the perspective of production quality optimi-
zation, Rausch andNahangi [9] optimized key interfaces and
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reduced errors to form an optimal assembly plan for pre-
fabricated components, thereby reducing rework and saving
costs. To solve the NP-hard problem of production sched-
uling, metaheuristic algorithms have been widely used in
recent years, such as gaining-sharing knowledge-based
optimization algorithm [10, 11], ant colony algorithm [12],
particle swarm algorithm [13], differential evolution algo-
rithm [14, 15], and various hybrid algorithms. Among them,
the DE is widely used in various fields due to its good self-
learning and robustness [16–20] and is continuously opti-
mized. Wagdy et al. [21] proposed two new mutation
strategies, which, respectively, enhanced the algorithm’s
exploration and convergence capabilities and designed a
hybrid framework to improve the algorithm’s ability to solve
complex problems. Cheng et al. [22] designed a new DE
variant (named ADEwSE) to reduce the randomness of the
search direction and improve the search efficiency of the
algorithm.

Based on the above research results, this paper studies
the prefabricated component production scheduling opti-
mization model that is restricted by various factors such as
staffing, technology, construction period, process, and
special process requirements, and there are multiple op-
tional resources for different component processes. Based on
the basic differential evolution algorithm, the discrete dif-
ferential evolution algorithm (DDE) with double coding is
adopted to assign and schedule the processing time and
work team of each component process. ,e algorithm aims
to reduce the waiting time of labor and machinery and the
overtime of workers, to improve the production efficiency of
workers and machinery, and reduce the production cost of
components under the premise of ensuring timely delivery.

2. Modeling of the Component
Production Scheduling

2.1. Problem Description. ,e main feature of prefabricated
buildings is the use of mobile assembly lines in the pre-
fabricated yard to carry out the batch and standardized
production of concrete components. But there is a big
difference between the production of building components
and the production of mechanical parts. ,e first is the
coexistence of continuity and discreteness of production.
,e production process of concrete components generally
includes five processes: mold placement, finished steel re-
inforcement placement, concrete pouring and vibrating,
concrete component maintenance, and form removal and
storage. Among them, concrete pouring and curing must be
carried out continuously. ,e second is a strong artificial
dependence. Due to the relatively low level of automated
production technology for building components and the
high cost of fully automatic component production
equipment, many processes still require manual participa-
tion, so labor costs and working time arrangements must be
considered.

Based on the above characteristics, the production
scheduling optimization problem of precast concrete
components can be summarized as follows. Component
production tasks include several components to be

processed, and each component production includes mold
placement, finished steel reinforcement placement, concrete
pouring and vibrating, concrete component maintenance,
and form removal and storage. A group of nonunique
professional work teams and unique processing machinery
are allocated for each process and there is a certain order
constraint relationship between different processes. ,us,
resources involved in each process include processing
equipment and processing team. Different component
processes can be processed by any work team, which takes a
different time. Since concrete pouring and curing can be
performed over time, the operation is continuous and the
processing process cannot be interrupted. If it cannot be
completed within working hours, it will be carried out the
next day. ,e rest of the process is regarded as an inter-
ruptible process.

Also, the production scheduling model of precast con-
crete components has the following assumptions:

(1) In the beginning, all work teams and processing
equipment can arrange tasks, and all components
can be processed

(2) Processing preparation time is included in the
processing time of each process

(3) Different components have the same processing
priority, and there is no component processing order
constraint

(4) Before the current process is completed, the team
cannot participate in other processes

(5) ,e transmission time of components between
processing sites is not considered

(6) Machinery can meet the requirements
(7) ,e processing time of all components is less than

the sum of normal working hours and overtime
hours

,e scheduling optimization goal is as follows: under the
premise of satisfying the constraints, each process is assigned
to the most suitable work team, and the best sequence and
starting time are determined so that the production cost of
the entire concrete component production is minimized.

2.2. Variable and Parameter Symbol Definition

(1) Label
i, l is the task force number; i, l � 1, . . . , A. A is the
highest number of the task forces. j, r is the com-
ponent number; j, r � 1, . . . , N. N is the largest
number of the components. k, w is the process
number; k, w � 1, . . . , K. K is the largest number of
the processes.

(2) Parameter
Eijk: the time required for task force i to process the
kth process of j component.
CGi: the average wage of the work team i during the
working day, yuan/hour.
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CC: the unit salary for overtime work of each team,
yuan/hour.
CMk: depreciation cost per unit working time of
equipment k.
TW: normal working hours.
TN: nonworking time, TN � 24 − TW.
e: daily start time.
OT: maximum overtime hours per day.
D: latest delivery date.
M: a large positive number.
k1: the number of the concrete pouring processes.
k2: the number of the concrete curing processes.
hi: the last component processed by task force i.

si: the last process of task force i processing.
(3) Decision variables

Xijk �
1, if the task force i processes the k process of j component,
0, others.􏼨

Uijr �
1, if the task force i processes component j and then processes component r,

0, others.􏼨

Vjrk �
1, if machine k first processes component j and then processes component r,
0, others.􏼨

tijk: the start time of process k for task i to process
component j.
fijk: the end time of process k for task i to process
component j.

2.3. Mathematical Model

min z � 􏽘
A

i�1
􏽘

N

j�1
􏽘

k2

k�k1

fijkmod24 − TW − e􏼐 􏼑 · CCi · sgn max fijkmod24 − TW − e􏼐 􏼑, 0􏽮 􏽯􏽮 􏽯

+ 􏽘
A

i�1
Int

fihisi

24
􏼠 􏼡 · TW + min

fihisi

24
􏼠 􏼡 − e, TW􏼨 􏼩􏼨 􏼩 · CGi + 􏽘

A

i�1
􏽘

N

j�1
􏽘

K

k�1
Xijk · Eijk · CMk,

(1)

s.t. fijk ≤ tirw + M 1 − UijrXijkXirw􏼐 􏼑, i � 1, . . . , A, j, r � 1, . . . , N, j≠ r; k, w � 1, . . . , K, k≠w, (2)

􏽘

A

i�1
Xijk � 1, j � 1, . . . , N, k � 1, . . . , K, (3)

max
N

j�1
max

K

k�1
fijk􏽮 􏽯 � fihisi

≤D, i � 1, . . . , A, (4)

e≤ tijkmod24≤ e + TW, i � 1, . . . , A, j � 1, . . . , N, k � 1, . . . , K, (5)

tijk ≥fl,j,k−1, i, l � 1, . . . , A, j � 1, . . . , N, k � 2, . . . , K, (6)

tijk ≥M 1 − Xijk􏼐 􏼑, i � 1, . . . , A, j � 1, . . . , N, k � 1, . . . , K, (7)

tijk � tijk · sgn max Int
tijk

24
􏼠 􏼡 · 24 + TW + e − tijk + Eijk􏼐 􏼑 + OT􏼢 􏼣, 0􏼨 􏼩􏼨 􏼩 + Int

tijk

24
􏼠 􏼡 + 1􏼢 􏼣 · 24 + e􏼨 􏼩

· 1 − sgn max Int
tijk

24
􏼠 􏼡 · 24 + TW + e − tijk + Eijk􏼐 􏼑 + OT􏼢 􏼣, 0􏼨 􏼩􏼨 􏼩􏼨 􏼩, i � 1, . . . , A, j � 1, . . . , N, k � k1, k2,

(8)

fijk � tijk + Eijk, i � 1, . . . , A, j � 1, . . . , N, k � k1, k2, (9)

fijk � fijk · sgn max Int
tijk

24
􏼠 􏼡 · 24 + TW + e − tijk + Eijk􏼐 􏼑 + OT􏼢 􏼣, 0􏼨 􏼩􏼨 􏼩 + fijk + TN􏼐 􏼑

· 1 − sgn max Int
tijk

24
􏼠 􏼡 · 24 + TW + e − tijk + Eijk􏼐 􏼑 + OT􏼢 􏼣, 0􏼨 􏼩􏼨 􏼩􏼨 􏼩,

i � 1, . . . , A, j � 1, . . . , N, k � 1, . . . , K,且k≠ k1, k2.

(10)

Formula (1) indicates that the optimization of produc-
tion scheduling of concrete components is aimed at mini-
mizing costs.,e first item is the overtime expenses involved

in the concrete pouring and curing process. ,e second item
represents the normal working wages of each team. And the
third item represents equipment depreciation expenses. In
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the equation, mod is the modulus operation symbol, sgn is
the sign function, and Int is the integer function. Formula (2)
represents the exclusive constraint of processing tasks in the
same work team; that is, the same work team can only
process one process at the same time. Formula (3) is the
process constraint, which means that each process of each
component must be assigned to a task force for processing.
Formula (4) is the time limit. Formula (5) is the constraint of
the processing start time, which means that the start time of
work can only be within the normal working period. For-
mula (6) is the time constraint of the adjacent process; that
is, only after the processing task of the previous process is
completed, the processing resources can be allocated for this
process. Formula (7) is the task assignment constraint; that
is, only if the process j of component i is assigned to the task
force k for processing, this start time will exist. Formula (8)
represents the time limit for the start of the work when the
components are placed in the concrete pouring and curing
process; that is, if the processing cannot be completed within
the normal work and overtime hours, the processing will not
be performed on the same day, and the work will be per-
formed on the next day. Formula (9) expresses the re-
striction on the relationship between the processing end
time of the component concrete pouring process (the third
process) and the concrete curing process (the fourth pro-
cess). Formula (10) expresses the work end time limit when
the processing can be interrupted; that is, if the processing
operation cannot be completed within the normal working
time of the day, the same work teamwill continue processing
the next day.

3. Discrete Differential Evolution Algorithm
Based on Double Coding

,e basic DE is based on real number coding, which is
suitable for solving continuous optimization problems.
,erefore, for the optimization problem of precast com-
ponent production scheduling, this paper adopts DDE based
on double coding. ,rough task code and team code, the
optimal order and optimal processing resource allocation
strategy for each concrete component processing can be
determined.

3.1. Encoding and Decoding Scheme. To express the pro-
cessing sequence of each component process and the cor-
responding work team at the same time, the two-level coding
form is adopted. ,e first layer is the task code based on
components and processes [23], denoted as chromosome 1.
,e length of the chromosome is the sum of all the processes
of all the components, which is defined as Z, and each locus
is directly represented by the component number. ,e
second layer is the team code based on the task force dis-
tribution sequence, denoted as chromosome 2. Chromo-
some length is Z. Each gene locus is directly represented by
the task force number. After the two codes are determined,
the gene combination corresponding to the same position on
each pair of chromosomes indicates the processing order
and work team allocation plan of a process of a component.

Set chromosome 1� a1, a2, . . . , aZ􏼈 􏼉; an(n ∈ 1, . . . , N)

corresponds to the currently processed component. In the
task chromosome, components of the same species are given
the same number, and different positions of the same
number represent different processes of the component. ,e
cumulative number of occurrences of the same number is
the number of processes required to process the component.
Set chromosome 2� b1, b2, . . . , bZ􏼈 􏼉.bn(n ∈ 1. . . . , N) cor-
responds to the available task force number, used to de-
termine the processing work team of each process of each
component. ,e double-layer chromosome encoding is
shown in Figure 1:

DefineOjk as the k th process of j component. In the case
shown in Figure 1, there are two components to be pro-
cessed, and each component contains three processes, which
can be processed by three teams. ,e task code in the figure
is (1, 2, 1, 2, 2, 1), which determines the processing sequence
of the two components for a total of 6 processes. ,e se-
quence of processes can be expressed as
O11 − O21 − O12 − O22 − O23 − O13. ,e team code is
(1, 3, 2, 3, 1, 2), where the first “1” indicates that the process
is performed by the task force 1, and similarly, the processing
teams of the remaining processes can be obtained.

,e chromosome decoding process is the process of con-
verting the code into a feasible scheduling solution. ,is paper
will adopt the activity scheduling method [24]. ,e decoding
steps for chromosome 1 and chromosome 2 are as follows:

Step 1. Decode the team code. Read the code value from
left to right and form the work queue sequence matrix
W and the operation time sequence matrix T according
to the known operation time. W(j, 1), . . . , W(j, K)

means the processing team number of all processes of
the j th component, and there is a processing order
constraint among them. T(j, k) represents the oper-
ating time of the k th process of the j th component.
Matrix W corresponds to matrix T one-to-one.
Step 2. Read the code value on chromosome1 from left to
right and convert them to the corresponding process Ojk.
And the processing team Ni � W(j, k) and operation
time Eijk � T(j, k) are obtained through the work queue
sequence matrix W and the time sequence matrix T.
Step 3. Define each work team’s idle start time TSi �

(e, e, . . . , e) and work idle end time TEi � (D, D, . . . ,

D).
Step 3.1. Determine whether process k is the first
process of component j. If it is the first process, get the
idle time of the work team that can be inserted according
to formula (11), then judge whether this process can be
completed within the working hours, and get the earliest
start time Ta. If not, perform Step 3.2.

TEi − TSi ≥Eijk, (11)

Ta � TSi. (12)

Step 3.2. Determine whether process k is the third or
fourth process of component j. If it is, it is necessary to
consider the completion time Cj,k−1 of the previous
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process and the idle start time of the work team at the
same time, as shown in formula (13). It is also necessary
to judge whether the process can be completed before
the end of overtime. If the conditions are met, the
process can be inserted into the current free period. If

not, Ta starts from the next day and judges whether the
interval meets the conditions at this time.

TEi − max TSi, Cj,k−1􏽮 􏽯≥Eijk. (13)

Step 3.3. Determine the difference between the com-
pletion time of the previous process and the start time
and end time of the work team interval, and then
determine whether it is completed within the working
time. If it can, the process can be inserted into the time
interval that meets the conditions; if not, it is necessary
to judge whether the sum of the operation time and the
rest time meets the current insertion conditions.
Step 3.4. Determine whether the current chromosome
has been read. If it is satisfied, the loop ends; otherwise,
proceed to step 3.1.

After decoding, the activity scheduling plan can be
obtained; that is, the operation team of each process of each
component can be designated, and the operation start time
and end time can be obtained.

3.2. Fitness Function. Formula (14) expresses the goal of
minimizing production cost; therefore, the fitness function is

min z � 􏽘
A

i�1
􏽘

N

j�1
􏽘

k2

k�k1

fijkmod24 − TW − e􏼐 􏼑 · CCi · sgn max fijkmod24 − TW − e􏼐 􏼑, 0􏽮 􏽯􏽮 􏽯

+ 􏽘

A

i�1
Int

fihisi

24
􏼠 􏼡 · TW + min

fihisi

24
􏼠 􏼡 − e, TW􏼨 􏼩􏼨 􏼩 · CGi + 􏽘

A

i�1
􏽘

N

j�1
􏽘

K

k�1
Xijk · Eijk · CMk.

(14)

3.3. Global Search Operation. An individual in the pop-
ulation is composed of task chromosomes and team chro-
mosomes. ,erefore, in the iteration of the population, it is
necessary to use the DDE evolution operation on the two
chromosomes, respectively.

3.3.1. Improve POX Crossover Method. Traditional DE is
based on real number coding in continuous space. For the
discrete problem of production scheduling optimization,
traditional evolutionary operations are no longer applicable.
,erefore, this paper adopts POX (Precedence Order-based
Crossover) [25] to recombine each gene on the chromosome
and improve the crossover method to adapt to the differ-
ential evolution operation of the discrete coding of double
coding. ,e operation process is

Step 1. Randomly divide the component set
N � (N1, N2, . . . , Nn) into two complementary non-
empty sets, Set 1 and Set 2.
Step 2. Respectively, copy the parental chromosomes F1
and F2 containing the numbers contained in Set 1 and
retain their order and position, thereby generating
offspring chromosomes C1 and C2.

Step 3. Copy the component numbers contained in Set
2 and the parent chromosomes F1 and F2 simulta-
neously to the offspring chromosomes c2 and c1 and
retain their order until all the missing chromosomes are
filled in. If there are still vacancies after the complete
copy, 0 will be used to occupy the position.
Step 4. Determine in turn whether the code on each
gene position of the offspring chromosomes is 0; if it is
zero, randomly generate any value between [0.A] for
replacement.

Examples of POX are shown in Figures 2 and 3.
,e example in Figure 2 contains 4 components, and

each component requires two processes to process. Copy the
parts containing 2 and 3 in F1 and F2 to C1 and C2, re-
spectively, then copy the remaining parts in F1 to C2 in
order, and finally copy the remaining parts in F2 to C1 in
order. Figure 3 is the same, vacant positions are occupied by
0, and redundant genes are discarded.

3.3.2. Mutation Crossover Strategy Design. To adapt to the
discretization operation, based on the improved POX
crossover method, this paper will adopt the following
crossover mutation strategy:

Task code

Component order

Process sequence

Team code

Process sequence

Task force order

1 2 2 21 1

1 133 22

N1 N1 N1N2 N2 N2

O11

O11

A1 A1A3 A3 A2A2

O21

O21

O12

O12

O22

O22

O23

O23

O13

O13

Figure 1: Schematic diagram of double chromosome coding.
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(1) Mutation operation

Yi(t + 1) �
P Xr1(t), Xr2(t)( 􏼁, rand<F,

Xr1(t), others,
􏼨 (15)

Vi(t + 1) �
P Yi(t + 1), Xr3(t)( 􏼁, rand<F,

Yi(t + 1), others.
􏼨 (16)

In the formula, r1, r2, r3 are any mutually different
integers from 1 to n, n is the number of populations,
tis the evolutionary algebra, F is the scaling factor, P

represents the POX operation, and rand is the
random number of [0, 1]. Equation (15) represents
the difference vector formed by two different parent
individuals, and equation (16) represents the dif-
ference vector formed by the difference vector and
the other parent individual.

(2) Cross operation

Ui(t + 1) �
P Vi(t + 1), Xi(t)( 􏼁, rand<Cr,

Vi(t + 1), others.
􏼨 (17)

In the formula, Cr is the crossover probability.
Formula (17) represents the temporary experimental
individual obtained after the crossover between the
mutant individual and the parent individual.

(3) Continuous work penalty mechanism
To make the process of generating feasible solutions
more effective, a continuous work penalty mecha-
nism is adopted for the chromosome 2 population in
response to a large amount of work undertaken by
the same task force. By introducing penalty coeffi-
cients α and penalty factors ε, increase the variation
and crossover probability of unreasonable feasible
solutions. ,e specific steps are as follows:

Step 1. Judge whether the workload percentage of
each work team in the current chromosome is
greater than the penalty coefficient; if yes, execute
Step 2; otherwise end the operation.
Step 2. Penalize the scaling factor of the chromosome
as shown in formula (18).

F � F + ε. (18)

3.3.3. Population Retention Strategy. In one iteration, after
mutation and crossover operations, under the premise of
ensuring the validity of the search information, a one-to-one
greedy strategy mechanism is adopted to select the next-
generation population individuals to prevent the genetic
characteristics of the offspring from becoming uniform.,at
is, for each parent individual and temporary experimental
individual, by comparing the fitness function value f(x),
select the better individual and random individual to enter
the next-generation population. ,e selection method is
shown in the formula (19).

Xi(t + 1) �
Ui(t + 1), f Ui(t + 1)( 􏼁>f Xi(t)( 􏼁,

Xi(t), others.
􏼨

(19)

3.4. Local Search Operation. ,e DDE algorithm has the
characteristics of fast convergence, but it is easy to fall into
the local optimum. To solve this problem and further
improve the optimization efficiency of the algorithm, a
local search operation based on the interchange neigh-
borhood structure [26] is introduced. Perform a local
search operation for the best individual and 20% random
chromosomes in the chromosome 2 population. ,e se-
lected individual is defined as chromosome 2∗. ,e op-
eration is as follows:

Step 0. Generate random integers between [0, 1],
denoted as q1. ,en generate random integers between
[1, chromosome 2.length], denoted as q2. Let chro-
mosome� chromosome 2∗; m � q2. If q1 � 0, execute
Step 1.1–Step 1.3; otherwise, execute Step 2.1–Step 2.3.
Step 1.1. If q2 > 1, generate a random integer between [1,
q2 − 1], which is recorded as q3. It means searching for
q3 bits from the q2 bit of the chromosome forward.
Step 1.2. Exchange q3 position and (m − 1) position
gene of the chromosome; if f(chromosome 1∗,
chromosome)< f(chromosome 1∗, chromosome 2∗),
then chromosome 2∗� chromosome.
Step 1.3. m � m − 1; judge whether m is greater than
(q2 − q3); if yes, execute Step 1.2; otherwise end the
operation.
Step 2.1. If q2 < chromosome 2.length, generate random
integers between [1, chromosome 2.length-q2], denoted
as q3. It means searching for q3 bits from chromosome
q2 backward.

F1

F2

C1

3 1 42 3 4 1 2

3 31 12 24 4

Set 1 = {2, 3}

3 2 231 4 1 4

C2 42 231 4 3 1

Figure 2: POX crossover example 1.

F1

F2

C1

1 1 12 2 2 1 1

1 12 22 22 2

Set 1 = {2}

1 2 021 0 2 0

C2 22 212 2 1 2 1 1 1

Figure 3: POX crossover example 2.
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Step 2.2. Exchange q3 position and (m + 1) position
gene of the chromosome; if f(chromosome 1∗,
chromosome)<f(chromosome 1∗, chromosome 2∗),
then chromosome 2∗� chromosome.
Step 2.3. m � m + 1; judge whether m is less than
(q2 + q3); if yes, execute Step 2.2; otherwise, end the
operation.

3.5. Algorithm Flow. ,e process of the improved DDE
algorithm in this paper is shown in Figure 4.

4. Case Analysis

Use Visual Studio 2017 to program the discrete difference
algorithm based on C# language to simulate the production
scheduling optimization problem of precast concrete
components. Its scale is 5 components and 5 work teams,
each component contains 5 processes, and each work team
can operate 5 processes. ,e operation time of each process
is different due to the difference in the component type and
the work team. ,e specific time is shown in Table 1. ,e
wages of each task force are shown in Table 2. Depreciation

expenses of equipment unit working hours are shown in
Table 3. ,e normal working hours of the task force are 9
hours, and the maximum overtime hours are 4 hours. ,e
daily starting time is 8 am.

After experiments, the optimization results are better
when the parameters are set as evolutionary algebra
G � 1000, population size n � 50, mutation factor F � 0.9,
and cross factor Cr � 0.35. ,e results of the component
process assignment are shown in Table 4, and the compo-
nent production scheduling Gantt chart is shown in Fig-
ure 5. ,e minimum production cost is 2626.7 yuan.

To analyze the effectiveness of the improved discrete
difference algorithm based on the local search strategy
(LSS-DDE), compare it with the solution results of the
traditional discrete difference algorithm (TRAD-DDE), ant
colony algorithm (ACO), and particle swarm algorithm
(PSO). Each algorithm performs 20 independent simula-
tion experiments for the above component production
scheduling examples, and the termination conditions are
all 1000 iterations. ,e algorithm parameter setting table is
shown in Table 5. ,e comparison of running results is
shown in Table 6. ,e convergence situation comparison is
shown in Figure 6:

Start

Initialize population and parameter settings

Meet the termination
conditions?

Cross operation

Select operation

End

Local search based on Interchange 
neighborhood structure

Y

N

Mutation operation

Yi (t + 1) = 

Vi (t + 1) = 

Ui (t + 1) = 

Xi (t + 1) = 

P (Xr1 (t), Xr1 (t)) , if rand < F
Xr1 (t)  , others

Xi (t)  , others

P (Vi (t + 1), X1 (t)) , if rand < Cr

Ui (t + 1) , if f (Ui (t + 1)) > f (Xi (t))

Vi (t + 1)  , others

P (Yi (t + 1), Xr2 (t)) , if rand < F
Yi (t + 1)  , others

Figure 4: Flowchart of discrete differential evolution algorithm.
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Table 1: ,e operation time of different processes of processing each component of each work team.

Component Process Optional task force Processing time/h

Column

k1 A1, A2, A3, A4, A5 0.6, 0.8, 0.9, 1, 0.7
k2 A1, A2, A3, A4, A5 3.3, 2.7, 3.5, 4.5, 3.3
k3 A1, A2, A3, A4, A5 1.8, 1.8, 1.6, 2.3, 1.8
k4 A1, A2, A3, A4, A5 5.5, 5.5, 5.5, 5.5, 5.5
k5 A1, A2, A3, A4, A5 0.5, 0.6, 0.6, 0.7, 0.3

Beam

k1 A1, A2, A3, A4, A5 0.5, 0.6, 0.8, 0.9, 0.6
k2 A1, A2, A3, A4, A5 3.6, 3, 3.7, 4.8, 3.7
k3 A1, A2, A3, A4, A5 1.6, 1.6, 1.4, 2.1, 1.6
k4 A1, A2, A3, A4, A5 5.5, 5.5, 5.5, 5.5, 5.5
k5 A1, A2, A3, A4, A5 0.4, 0.5, 0.5, 0.6, 0.3

Board

k1 A1, A2, A3, A4, A5 0.3, 0.5, 0.6, 0.6, 0.4
k2 A1, A2, A3, A4, A5 3.3, 2.8, 3.6, 4.7, 3.5
k3 A1, A2, A3, A4, A5 2.5, 2.5, 2, 3, 2.6
k4 A1, A2, A3, A4, A5 5.5, 5.5, 5.5, 5.5, 5.5
k5 A1, A2, A3, A4, A5 0.3, 0.4, 0.4, 0.6, 0.2

Stairs

k1 A1, A2, A3, A4, A5 0.9, 1.1, 1.2, 1.4, 1
k2 A1, A2, A3, A4, A5 4, 3.5, 4.2, 6, 4.2
k3 A1, A2, A3, A4, A5 1.4, 1.4, 1.3, 1.7, 1.5
k4 A1, A2, A3, A4, A5 5.5, 5.5, 5.5, 5.5, 5.5
k5 A1, A2, A3, A4, A5 0.7, 0.9, 0.9, 1, 0.5

Shear wall

k1 A1, A2, A3, A4, A5 0.3, 0.5, 0.6, 0.6, 0.4
k2 A1, A2, A3, A4, A5 3.6, 3, 3.7, 4.8, 3.7
k3 A1, A2, A3, A4, A5 2.5, 2.5, 2, 3, 2.6
k4 A1, A2, A3, A4, A5 5.5, 5.5, 5.5, 5.5, 5.5
k5 A1, A2, A3, A4, A5 0.3, 0.4, 0.4, 0.6, 0.2

Table 2: Wages of each task force.

Task force A1 A2 A3 A4 A5
Average salary (h) 21 22.5 18.5 17.5 21
Overtime pay (h) 35 35 35 35 35

Table 3: Depreciation expenses of equipment unit working hours.

Processing machinery K1 K2 K3 K4 K5
Depreciation expense (h) 20 55 30 50 15

Table 4: Component process assignment results.

Process component k1 k2 k3 k4 k5
Column A3 A2 A3 A4 A5
Beam A1 A2 A2 A4 A4
Board A4 A2 A3 A4 A2
Stairs A5 A2 A3 A5 A5
Shear wall A1 A1 A3 A4 A3
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It can be seen from the comparison of the results that the
application of a discrete differential evolution algorithm can
provide better optimization results. Also, it can be seen from
the convergence that LSS-DDE can get a better global optimal
solution. Due to the local search operation, LSS-DDE jumps
out of the local optimum, thus avoiding premature maturity.

To verify the reliability of the comparison test, Wilcoxon
signed-rank test was used to test the nonrandomness of the

difference in the results of the algorithm. Use SPSS to analyze
experimental results, α� 0.01, and the test results are shown
in Figures 7–9.

It can be seen from the test results that the P-value is
less than 0.001. ,at is, compared with other algorithms,
LSS-DDE shows a significant improvement over TRAD-
DDE, ACO, and PSO, with a level of significance
α� 0.01.
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Figure 5: Gantt diagram of component production scheduling.

Table 5: Algorithm parameter setting table.

Algorithm ,e main parameters
LSS-DDE G� 100, n� 50, F� 0.9, Cr� 0.35
TRAD-DDE G� 100, n� 50, F� 0.9, Cr� 0.35
ACO G� 100, n� 50, α� 1.5, β� 4.2, ρ� 0.5, Q� 200
PSO G� 100, n� 50, ωmax � 0.9, ωmin � 0.4, ϕ1 � ϕ2 � 1.49618

Table 6: Comparison of running results.

Algorithm Optimal minimum cost Worst minimum cost Average minimum cost Standard deviation
LSS-DDE 2626.7 2636.2 2633.6 2.995
TRAD-DDE 2682.4 2714.9 2700.5 9.849
ACO 2869.5 2908.1 2892.8 13.208
PSO 2852.3 2881.5 2868.2 10.230
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5. Conclusion

As a new type of construction method, prefabricated
buildings have distinctive features such as high production
efficiency, high industrialization level, high standardization,
strong environmental friendliness, and low external climate
impact. Building industrialization is an important devel-
opment direction in the future construction field. However,
the high production cost of fabricated building components
is the main reason that affects its promotion and application.

,e author reasonably distinguished the costs involved
in component production and established an optimization
model for assembly-type component production scheduling
to minimize component production costs. ,is model op-
timizes component production scheduling under the
premise of fully considering the constraints of component
production process requirements, process time constraints,
and production equipment resource constraints. ,is paper
uses a discrete differential evolution algorithm to solve the
optimization model. Double-layer chromosome encoding
and activity scheduling decoding are used for global search,
and the local search process is based on the interchange
neighborhood structure.

In the selection process, a continuous work penalty
mechanism is designed to improve the performance of the
algorithm. ,rough the optimization model and algorithm
in the application simulation of a concrete component
production plant, the validity and scientificity are verified.
,e author provides an efficient and accurate optimization
method for reducing the production cost of prefabricated
building components, which adapts to the standardized
and streamlined production characteristics of prefabricated
buildings. ,is method provides technical support for
reducing the overall cost of prefabricated buildings. More
detailed constraints are integrated into the optimization
model of assembly-type component production schedul-
ing, and the in-depth study of applying the multiangle
improved DDE algorithm to the solution of the optimi-
zation model is one of the important future research di-
rections in this field.
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