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Our aim in this paper is to study the asymptotic global stability of the positive solutions for a class of first-order nonlinear
difference equations with a remarkable feature: the initial conditions are intrinsic and not explicitly given. Global stability results
are obtained in a particular case and then for a general class of first-order difference equations.We also provide the results of some
numerical experiments obtained by the mini software package FIXPOINTto illustrate asymptotic global stability as well as the rate
of convergence. To the best of our knowledge, our approach is the first one in the literature on the stability of difference equations
without explicit initial conditions and might generate an interesting new direction of further studies.

1. Introduction

Many important phenomena and dynamical processes in
several fields of applied sciences and engineering are de-
scribed by means of differential and/or difference equations.
On the contrary, difference equations also appear naturally
in connection with discretization schemes applied to ordi-
nary or partial differential equations. For such a difference
equation or system of difference equations, it is important to
study the local and global behaviour of their solutions. (is
behaviour is influenced in many instances by the initial
conditions associated to the given difference equations,
making it an important issue in the study of concrete dy-
namical processes.

It is the main aim of this paper to study the asymptotic
global stability of the positive solutions for a general class of
first-order nonlinear difference equations with a remarkable
feature: the initial conditions are not explicitly given but are
intrinsic.

Our approach is motivated mainly by the fact that, in the
case of nonlinear difference equations, properties of solu-
tions, in most of the concrete situations, can only be ob-
served and conjectured by numerical simulations, and it is
extremely difficult to obtain them analytically.(erefore, it is

fundamentally important to identify those classes of non-
linear difference equations for which we still can perform
analytically a qualitative study of the properties of their
solutions, particularly the global behaviour, which is the
topic of the current study.

To the best of our knowledge, our approach is the first
one in the literature on the stability of difference equations
with no explicit initial conditions and might generate an
interesting new direction of further studies.

2. Preliminaries

In most of the studies devoted to the global stability of
k-order difference equations, the appropriate initial con-
ditions are explicitly assumed and the proofs are essentially
based on these conditions. For example, in [1], the authors
studied the dynamics and the global asymptotic stability of
the second-order difference equation:

yn+1 � A +
yn

yn− 1
, n � 0, 1, . . . , (1)

with the initial conditions y− 1, y0 ∈ (0,∞), where A> 0.
It was shown in [1] that the unique positive equilibrium

y � 1 + A of equation (1) is globally asymptotically stable.
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In [2], some partial answers to Conjecture 6.4.1 and
Open problem 6.4.1 in [1] were given by obtaining a suf-
ficient condition for the global asymptotic stability of the
unique positive equilibrium of the more general
(k + 1)-order difference equation:

yn+1 � A +
yn

yn− k

, n � 0, 1, . . . , (2)

with the initial conditions y− k, . . . , y0 ∈ (0,∞), where A> 0
and k ∈ 2, 3, . . .{ }. More recently, El-Owaidy et al. [3], Stević
[4–7], and many other authors have studied the dynamics of
the difference equations in the family:

xn+1 � α +
x

p
n

x
p
n

, n � 0, 1, . . . , (3)

with the initial condition x0 > 0, where α ∈ [0,∞) and
p ∈ [1,∞). In continuation of this research work, Aloqeili
[8] studied the asymptotic behaviour of the rational dif-
ference equation:

xn+1 � α +
x

p
n

x
p
n− 1

, n � 0, 1, . . . , (4)

with the initial conditions x− 1, x0 ∈ (0, +∞), where
α ∈ [0,∞) and p ∈ (0, 1).

Aloqeili [8] also studied a more general difference
equation, i.e.,

xn+1 � α +
x

p
n

x
p

n− k

, n � 0, 1, . . . , (5)

with the initial conditions x− k, . . . , x0 ∈ (0, +∞), where
α ∈ [0,∞), p ∈ (0, 1), and k ∈ 1, 2, . . .{ }.

We note that the technique of proof in [1–24] and in
many other related papers is essentially based on the line-
arized stability theorem, on the one hand, and on the initial
conditions, which are in almost all cases restricted to positive
values, on the other hand.

Starting from these facts, as announced in Section 1, our
aim in this paper is to obtain asymptotic stability results for a
class of difference equations with intrinsic initial conditions.

To this end, we need some basic notions and results used
in the study of difference equations. We shall be mainly
concerned with the particular case X: � I, where I ⊂ R is an
interval. In this context, a fixed point x∗ of f is usually called
an equilibrium point of the first-order difference equation
xn+1 � f(xn), n≥ 0.

Reminding, see for example [18], that the equilibrium
point x∗ of the k-order difference equation

xn+1 � T xn, . . . , xn− k+1( 􏼁, n � k − 1, k, k + 1, . . . , (6)

is said to be locally stable if, for every ϵ> 0, there exists δ > 0
such that, for all x0, x1, . . . , xk− 1 ∈ I satisfying

x0 − x
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + x1 − x

∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + · · · + xk− 1 − x

∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< δ, (7)

one has

xn − x
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< ϵ, ∀n≥ 0. (8)

(e equilibrium point x∗ of (6) is said to be stable if x∗ is
a locally stable solution and there exists δ > 0 such that, for all
x0, x1, . . . , xk− 1 ∈ I satisfying (7), one has

lim
n⟶∞

xn � x
∗
. (9)

(e equilibrium point x∗ of (6) is a global attractor if, for
all x0, x1, . . . , xk− 1 ∈ I, one has

lim
n⟶∞

xn � x
∗
. (10)

(e equilibrium point x∗ of (6) is globally asymptotically
stable if x∗ is simultaneously locally stable and a global
attractor of (6).

(e equilibrium point x∗ of (6) is unstable if it is not
locally stable.

3. Global Asymptotic Stability of First-Order
Difference Equations with Intrinsic
Initial Conditions

We start by studying the stability of the solutions of a simple
first-order difference equation with intrinsic initial
condition.

Theorem 1. *e equilibrium point x∗ � 3 of the difference
equation

xn+1xn − 2xn � 3, n � 0, 1, 2, . . . , (11)

is globally asymptotically stable.

Proof. First of all, we note that no explicit initial condition is
associated with the difference equation (11). It is also easy to
see that the equilibriums of equation (11) are the roots of the
quadratic equation x2 − 2x − 3 � 0, that is, x∗ ∈ − 1, 3{ }.

We shall prove now that the equilibrium point x∗ � 3 is
globally asymptotically stable. Assume there exists m ∈ N∗
such that xm � 3. (en, by (11), xm− 1 � 3, . . . ,, x1 � 3 and
x0 � 3. Moreover, one can show by induction that, in this
case, we also have xn � 3, for all n>m.

(erefore, if one single term of the sequence xn􏼈 􏼉 would
be equal to 3, in particular, if x0 � 3, then all its terms have
the same value and so the equilibrium x∗ � 3 is globally
asymptotically stable.

Furthermore, let us assume that xn ≠ 3, for all n≥ 0. In
this case, we can denote

yn �
1

xn − 3
, n≥ 0. (12)

Note also that xn ≠ 2, for all n≥ 0. Indeed, if we would
have xm � 2 for a certain m ∈ N, then, by (11), we would get
0 � 3, a contradiction.

So, by (11), we have
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yn �
1

xn − 3
�

1
3/ xn+1 − 2( 􏼁( 􏼁 − 3

�
xn+1 − 2

3 3 − xn+1( 􏼁

� −
1
3

−
1
3

·
1

xn+1 − 3
,

(13)

which shows that the sequence yn􏼈 􏼉 satisfies the linear re-
currence relation

yn+1 � − 3yn − 1, n≥ 1, (14)

which can be written in a telescopic form as
yn+1

(− 3)
n+1 �

yn

(− 3)
n −

1
(− 3)

n+1, n≥ 1. (15)

Now, by summing up the n relations obtained from (15)
by letting n: � p, p + 1, . . . , n + p − 1,

yp+1

(− 3)
p+1 �

yp

(− 3)
p −

1
(− 3)

p+1,

yp+2

(− 3)
p+2 �

yp+1

(− 3)
p+1 −

1
(− 3)

p+2,

. . .

yn+p

(− 3)
n+p �

yn+p− 1

(− 3)
n+p− 1 −

1
(− 3)

n+p,

(16)

one obtains

yn+p

(− 3)
n+p �

yp

(− 3)
p − 􏽘

n+p− 1

k�p

1
(− 3)

k+1, (17)

which yields, after computing the geometric progression
sum,

yn+p � (− 3)
n

· yp +
(− 3)

n
− 1

4
, n, p≥ 0. (18)

Now, in view of (12), it follows that xn􏼈 􏼉 satisfies

xn+p �
xp − 3 + 3 xp + 1􏼐 􏼑(− 3)

n

3 − xp + xp + 1􏼐 􏼑(− 3)
n

, n, p≥ 0. (19)

Since all transformations that lead us to (19) were well
determined, we conclude that the denominator of the
fraction in (19) is always nonzero, that is,

xp ≠
(− 3)

n
+ 3

1 − (− 3)
n, n � 1, 2, . . . ; p � 0, 1, 2, . . . . (20)

Hence, if we denote by E the set of excluded values for
any term of the sequence xn􏼈 􏼉, i.e.,

E �
(− 3)

n
+ 3

1 − (− 3)
n: n � 1, 2, . . .􏼨 􏼩, (21)

then we conclude that the intrinsic initial condition for the
difference equation (11) is

x0 ∈ R/E. (22)

Now, under the intrinsic initial condition (22), by simply
letting n⟶∞ in (19), we obtain

lim
n⟶∞

xn � 3, (23)

which shows that the equilibrium point x∗ � 3 of (11) is
globally asymptotically stable. □

Remark 1.
(a) (eorem 1 above extends (eorem 3.1 in [25], see also

[26], where the explicit initial condition was
x0 ∈ (0, +∞), while in (eorem 1, it is intrinsic.

(b) We note that the points 0, − (3/2), and − (6/7) which
are the borders of the set of initial conditions in
(eorem 3.3 in [26] are actually the first three ele-
ments en of the set E defined above and are obtained
for n � 1, n � 2, and n � 3, respectively.

(c) It is easy to check that

en �
(− 3)

n
+ 3

1 − (− 3)
n⟶ − 1, as n⟶∞, (24)

which explains why the equilibrium point y∗ � − 1 of the
difference equation (11) is unstable.

One may prove similarly the following more general
result.

Theorem 2. Let a, b ∈ R∗, a≠ b, and |a|> |b|. *en, the
equilibrium point x∗ � a of the difference equation

xn+1xn − (a + b)xn + ab � 0, n � 0, 1, . . . , (25)

is globally asymptotically stable.

Proof. We note that no explicit initial condition is asso-
ciated with the difference equation (25). It is also easy to see
that the equilibriums of the difference equation (25) are the
roots of the characteristic equation x2 − (a + b)x + ab � 0,
that is, x∗ ∈ a, b{ }.

We shall prove now that the equilibrium point x∗ � a is
globally asymptotically stable, while x∗ � b is unstable.
Assume there exists m ∈ N∗ such that xm � a. (en, by (25),
xm− 1 � a, . . ., x1 � a, and so x0 � a. Moreover, one can show
by induction that, in this case, we also have xn � a, for all
n>m.

(erefore, if one single term of the sequence xn􏼈 􏼉 would
be equal to a, in particular, if x0 � a, then all its terms would
have the same value and so the equilibrium x∗ � a is globally
asymptotically stable.

Now, let us assume that xn ≠ a, for all n≥ 0, and denote

yn �
1

xn − a
, n≥ 0. (26)

In this case, we also have xn ≠ a + b, for all n≥ 0. Indeed,
if we would have xm � a + b, for a certain m ∈ N, then, by
(25), we would get immediately 0 � ab, a contradiction.
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So, by (25), we have

yn �
1

xn − a
�

1
ab/ a + b − xn+1( 􏼁( 􏼁 − b

� −
1
b

·
xn+1 − b − a

xn+1 − b
,

(27)

which shows that, in this way, we have linearized the
nonlinear difference equation (25), since yn􏼈 􏼉 satisfies a
linear difference equation:

yn+1 � −
b

a
yn +

1
a

, n≥ 0. (28)

Similar to the proof of (eorem 1, one obtains

yn+p �
a

b
􏼒 􏼓

n

· yp +
1
b

􏽘

n− 1

k�0

a

b
􏼒 􏼓

k

, n, p≥ 0. (29)

Since a≠ b, by evaluating the sum in (29), one obtains

yn+p �
a

b
􏼒 􏼓

n

· yp +
1 − (a/b)

n

b − a
, n, p≥ 0, (30)

which, in view of (26), yields

1
xn+p − a

�
xp − a + b − xp􏼐 􏼑(a/b)

n

b − a)) xp − a􏼐􏼐 􏼑
, n, p≥ 0. (31)

Since all transformations that lead us to (31) were
equivalent, we conclude that the numerator of the fraction in
the right-hand side of (31) is always nonzero, that is,

xp ≠
ab

n
− ba

n

b
n

− a
n , n � 1, 2, . . . ; p � 0, 1, 2, . . . . (32)

Hence, if we denote by E, the set of excluded values for
any term of the sequence xn􏼈 􏼉, i.e.,

E �
ab

n
− ba

n

b
n

− a
n : n � 1, 2, . . .􏼨 􏼩, (33)

then we conclude that the intrinsic initial condition for the
difference equation (25) is

x0 ∈ R/E. (34)

Now, by (31), we have

xn+p − a �
(b − a) xp − a􏼐 􏼑

xp − a + b − xp􏼐 􏼑(a/b)
n
, (35)

and having in view the fact that |a|> |b|, by letting n⟶∞
in the previous equality, we obtain

lim
n⟶∞

xn � a, (36)

which shows that the equilibrium point x∗ � a of (25) is
globally asymptotically stable. □

Remark 2. (a) One can check that

en �
ab

n
− ba

n

b
n

− a
n ⟶ b, as n⟶∞, (37)

which shows that the equilibrium point b of the difference
equation (25) is unstable.

(b) If a � 3 and b � − 1, then the difference equation (25)
in (eorem 2 reduces to the difference equation (11)
from (eorem 1.

In the particular case a � 2 and b � − 1, by(eorem 2, we
obtain a stability result that extends (eorem 3.1 in [25] to
the case of an intrinsic initial condition. Note that, in
(eorem 3.1 from [25], the initial condition is x0 ∈ (0,∞).

Corollary 1. *e equilibrium point x∗ � 2 of the difference
equation

xn+1 � 1 +
2
xn

, n � 0, 1, . . . , (38)

is globally asymptotically stable.

We end the paper with a stability result that covers the
case a � b.

Theorem 3. If a ∈ R∗, then the equilibrium point x∗ � a of
the difference equation

xn+1xn − 2axn + a
2

� 0, n � 0, 1, . . . , (39)

is globally asymptotically stable.

Proof. It is also easy to see that the unique equilibrium of
the difference equation (39) is the double root of the
characteristic equation x2 − 2ax + a2 � 0, that is, x∗ � a.
(e case xm � a for some m is trivial. Consider xn ≠ a for all
n � 0, 1, 2, . . ., and similar to the proof of (eorem 2, we
obtain

1
xn+p − a

�
nxp − (n − 1)a

a xp − a􏼐 􏼑
, (40)

from which we deduce that the intrinsic initial condition
associated to (39) is

x0 ≠
n − 1

n
· a, (41)

and therefore,

xn+p − a �
a xp − a􏼐 􏼑

nxp − (n − 1)a
⟶ 0, as n⟶∞. (42)

□
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4. Numerical Experiments

We performed some numerical experiments for the differ-
ence equation (11) and for various values of x0 satisfying the
intrinsic initial condition. (e most significant ones are
presented in Table 1.

Except for the initial value x0 � 10, the values of x0 in the
other five cases were chosen in such a way to be close enough
to the unstable equilibrium point y∗ � − 1, that is,
x0 ∈ − 1.01; − 1.001{ }, or close enough to some points in the
exception set E, that is, x0 ∈ − 0.76; − 0.751{ } and x0 � 0.1,
respectively. (e obtained results are presented in Table 1
and illustrate both the global asymptotical stability of the
equilibrium point x∗ � 3 and the rate of convergence (N
denotes the number of iterations needed to reach the so-
lution, with 6 exact digits).

Note that the rate of convergence of the dynamical
system xn􏼈 􏼉 defined by the difference equation (11) is linear,
see [27], that is,

lim
n⟶∞

xn+1 − 3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

xn − 3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1 �

1
3
, (43)

a fact which is illustrated by the numerical results given in
Table 1.

5. Conclusion

In this paper, we have studied the asymptotic global sta-
bility of the positive solutions for a class of first-order
difference equations with an innovative feature: the initial
conditions are intrinsic and not explicitly given, as usual in
the literature. Global stability results have been obtained
first in a particular case and then for a general class of first-
order difference equations. We also illustrate the theo-
retical results by some numerical experiments obtained by
the use of the mini software package FIXPOINT. (e
numerical tests illustrate both the asymptotic global sta-
bility of the solutions and the rate of convergence of the
iterative process.

To the best of our knowledge, our approach is the first
one to study the stability of solutions for second-order
difference equations without explicit initial conditions and
might generate an interesting new direction of further

studies with important applications in the study of phe-
nomena and dynamical processes from several fields of
applied sciences and engineering.

(e future work is planned to extend this idea by
considering first fractional difference equations, following
the ideas in [28–31], as well as by considering k-order
difference equations and k-order fractional difference
equations with k≥ 3, see [32, 33].

Data Availability
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et de *éorie de l’Approximation, vol. 10, no. 1, pp. 95–100,
1981.

[10] M. Saleh and M. Aloqeili, “On the rational difference equa-
tion,” Applied Mathematics and Computation, vol. 171, no. 2,
pp. 862–869, 2005.

[11] M. Saleh and M. Aloqeili, “On the rational difference equa-
tion,” Applied Mathematics and Computation, vol. 177, no. 1,
pp. 189–193, 2006.

[12] A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, “On
the recursive sequence xn+1 � α + (xn− 1/xn),” Journal of
Mathematical Analysis and Applications, vol. 233, no. 2,
pp. 790–798, 1999.

[13] E. Camouzis, R. DeVault, and G. Ladas, “On the recursive
sequence xn+1 � − 1 + (xn− 1/xn),” Journal of Difference
Equations and Applications, vol. 7, no. 3, pp. 477–482, 2001.
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[19] M. Păcurar, “Approximating common fixed points of Prešić-
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