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Many objects in the real world have circular feature. In general, circular feature’s pose is represented by 5-DoF (degree of freedom)
vector ξ � (X,Y,Z, α, β)T. It is a difficult task to measure the accuracy of circular feature’s pose in each direction and the
correlation between each direction.)is paper proposes a closed-form solution for estimating the accuracy of pose transformation
of circular feature.)e covariance matrix of ξ is used to measure the accuracy of the pose.)e relationship between the pose of the
circular feature of 3D object and the 2D points is analyzed to yield an implicit function, and then Gauss–Newton theorem is
employed to compute the partial derivatives of the function with respect to such point, and after that the covariance matrix is
computed from both the 2D points and the extraction error. In addition, the method utilizes the covariance matrix of 5-DoF
circular feature’s pose variables to optimize the pose estimator. Based on pose covariance, minimize the mean square error (Min-
MSE) metric is introduced to guide good 2D imaging point selection, and the total amount of noise introduced into the pose
estimator can be reduced.)is work provides an accuracy method for object 2D-3D pose estimation using circular feature. At last,
the effectiveness of the method for estimating the accuracy is validated based on both random data sets and synthetic images.
Various synthetic image sequences are illustrated to show the performance and advantages of the proposed pose optimization
method for estimating circular feature’s pose.

1. Introduction

Pose estimation is an essential step in many machine vision
and photogrammetric applications, and the ultimate goal of
pose estimation is to identify 3D pose of an object of interest
from an image or image sequence [1, 2]. )e existing al-
gorithms detect elliptic from 2D image, and the 3D pose of
the circular can be extracted from single image using the
inverse projection model of the calibrated camera (see
Figure 1(b)) [3–5].)ese methods are successfully applied to
pose estimation of underwater dock [6] and pose estimation
of the bait [7]. For the application of the monocular vision
pose estimation system using circular feature in industrial,
quite a few works on accuracy are presented; however, in-
dustrial application needs very high requirement to preci-
sion. )e process of pose estimation is so complicated that it

is difficult to observe the effect of the each parameter error
on pose error and measure the accuracy of the circular
feature’s pose. To overcome this, in the paper, the covariance
matrix of the pose vector is used to measure the accuracy of
the circular feature’s pose, and the paper proposes a closed-
form solution for estimating the accuracy of circular fea-
ture’s pose. However, before doing so, let us revisit several
contributions related to the proposed method.

)e accuracy of the monocular vision circular pose
estimation system is related to many factors such as the
detection error of image coordinate, the scale error of object
model, and the camera calibration error. To evaluate error of
elements in 3D pose estimation result, at the same time, the
effects from related factors to 3D pose estimation result are
analyzed and two approaches have been developed. A
common approach was implemented for error analysis of 3D
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pose estimation result with the ideal simulation model of the
monocular vision pose estimation system. It does not derive
the error propagation equations for the pose estimation
model. An ideal monocular vision pose estimation system
was adopted for experiment, and the various parameters of
the monocular vision system were introduced into the pose
estimation model, through which the main parameters that
influence the error of pose estimation were concluded. )e
most effective accuracy optimization method was found in
[1], [4, 8–13]. In [11], an error analysis method considering
multiple error factors was proposed, and the camera internal
error, lens distortion error, image point’s detection error,
and object error were introduced into the pose estimation
model simultaneously based on actual error levels. )e
influence of suppressing parameter errors improving camera
resolution on the pose estimation results was obtained.
Above error analysis is based on the sampled model of 3D
pose estimation, but this analysis just provides a rough
qualitative result from the theory; for the quantitative result
of error estimation, one needs to compute the covariance
matrix of unknown variables.

Another approach based on a known model in the real
project is that the error of the pose can be expressed by the
error of the various parameters of the monocular vision
system, and then one gets covariance of pose variables for the
quantitative result of error estimation [14–24]. In [14–18],
the simplified 3D pose estimation model is constructed
instead of so complicated pose estimation model for special
real project of the vision measure system, and the relation
between the error of various input parameters and pose
measurement error has been deduced by the first derivative
of pose on each input parameter. In [21], error propagation
rules in 3D reconstruction process have deduced on the base
of the matrix analysis method, and a calculation method of
the covariance matrix has put forward to evaluate error of
elements in 3D reconstruction result. )rough this work,
one can conclude which parameter mainly influences the
accuracy of the pose estimation so as to provide some

reference for choosing different optimization technique for
improving the accuracy of pose estimation.

Although the conclusion of these approaches provides
important guidance for engineering application of the visual
pose estimation system, the drawback of above methods is
that the covariance is computed by setting multigroup actual
pose parameters statistically. So, these works incur increased
timing. In [23, 24], the covariance matrix of pose variables is
used to measure the accuracy of relative pose, and a closed-
form solution for estimating the accuracy of pose trans-
formation is proposed. An implicit function from the three
dimensional point pairs to the pose variable is defined, and
then implicit theorem is employed to compute the partial
derivatives of function with respect to such point pairs, and
after the covariance matrix is computed from both the
changing trend of implicit function and the measuring error
of the camera.)e proposed method provides fast numerical
solutions for covariance of pose variables. Above methods
rely on the direct relationship between image points and
pose parameters to construct the 3D model of pose esti-
mation for estimating the covariance matrix of pose vari-
ables. In the process of 2D-3D pose estimation using circular
feature, the least square model and many matrix transfor-
mations are used and it is much complex. For measuring the
accuracy of circular feature’s pose variables in each direction
and the correlation between each direction, it is a chal-
lenging task to have representations for the covariance
matrix of 5D circular feature’s pose variables with good and
fast numerical solution by building the relationship directly
from the image points to the 5D pose variables.

In this work, the proposed algorithm measures the ac-
curacy of the circular feature’s pose variables using the
covariance matrix of pose variables. We propose a closed-
form solution for estimating the covariance matrix of 5D
circular feature’s pose variables by exploiting 2D imaging
point’s coordinates and its extraction error. )e main
contributions of the present work can be summarized as
follows:
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Figure 1: )e projection of circular feature of 3-D object into the image plane (a) and a location and orientation of a circular feature (b).
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(1) )e paper proposes a closed-form solution for es-
timating the accuracy of 5D circular feature’s pose
variables using 2D imaging point’s coordinate and its
extraction error covariance matrix.

(2) )e projection of the circular feature of 3D object
yields a 2D virtual elliptic contour, and algebraic
distance from 2D imaging point to the elliptic
contour is employed to yield an implicit function
from the image points to 5D pose variables as de-
fined, and then Gauss–Newton theorem is employed
to compute the partial derivatives of the function
with respect to such point. For this, one can obtain
error propagation rules in 3D pose estimation
process and the relation between the extraction error
of 2D imaging point’s coordinate and circular fea-
ture’s pose variable error. )ese works are used to
compute the covariance matrix of circular feature’s
pose variables.

(3) )e covariance of 2D imaging point’s extraction
error due to quantization can be computed by the
size of quantization unit [19]. )e error propagation
rules are combined with the 2D imaging point’s
coordinate, and its quantization error covariance
computes the covariance matrix of circular feature’s
pose variables. )e proposed algorithm provides a
closed-form solution for estimating the covariance
matrix of circular feature’s pose variables instead of
Monte Carlo simulation.

(4) )e covariance matrix of 5D circular feature’s pose
variables is employed to the object 2D-3D pose es-
timation system using circular feature. )e proposed
optimal algorithm yields high accuracy of object 2D-
3D pose estimation, and low location error values are
obtained when processing a sequence of 2D mon-
ocular images degraded with additive noise.

)e paper is organized as follows. In Section 2, we define
the representation method of the 5D circle pose parameters
and then give the representation of the projection of the 3D
object circular feature using the 5D circular pose variables.
Section 3 explains the proposed closed-form solution for
estimating the accuracy of 5D pose variables for 2D-3D
object pose estimation systems using circular feature. Spe-
cifically, we discuss the definition method of an implicit
function from the image points to 5D pose variables and the
representations for the covariance matrix of 5D circular
feature’s pose variables with good and fast numerical so-
lution by building the relationship directly from the image
points to the 5D pose variables. In Section 4, we briefly
explain the proposed pose optimization algorithm for object
2D-3D pose estimation using circular feature and the co-
variance matrix of 5D circular feature’s pose for selecting
good 2D imaging point for object 2D-3D pose optimization.
Section 5 presents experimental results obtained with the
proposed closed-form solution and the proposed pose op-
timization algorithm when processing synthetic image,
which are discussed and compared with the obtained by
Monte Carlo simulation and existing object 2D-3D pose

estimation using circular feature. )e conclusions of the
present work are summarized in Section 6.

2. Preliminaries

2.1. 
e Position and Orientation of a Circular Feature in 3D.
As shown in Figure 1(a), we have shown two coordinate
frames. )e camera frame XC − YC − ZC is a 3D frame with
the origin as the projection center and has its ZC − axis

pointing to direction it is pointed.)e image frame u − v is a
2D frame with u and v axes parallel to YC and XC of the
camera frame, respectively.)e projection of circular feature
with a radius of R into the image plane is represented as
elliptic g.

As shown in Figure 1(b), the position and orientation of
a circular feature in 3D are completely specified by the
coordinates of its center G and the direction angle of the
surface normal vector GP0

⇀
. We will adopt a convention that

points the surfaces normal from the circular towards the
direction where the circular is visible [25]. Examples are
shown in Figure 1(b). )e direction angle α indicates the
angle between the projection of GP0

⇀
into the plane OC −

XCZC and the axis OcXc. )e positive angle is defined as the
counter clockwise rotation of G′P0′

⇀
. )e direction angle β

indicates the angle between GP0
⇀

and OcZc axis. )e positive
angle is defined as the counter clockwise rotation of GP0

⇀
. In

addition, GP0
⇀

� 1 and GP0
⇀

� (l, m, n)T � (sin β cos α,

sin β sin α, cos β)T. )erefore, the position and orientation
of a circular feature in 3D can be expressed as
ξ � (X, Y, Z, α, β)T, where the coordinates of the center G

are represented as G � (X, Y, Z)T [26].

2.2. 
e Representation of the Projection of the 3D Object
Circular Feature Using ξ � (X, Y, Z, α, β)T. To interact with
2D imaging points, the circular feature in 3D has to be
projected to the image plane and then the result yields a 2D
virtual elliptic contour Φ(ξ, (x, y)). In the section, we shall
give the representation of the projection of the 3D object
circular feature using the circular feature’s pose variables ξ �

(X, Y, Z, α, β)T for constructing an implicit function from
2D imaging point to 5D pose variables.

For each pose configuration ξ � (X, Y, Z, α, β)T, one can
derive Φ(ξ) as follows: let (X, Y, Z)T and (l, m, n)T denote
the center coordinate and surface normal vector of the
circular feature in 3D with radius R. Equation for projection
of the circular feature in 3D into the image plane to yield the
2D ellipse curve Φ(ξ, (x, y)) is as follows:

Ax
2

+ Bxy + Cy
2

+ Dx + Ey + F � 0 B
2

− 4AC � 1􏼐 􏼑,

(1)

where the parameter (A, B, C, D, E, F)T is represented by the
location G � (X, Y, Z)T and 3D orientation (l, m, n)T

� (sinβcosα, sinβsinα, cosβ)T and we need to distinguish it
from reference [25]. See Appendix A for detailed derivation.
Moreover, the parameters can be denoted as
Φ(ξ) � (A(ξ), B(ξ), C(ξ), D(ξ), E(ξ), F(ξ))T, and we rep-
resent this 2D virtual elliptic contour by its normalized
coefficients: 􏽥Φ(ξ) � (Φ(ξ)/Φ(ξ)).
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Φ(ξ) �

((sin β sin α)Y + cos βZ)
2

+(sin β cos α)
2

Y
2

+ Z
2

− R
2

􏼐 􏼑;

− 2(sin β sin α)X(sin β sinαY + cos βZ) − 2(sin β cos α)Y((sin β cos α)X + cos βZ)

+ 2((sin β cos α) · (sin β sin α)) Z
2

− R
2

􏼐 􏼑;

(sin β sin α)
2

X
2

+ Z
2

− R
2

􏼐 􏼑((sin β cos α)X + cos βZ)
2
;

− 2Xcos βf((sin β sin α)Y + cos βZ) + 2cos β(sin β cos α)fY
2

− 2f(sin β cos α) Z((sin β cos α)X +(sin β sin α)Y) − cos βR
2

􏼐 􏼑;

2(sin β sin α) cos βR
2

− 2cos βfY((sin β cos α)X + cos βZ)

− 2(sin β sin α)f Z((sin β cos α)X +(sin β sin α)Y) − cos βR
2

􏼐 􏼑;

X
2
(cos β)

2
+ Y

2
(cos β)

2
+((sin β cos α)X +(sin β sin α)Y)

2
f
2

− R
2
(cos β)

2
f
2
;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where f is the focal length of the camera.

3. Method Description

In this section, we present the closed-form solution for
computing the covariance matrix of 5D circular feature’s
pose variable using 2D imaging points and its extraction
error covariance under the implicit function. We shall
discuss the definition method of implicit function by al-
gebraic distance from 2D imaging point to the elliptic
contour. Later, we shall incorporate such implicit function
with the Gauss–Newton theorem to obtain error propaga-
tion rules in 3D pose estimation process and the relation
between the extraction error of 2D imaging point’s coor-
dinate and circular feature’s pose variable error. For this, a
closed form for estimating the covariance matrix of circular
feature’s pose variables can be obtained.

3.1. Minimization Algebraic Distance to Yield an Implicit
Function. To interact with the 2D imaging points, we give
the representation of the projection of the 3D object circular
feature using ξ � (X, Y, Z, α, β)T and then these results yield
an implicit function Ecircle from all 2D imaging points to
circular pose variables. Moreover, the implicit function is
assumed to be constructed by the algebraic distance Epic

.
For each pose configuration ξ � (X, Y, Z, α, β)T, the

algebraic distance Epic
is then defined as the points-to-

contour distance Epic
(pi,

􏽥Φ(ξ)) between detected the ith 2D
imaging point pi(xi, yi)

T and the 2D virtual elliptic contour
Φ(ξ) � (A(ξ), B(ξ), C(ξ), D(ξ), E(ξ), F(ξ))T, which can be
denoted as follows:

Epic
pi,

􏽥Φ(ξ)( 􏼁 � 􏽥A(ξ) · x
2
i + 􏽥B(ξ) · xiyi + 􏽥C(ξ) · y

2
i , 􏽥D(ξ) · xi + 􏽥E(ξ) · yi + 􏽥F(ξ) � x

2
i , xiyi, y

2
i , xi, yi, 1􏽨 􏽩 · 􏽥Φ(ξ), (3)

where pi(xi, yi)
T ∈ p, p � pi(xi, yi)

T, i � 1, . . . , n􏽮 􏽯 indi-
cates the set of all detected 2D point on the image plane that
correspond to a 3D point on the circular feature in 3D. By
knowing that the circular feature’s pose parameters can be
obtained by minimizing the square sum of all detected 2D
imaging point’s algebraic distance, which is defined as
follows:

Ecircle � 􏽘
n

i�1
E
2
pic

pi,
􏽥Φ(ξ)( 􏼁 � Epc(p, 􏽥Φ(ξ))22 � D(p) 􏽥Φ(ξ)22,

(4)
where Epc(p, 􏽥Φ(ξ)) � [Ep1c(p1,

􏽥Φ(ξ)), . . . , Epnc(pn, 􏽥Φ(ξ))

]T and D(p) indicates the stack matrices of 2D imaging
points p � pi(xi, yi)

T, i � 1, . . . , n􏽮 􏽯, as expressed in the
following equation:

D(p) �

x
2
1 x1y1 y

2
1 x1 y1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x
2
n xnyn y

2
n xn yn 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

For convenient, we denoted f(p, ξ) � D(p) 􏽥Φ(ξ)。
)e least squares objective of circular feature’s pose

optimization can be written as follows:

argminξEcircle(ξ, p) � ‖f(p, ξ)‖22, (6)

where f(p, ξ) is a combination of 2D imaging points and
pin-hole projection. )e Levenberg–Marquardt method is
used for optimizing circular feature’s pose variables [27].

3.2. Computing Covariance Matrix of Circular Feature’s Pose
Variables through Implicit Function. In this subsection, we
describe the representations for the covariance matrix of 5D
circular feature’s pose variables with good and fast numerical
solution by using 2D imaging points and its extraction error
covariance under the nonlinear implicit function. Here,
Gauss–Newton theorem is employed to compute the partial
derivatives of the function with respect to such point, and
then one can derive the covariance matrix σ as follows.
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Solving the least squares objective of equation (6) needs
the first-order approximation to the nonlinear function
f(p, ξ) linearization about initial pose ξs:

‖f(p, ξ)‖22 ≈ f p, ξs
( 􏼁 + Jξ ξ − ξs

( 􏼁
����

����
2
2, (7)

where Jξ is a block matrix of size n × 6, n is the number of all
detected 2D imaging points; for simplicity, it can be
expressed as Jξ � (zf/zξ).

To minimize of the first-order approximation equation
(7) via Gauss–Newton,(d(f(p, ξs

) + Jξ(ξ − ξs
)
2
2)/d (ξ−

ξs
)) � 0 is used to yield an analytic expression of pose

optimization error Δξ � ξ − ξs, which can be denoted as
follows:

Δξ � J
+
ξ · f p, ξs

( 􏼁, (8)

where J+
ξ is the pseudo inverse of Jacobian matrix Jξ . )e

pose estimation error is affected by 2D imaging points
extraction error. Again with the first-order approximation of
at the initial pose ξS and 2D imaging point’s coordinate pS,
we can connect the pose estimation error to 2D imaging
point’s extraction errors:

Δξ � J
+
ξ · Jp p − p

s
( 􏼁, (9)

where Jp is a block diagonal matrix of size 1n × 2n; for
simplicity, it can be expressed as Jp � (zf(p, ξs

)/zp).
According to equation (9), error propagation rules from

2D imaging point’s coordinate extraction error Δp to cir-
cular feature’s pose variable error Δξ can be obtained, which
is denoted as follows:

Δξ � J
+
ξ Jp􏼐 􏼑Δp. (10)

Consider the case that only quantization error exists and
is i.i.d Gaussian with isotropic: Δp ∼N(μp, σ2p), we can
derive the pose covariance matrix:

􏽘

​

Δξ
� J

+
ξ Jp􏼐 􏼑 J

+
ξ Jp􏼐 􏼑

T
σ2p � σ2p · 􏽘

n

i�1
J

T
ξ (i) Jp(i)J

T
p(i)􏼐 􏼑

− 1
Jξ(i)⎛⎝ ⎞⎠

− 1

.

(11)

Still all 2D imaging points being detected should be
utilized, and we can compute the pose covariance matrix
from 2D imaging point’s coordinate and its extraction error
variance. )e variance of 2D imaging point’s quantization
error can be computed by the size of quantization unit in
Section 5.

4. Covariance for 2D-3DObjectPoseEstimation
Using Circular Feature

In 2D-3D object pose estimation system using circular
feature, 2D imaging points extraction error negatively affects
pose optimization result. Regarding accurate pose optimi-
zation, not all 2D imaging points being detected contribute
the same. If only those valuable towards accurate pose es-
timation are utilized, the total amount of noise introduced
into the 2D-3D object pose estimation system using circular
feature can be reduced, and this work improves the accuracy
of pose estimation result. Here, minimize the mean square
error (Min-MSE) metric is used to select S 2D imaging
points out of n candidates, and then the Max-Trace metric is
introduced to guide 2D imaging points selection. 2D im-
aging points selection occurs prior to Levenberg–Marquardt
pose optimization so that only a subset of selected features is
sent to the optimizer. First, according to Min-MSE criteria,
we shall give expression to evaluate a random subset of
candidates to identify the current “best” 2D imaging point.
Later, we shall briefly describe an algorithm for approxi-
mately solving the NP-hard Max-Trace problem.

4.1. Good 2D Imaging Points SelectionMetrics. Analyzing the
impact of 2D imaging points extraction error on pose op-
timization led to equations where the matrix trace of (J+

ξ Jp)

was connected to best case outcome. It well known that the
expectation of the quadratic form is equal to thematrix trace,
and it can be expressed as follows: E(ωTΨω) � Tr(Σω Ψ) with
ω ∼ N(0, Σω) According to this work and pose error
propagation rules equation (10), MSE(􏽥ξ) can be denoted as
follows:

MSE(􏽥ξ) � E (􏽥ξ − ξ)T
(􏽥ξ − ξ)􏼐 􏼑 � E tr (Δξ)T

(Δξ)􏽨 􏽩􏼐 􏼑 � tr E (Δξ)T
(Δξ)􏽨 􏽩􏼐 􏼑

� σ2p · tr J
+
ξ Jp􏼐 􏼑

T
J

+
ξ Jp􏼐 􏼑􏼔 􏼕 � σ2p · tr J

+
ξ Jp􏼐 􏼑 J

+
ξ Jp􏼐 􏼑

T
􏼔 􏼕,

(12)

where equation (12) gives the relationship among the 2D
imaging point’s coordinate ps, its extraction error variance,

and the MSE(􏽥ξ) criteria. Good 2D imaging point’s selection
metrics can be expressed as follows:

f(·) � min tr J
+
ξ Jp􏼐 􏼑 J

+
ξ Jp􏼐 􏼑

T
􏼔 􏼕􏼒 􏼓 � max tr J

+
ξ Jp􏼐 􏼑 J

+
ξ Jp􏼐 􏼑

T
􏼔 􏼕􏼒 􏼓

− 1
􏼠 􏼡􏼠 􏼡. (13)
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4.2. Efficient Max − Trace Subset Selection. By knowing that
subset selection with the Max − Trace metrics is equivalent
to a finite combinational optimization problem, it can be
denoted as follows:

min
ps⊆p, ps| |�s

tr ps( 􏼁 � tr J
+
ξ Jp ps( 􏼁􏽨 􏽩 J

+
ξ Jp ps( 􏼁􏽨 􏽩

T
􏼒 􏼓,

⟹ max
ps⊆p, ps| |�s

tr ps( 􏼁 � tr J
+
ξ Jp ps( 􏼁􏽨 􏽩 J

+
ξ Jp ps( 􏼁􏽨 􏽩

T
􏼒 􏼓

− 1
􏼠 􏼡,

(14)

where s is the indices of selected row blocks from full matrix
(J+

ξ Jp). Also, it is the indices of selected 2D imaging point.
Moreover, in equation (14), ([J+

ξ Jp(ps)][J+
ξ Jp(ps)]

T)− 1 can
be rewritten as follows:

J
+
ξ Jp ps( 􏼁􏽨 􏽩 J

+
ξ Jp ps( 􏼁􏽨 􏽩

T
􏼒 􏼓

− 1
� 􏽘

s

i�1
J

T
ξ (i) Jp(i)J

T
p(i)􏼐 􏼑

− 1
Jξ(i)

� 􏽘
s

i�1
J

+
p(i)Jξ(i)􏽨 􏽩

T
J

+
p(i)Jξ(i)􏽨 􏽩.

(15)

Note that the Jacobian Jp is a 1n × 2n block diagonal
matrix, consisting of 1 × 2 denoted by Jp(i). Meanwhile,
each row block of Jξ can be written as Jξ(i).

To remove the need for the pseudo inverse of Jp, add one
more row [0, 1] to each block Jp(i), where
Jn

p(i) � [Jp(i); 0 0 1]. In addition, a zero row is added to each
row block Jξ(i) to get new row block
Jn
ξ(i) � [Jξ(i); 0, 0, 0, 0, 0]. )is trick does not affect the
structure of the least square problem, but it does allow
inversion of the new block Jn

p(i) � [Jp(i); 0 0 1]. After
performing block-wise multiplication, one can obtain the
combined matrix Jc(i), consisting of concatenated row
blocks Jn

p(i)− 1Jn
ξ(i). Instead of working with two indepen-

dent matrices Jξ and Jp, we consider optimizing their
combination Jc.

For this, good 2D imaging point’s selection problem is
equivalent to selecting a subset of row blocks in the matrix
Jc, and then equation (15) can be rewritten as follows:

[S] � max
s⊆ 1,2,...,n{ },|S|�k

tr 􏽘 Jc(S)􏼂 􏼃
T

Jc(S)􏼂 􏼃􏼐 􏼑, (16)

where the combinational optimization above can be solved
with brute-force, but the exponentially growing problem
space quickly becomes impractical to search, especially for
real-time application. Subset selection with Max − Trace
metric has been studied in fields such as feature selection
[28]. Here, the stochastic-greedy-based Max − Trace 2D
imaging point’s selection algorithm is commonly used to
approximate the original NP-hard combinational optimi-
zation problem. 2D imaging point’s selection is done in three
steps:

(1) Compute the full 2D imaging points Jacobian Jξ and
Jacobian Jp;

(2) Combine the two into Jc;
(3) Greedily select row blocks of Jc, based on the matrix-

revealing metric Max − Trace, until reaching the
target subset size. Algorithm 1 summarizes the
stochastic-greedy-based Max − Trace 2D imaging
point’s selection algorithm [29].

5. Experiment Results and Discussion

)e results obtained with the proposed algorithm are pre-
sented and discussed in this section. First, the effectiveness of
the method for estimating the accuracy is validated based on
random simulation and synthetic data sets. Later, integrating
Max-Trace 2D imaging point’s selection into a 2D-3D object
pose estimation system using circular feature leads to ac-
curacy improvements with low overhead, as demonstrated
via evaluation on synthetic data sets.

5.1. AClosed-Form for Estimating Covariance vs.Monte Carlo
Simulation. )e effectiveness of a closed-form solution for
estimating covariance is demonstrated by comparing against
the Monte Carlo simulation method. )e Monte Carlo
simulation method is employed to compute the actual co-
variance value based on random data sets and synthetic data
sets and then compares actual value with estimation value.

)e simulation environment is depicted as follows.
Here, we produced a virtual camera based on the per-

spective projection model. )e image size was 256 × 256
pixels, and the effective focal length was f � 20mm, each
circular feature with the radius R � 100mm. After applying
a small random pose transform to 3D object with circular
feature, a fixed number (e.g., 180 in this simulation test) of
the 2D imaging points of circular feature are generated using
the 2D virtual elliptic contour model Φ(ξ, (x, y)). To
simulate extraction error, the 2D imaging points are per-
turbed with variety of measurement error: zero-mean
Gaussian with standard deviation of 0.25, 0.50, and 0.75
pixel. Figure 2 illustrates examples of noisy random data for
different values of σ2p.

Note that these random data are generated by MATLAB
pseudo-random data generator. )e mean and covariance of
2D imaging points coordinate extraction error can be
denoted as follows:

μ � [0, 0]
T
,

δcov �
σ2x

σ2y
⎡⎢⎢⎣ ⎤⎥⎥⎦,

(17)

where the extraction error of coordinate x and y is i.i.d.
Gaussian: Δx􏽥 N(0, σ2x), Δy􏽥 N(0, σ2y) To be statistically
sound, 500 runs are repeated for each 2D imaging point,
and one can obtain 500 numbers of 2D imaging point set.
For this, 500 numbers of pose estimation value can be
obtained by equation (6), and then the actual pose co-
variance matrix can be computed by using the Monte Carlo
simulation method.
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Another, one set is taken randomly from 500 numbers of
2D imaging point sets, and pose covariance estimation value
can be obtained using the proposed a closed-form solution.
Figures 3–5 present the projection of 5D ellipsoid corre-
sponding to estimate the pose covariance matrix and actual
pose covariance matrix into 2D plane, respectively, and the
confidence in the ellipse is 95%.)e simulation environment
sets ξ � [40, 90, 400, − (π/2), (π/18)]T, and it indicates the
center of ellipse. Figures 3–5 present the comparisons of real
and estimated covariance between translations and
rotations.

In Figures 3–5, the estimated pose covariance with the
proposed algorithm is indicated with ‘closed’; the actual pose
covariance obtained with Monte Carlo is indicated with
‘Monto.’ We can see that after processing random data with
variety of noisy conditions, the proposed algorithm is able to
estimate the pose covariance with good accuracy, and the
results are closed to actual pose covariance even in highly
noisy conditions. )ese results demonstrate that the pro-
posed algorithm can estimate the covariance matrix of 5D
circular feature’s pose variables with good and fast numerical
solution.

Estimating the covariance matrix of circular feature’s
pose variables requires the extraction error of each 2D
imaging point. Here, we use the mathematical tools in [19]
for the computation of the average value and the standard
deviation of the extraction error due to quantization. )e
maximum quantization error in the detected 2D imaging
points coordinates x, y being quantized is half the size of

the quantization unit, and in spatial quantization, the
maximum error is half a pixel, (r/2). )at is to say, the
actual value xa, ya of the detected 2D imaging points co-
ordinates x, y can be anywhere in the interval xa ∈ [xq −

(r/2), xq + (r/2)] and ya ∈ [yq − (r/2), yq + (r/2)], where
xq, yq is the value of x, y after quantization. Furthermore,
the likelihood of the actual value of x, y, i.e., xa, ya , being at
a certain place within the interval follows a uniform
probability density. In other words, the probability of xa, ya

lying inside the small interval dx, dy around the point
xq, yq is independent of x, y and equal to (1/r). For
example, the average value of the quantization error in x is
E(△x) � 􏽒

xq+(r/2)

xq− (r/2)
(1/r)(x − xq)dx � 0, and the average of

the absolute value error in x is E(|△x|) �

􏽒
xq+(r/2)

xq− (r/2)
(1/r)|x − xq|dx � (r/4), and the standard deviation

of the quantization error in x is σ2x � 􏽒
(r/2)

− (r/2)
(1/ r)

(△x)2d△x � (r2/12). So far, the extraction error of each
2D imaging point has been calculated.

To identify the estimated pose covariance that could
evaluate the accuracy of circular feature’s pose variables, a
synthetic data simulation is carried out. )e synthetic
image is rendered using 3 ds Max software, each frame of an
input image is composed of 3D object with circular feature
that follows an unknown pose, it is embedded into a
disjoint background, and the whole frame is degraded with
small additive noise. Each test image is monochrome image
with 256 × 256 pixels, and the effective focal length was

Data:Jc � Jc(1), Jc(2), . . . Jc(n)􏼈 􏼉, k

Result: Jsubc ⊆Jc, |Jsubc | � k

(1) Jsubc � ∅;
(2) while |Jsubc |< k do
(3) JR

c⟵ a random subset obtained by sampling |JR
c | � (n/k)log(1/ε) random elements from Jc;

(4) Jc(i)⟵ argmaxJc(i)∈JR
c
Trace(Jc(i)TJc(i) + [Jsubc ]T[Jsubc ]);

(5) Jsubc ⟵ Jsubc ∪ Jc(i);

(6) Jc⟵ (Jc/Jc(i));

ALGORITHM 1: An efficient approximation algorithm for Max − Trace feature selection.
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Figure 2: Random simulation data degraded with additive noise with the variance: (a) σp � 0.25 pixel, (b) σp � 0.50 pixel, and (c)
σp � 0.75 pixel.
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Figure 3: Comparisons of real and estimated covariance (among translations).
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Figure 4: Comparisons of real and estimated covariance (among translations and rotations).

–1.58–1.6–1.62 –1.56 –1.54 –1.52–1.64
α

β

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Closed: 0.25
Monto: 0.25
Closed: 0.50

Monto: 0.50
Closed: 0.75
Monto: 0.75

Figure 5: Comparisons of real and estimated covariance (among rotations).
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f � 20mm, each circular feature with the radius
R � 100mm, and the appearance of the object is dynam-
ically modified by changing their orientation angles and
location coordinates. By using equation (6), 500 numbers
of iterations are performed for the test image, and we
estimate the pose covariance matrix for each iteration by
using equation (11). Figure 6 presents the projection of 5D
ellipsoid corresponding to the estimation pose covariance
matrix, and the confidence in the ellipse is 95%. In Figure 6,
the estimated pose covariance with the proposed algorithm
corresponding to each iteration is indicated with ‘iteration
NO.’ We can see that the area of the ellipse decreases
gradually as the number of iterations increases. )e result
indicate that the accuracy of pose estimation is improving,
and estimated pose variable values are closed to actual pose
ξ � [40, 90, 400, − (π/2), (π/18)]T.

Figure 7 presents the estimated pose value distribution
curve in each pose variable. In Figure 7, the estimated pose
value distribution curve corresponding to each iteration is
indicated with ‘iteration NO.’ We can see that the peak value
of the each pose variable distribution curve is closed to the
actual value gradually as the number of iterations increases,
and the distribution is thin and higher. )e trend is similar
to the trend of Figure 6, and the result indicates the closed-
form solution for estimating the covariance matrix of 5D
circular feature’s pose variables with good and fast numerical
solution.

5.2. Good Imaging Points Selection for Circular Pose Esti-
mation vs. Other Method. )e results obtained with the
proposed algorithm for 3D pose estimation of a moving
object with circular feature from monocular scenes are
presented and discussed in this section. )ese results are
characterized in terms of accuracy of pose estimation when
processing synthetic image sequences. All these synthetic
image sequences are rendered using 3 ds Max software, each
frame of an input sequence is composed of 3D object with
circular feature that follows an unknown pose trajectory, it is
embedded into a disjoint background, and the whole frame
is degraded with additive noise. Each test sequence is
composed by m scene frames consisting of monochrome
image, and the appearance of the object during scene frames
is dynamically modified by changing their orientation angles
and location coordinates.

)e experiments are organized as follows. First, we explore
the effectiveness of the variety of matrix-revealing metrics
Max-Trace, Max-logDet [30], and Max-MinEigenValue [31]
for guiding good 2D imaging point selection. Second, a
performance comparison of the proposed algorithm with
respect to existing algorithms is presented and discussed by
processing synthetic image sequences.

)e accuracy of location estimation of the object is
determined by the location root mean square error (rmseL)
given by

rmseL �

�����������

1
m

􏽘

m

i�1
ξi

L − 􏽢ξ
i2
L

􏽶
􏽴

, (18)

where ξL and 􏽢ξL are the true and estimated coordinates of the
object in the scene, respectively, given in millimeters.
Moreover, the orientation root mean square error (rmseO) is
given by

rmseO �

�����������

1
m

􏽘

m

i�1
ξi

O − 􏽢ξ
i2
O

􏽶
􏽴

, (19)

where ξo and 􏽢ξo are the true and estimated the surface
normal vector of the object with respect of the observer,
respectively, given in millimeters.

)e performance of the tested algorithms is quantified in
terms of percentages of normalized absolute errors (NAEs),
between the real ξ and estimated 􏽢ξ pose parameters as
follows [32]:

NAE �
ξ − 􏽢ξ
ξ

× 100. (20)

)e percentages of normalized absolute errors of loca-
tion estimation of object are denoted by NAEL, and the
percentages of normalized absolute errors of orientation
estimation of the object are denoted by NAEO; both are
computed with equation (20).

Feature selection has been extensively studied in the
fields of VSLAM [28, 31], for which several equivalent
metrics exist to score the subset selection process. )ey are
listed in Table 1. To identify the matrix-revealing metrics
Max-Trace can guide good 2D imaging point selection, a
simulation of least square pose optimization was carried out
by processing synthetic image sequences. )e evaluation
scenario is depicted in Figure 8. Here, three matrix-revealing
metrics in Table 1 are employed to select 2D imaging points
set, and then the selected good imaging points are imputed
the pose optimization system.

)e test sequence is composed by 90 scene frames
consisting of monochrome image with 256 × 256 pixels, and
the effective focal length was f � 20mm, each circular
feature with the radius R � 100mm, and the appearance of
the object during scene frames is dynamically modified by a
small random pose transform to 3D object. )e 2D pro-
jection of 3D circular feature is detected by processing se-
quences of synthetic images corrupted with zero-mean
additive Gaussian noise with the variance σ2n � 2% and
perfectly matched with known 3D circular feature, and the
number of the detected 2D imaging points in each image
exceeds 90. An optimizer equation (6) estimates the random
pose from the matches. Subset size ranging from 40 to 85 is
tested.

2D imaging point selection occurs prior to pose opti-
mization so that only a subset of selected imaging point is
sent to the optimizer. Each of the matrix-revealing metrics
listed in Table 1 is tested. )e simulation results are pre-
sented in Figure 9. For reference, we also plot the simulation
results with 3σ subset selection (outlier rejection) and with
all features available (All).

From Figure 9, the Max-Trace metric has the best overall
performance. It more quickly approaches the baseline error
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(All). )e orientation error goes higher the All baseline,
while the locational error is significantly lower the baseline,
once the subset size exceeds 55.)e results point to the value
of Max-Trace good features selection.

)e accuracy improvement of good imaging point se-
lection using Max-Trace is further demonstrated by

comparing against other existing similar algorithms for
circular feature’s pose estimation using monocular images.
)e performance of the tested algorithms is quantified in
terms of root mean square error rmseL, between the real ξL

and estimated 􏽢ξL location parameter as in equation (18). We
compared the following methods:
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Figure 6: Estimated covariance results using the proposed closed-form solution: among translations (upper row) (a), among translations
and rotations (middle row) (b), and among rotations (bottom row) (c).
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(1) )e algorithm (·)[i] in [25]: )e ellipse detection [16]
is also the key issue of approaches that use the 2D
ellipse parameters to solve circular pose estimation
problem.)e 2D ellipse parameters were fitted using
the least squares method.

(2) )e algorithm (·)[ii] in [1]: )e external feature is
given, such as another circular, new points, or lines.
)e 2D ellipse parameters were given by the ellipse
detection to solve initial estimated solution. A
general frame to fuse circulars and points including

all situations such as one circle one point, two or
more circles, and other situations is addressed to
solve the duality problem in particular cases. And
then, a novel unified reprojection error for circles
and points is defined to determine the optimal pose
solution.

(3) )e algorithm (·)[iii]: )e input 2D imaging point set
contains some outliers, which affect the performance
of pose estimation when included. Due to the lack of
explicit outlier rejection in (·)[i], we add an outlier
rejection module to the (·)[i] pose optimization. )e
Disp∼N(μd, σ2d)∼N(μ, σ2) distribution can be ob-
tained from the distance Disp point-to-contour
between 2D imaging point and the detected 2D el-
lipse. )e imaging point with Disp ∈ [μp − 3 · σ2p, μ +

3 · σ2p] is preserved and is sent to pose estimation
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Figure 7: One dimensional probability distribution: translations (upper row) (a) and rotations (bottom row) (b).

Table 1: Commonly used matrix-revealing metrics [28].

Max − Trace Trace Tr(Q) � 􏽐
k
1 Qii is max

Max − MinEigenValue Min. eigenvalue λk(Q) is max
Max − logDet Log. of determinant logDet(Q) is max
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system (·)[i]. Such an implementation of outlier
rejection is far from efficient, but it will kick out most
of the outliers.

(4) )e algorithm (·)[iv]: )e proposed Max-Trace al-
gorithm is conducted on the whole set of input 2D
imaging points directly, and then the number of 2D
imaging points used is fixed (75 points per frame).
)e selected 2D imaging points are sent to the op-
timizer equation (6). Levenberg–Marquardt is used
for optimizing circular feature’s pose.

(5) )e algorithm (·)[v]: A candidate pool of all 2D
imaging points is selected using 3σ, from which the
good imaging point subset is further extracted based
on the proposed Max-Trace algorithm. As many as

75 imaging points can be used to optimize the pose
per frame.

(6) )e algorithm (·)[vi]: )e algorithm (·)[vi] presents a
method for object 3D pose estimation by processing
sequences of monocular images of the dynamics
target. )e algorithm is based on a hybrid meth-
odology combining the good 2D imaging points
selecting and unscented Kalman filter [33, 34] for
dynamically adaptive processing. )e good imaging
point subset is extracted using 3σ and the proposed
Max-Trace; these imaging points can be used to
optimize the observed for object. See Appendix B for
detailed of the objective function and Algorithm 2
summarizes the UKF-based 2D-3D object pose es-
timation algorithm.

(a) (b) (c)

Figure 8: Synthetic image sequences degraded with additive noise with the variance: σ2n � 2%.
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Figure 9: Simulation results of least square pose optimization: (a) first column: RMS of location error and (b) last column: RMS of
orientation error.
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A common character of these mentioned algorithms
(·)[i] − (·)[v] is that the object 3D pose is obtained from a
single monocular image. )e means of the NAEL of the five
algorithms are shown in Table 2, which are marked as T(·)

.avg.
For each approach type, the lowest percentages of nor-
malized absolute errors per sequence are in bold. On almost
all sequences, either (·)[iv] or (·)[v] has the lowest NAEL. On
synthetics sequence such as Seq.1, Seq.2, Seq.3, Seq.4, and
Seq.5, the proposed Max-Trace algorithm reduces the lo-
cation error significantly. )e exception is Seq.6 where the
proposed Max-Trace algorithm results in a higher than the
lowest one (generated by (·)[ii]). Overall, the proposed Max-
Trace approach reduces pose estimation error on several
sequences by exploiting the structural and motion infor-
mation. Integrating Max-Trace with outlier rejection
(i.e.,(·)[iii]) further improves performance.

Now, compare the algorithm (·)[v] with the two al-
gorithms (·)[i] and (·)[ii]. On synthetics sequences, the
algorithm (·)[v] clearly leads to lower location error.
Meanwhile on other sequence, the location error of the
algorithm (·)[v] is the same as baseline or slightly worse.
)e performance gains on the sequence which semimajor
axis a and semiminor axis b of the detected ellipse are
satisfied to (a/b)≫ 1 far outweigh the performance loss on
the sequence with (a/b) ≈ 1, as presented in the 8th col-
umn of Table 2.

Furthermore, compare the algorithm (·)[vi] with the
algorithm (·)[v]. On almost all synthetics sequences, (·)[vi]

clearly leads to lower location error. )is is because the
algorithm (·)[vi] consists of two advantages. On the one
hand, the algorithm takes into account the kinematics of
the target in the scene, and the temporal information
among the frames is used to improve the 3D pose esti-
mation of the rigid object. On the other hand, the good
imaging point subset is extracted, and these imaging points
can be used to optimize the observed for object. On syn-
thetics sequences Seq5, the location error of the algorithm
(·)[vi] is slightly worse, may be the suggestion value of the
parameter is not fit the seq5. It needs to set more appro-
priate value of parameter for different dynamic object
parameters. )e filter such as CKF [35], UKF, and PF [32]
can be used for the object 2D-3D pose estimation system,
and they can yield accurate results in 3D pose recognition
from sequences of monocular images of the dynamics
target.

6. Conclusions

)epaper proposes a closed-form solution for estimating the
accuracy of the circular feature’s pose. )e solution of
circular feature’s pose parameters is obtained using all de-
tected 2D imaging points corresponding to the circular

Table 2: )e mean of the location parameter absolute errors of six algorithms.

Seq.
Normalized absolute error (%)

T[i]
.avg T[ii]

.avg T[iii]
.avg T[iv]

.avg T[v]
.avg T[vi]

.avg Perf. gain (%)

1 0.89 0.88 0.87 0.87 0.84 0.39 5.60
2 0.63 0.92 0.62 0.60 0.60 0.47 4.80
3 0.66 1.58 0.66 0.63 0.66 0.54 4.50
4 0.86 0.86 0.88 0.79 0.75 0.62 12.8
5 1.42 1.40 0.99 0.97 0.96 1.16 31.40
6 0.76 0.76 0.77 0.85 0.82 0.77 − 7.90

Initialize: the state ξ0 is a random vector with knownmean μ0ξ � E[ξ0] and covariance P0
ξ � E[(ξ0 − μξ0)(ξ

0
− μξ0)

T], vk indicates the
process noise;
Set selection of sigma points:

(1) A set of 2L + 1 sigma points: χk− 1 � 􏼔ξk− 1 ξk− 1
+

����������
(L + λ)Pk− 1

ξ

􏽱
ξk− 1

−
����������
(L + λ)Pk− 1

ξ

􏽱
􏼕, where L is the dimension of the state vector;

(2) )e associated weights of each sigma points: ωξ � [(1/L + λ), (1/2(L + λ)), . . . , (1/2(L + λ))], ωP � [(1/L + λ)+ (1 − α2p + βp),

(1/2(L + λ)), . . . , (1/2(L + λ))], and the weights ωξ and ωP are used to compute the mean and covariance, respectively. )ere are
some suggestions for the values of some parameters: αp ∈ (0, 1], βp � 2, λ � α2p(L + κ) − L, κ≥ 0,
Prediction process: 􏽢ξ

k
� 􏽐

2L+1
j�1 ωξ

j􏽢χk
[j],

􏽢Pk

ξ � 􏽐
2L+1
j�1 ωP

j (􏽢χk
[j] − 􏽢ξ

k
)(􏽢χk

j − 􏽢ξ
k
)T + E(vkvT

k ), where the index [j] denotes the number of
columns in the matrix 􏽢χk;
Resampling of sigma points: 􏽢χk

∗ � 􏼔􏽢ξ
k􏽢ξ

k
+

��������

(L + λ)􏽢Pk

ξ

􏽱
􏽢ξ

k
−

��������

(L + λ)􏽢Pk

ξ

􏽱

􏼕;

Observation prediction: 􏽢zk � [ 􏽢Φ(􏽢χk
[1])

􏽢Φ(􏽢χk
∗[2]) . . . 􏽥Φ(􏽢χk

∗[2L+1])], μk
z � 􏽐

2L+1
j�1 ωξ

j􏽢z
k
[j]P

k
z � 􏽐

2L+1
j�1 ωP

j (􏽢zk
[j] − μk

z)(􏽢zk
[j] − μk

z)T + E(ckcT
k ),

where ck indicates the observation noise;
'e cross covariance: Pk

ξz � 􏽐
2L+1
j�1 ωP

j (􏽢χk
[j] − 􏽢ξ

k
)(􏽢zk

[j] − μk
z)T;

'e gain Kk is given by: Kk � Pk
ξzP

k− 1
z ;

Update: the posterior state vector and covariance are updated after the following formula:

ξk
� 􏽢ξ

k
+ Kk[zk − μk

z], Pk
ξ � 􏽢Pk

ξ − KkPk
z(Kk)T, where zk is the arrived observation in the step time k.

ALGORITHM 2: UKF for object 2D-3D pose estimation using circular feature.
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feature in 3D. )e algorithm presented the idea that the
relation from the 2D imaging point to circular feature’s pose
is represented by an implicit function, and then the implicit
function combined with the extraction error of 2D imaging
point computes the accuracy of the pose variables, which is
the covariance matrix of circular feature’s pose. )e main
contributions of the present work can be summarized as
follows: the algorithm defines a representation method for
5D circular pose parameters, and then the representation
combines with the projectionmodel of the 3D object circular
feature to yield 2D virtual ellipse contour. An implicit
function from 2D imaging point to the 5D circular feature’s
pose variable is defined using the points-to-contour dis-
tance, and then Gauss–Newton theorem is employed to
compute the Jacobi matrix of the function with respect to
such points; after that the Jacobi matrix is combined with 2D
imaging point coordinates to estimate the accuracy of cir-
cular feature’s pose variables. )e covariance matrix of
circular feature’s 5D pose variables is studied, and the metric
is introduced to guide the 2D imaging point selection. In-
tegrating 2D imaging point selection into the pose esti-
mation system leads to accuracy improvements of location
parameter.

Appendix

A. The 2D Ellipse Equation Parameter
Model with Pose Parameter

Let (X, Y, Z)T and (l, m, n)T denote the coordinate center
and surface normal vector of the circular feature in 3D with
radius R. Projection of the circular feature in 3D into the
image plane to yield the 2-D ellipse curve Φ(ξ, (x, y)) is
represented in the following equation:

Ax
2

+ Bxy + Cy
2

+ Dx + Ey + F � 0 B
2

− 4AC � 1􏼐 􏼑,

(A.1)

where we shall represent the parameters [A, B, C, D, E, F]T

by the location G � (X, Y, Z)T and the 3D orientation vector
(l, m, n)T.

To find the 2-D ellipse curve, we will first form a cone
having the projection center as vertex and which joins the
vertex to every point on the circular whose center position is
G � (X, Y, Z)T and surface normal vector is (l, m, n)T and
intersect the cone with the image plane Z � f.

In order to find the equation of the cone Scone, we need to
construct the equation of the base circularG and the line that
joins the vertex to the point on the circular G. )e equation
of the base circular G is obtained by intersecting the sphere
SG whose center is G � (X, Y, Z)T and radius is R with the
plane π whose surface normal vector is (l, m, n)T as follows:

X1 − X( 􏼁
2

+ Y1 − Y( 􏼁
2

+ Z1 − Z( 􏼁
2

� R
2
,

l X1 − X( 􏼁 + m Y1 − Y( 􏼁 + n Z1 − Z( 􏼁 � 0,

⎧⎨

⎩ (A.2)

where the point (X1, Y1, Z1) ∈ SG.
For ∀P(X2, Y2, Z2) ∈ Scone, the equation of line that joins

the vertex to the point on the circular G and the point on the
cone is represented as follows:

X1 − X2

X2 − 0
�

Y1 − Y2

Y2 − 0
�

Z1 − Z2

Z2 − 0
� t, (A.3)

where we can obtain the coordinate of the points on circular
G and it can be denoted as follows:

XG, YG, ZG( 􏼁 � tX2 + X2, tY2 + Y2, tZ2 + Z2( 􏼁. (A.4)

Especially, (XG, YG, ZG) ∈ π and (XG, YG, ZG) ∈ SG,
and by solving two simultaneous equations given by
equations (A.1) and (A.3), the equation of cone Scone can be
written as follows:

(mY + nZ)
2
X

2
2 − 2(mY + nZ)X2X mY2 + nZ2( 􏼁 + X

2
mY2 + nZ2( 􏼁

2
+(lX + nZ)

2

− 2(lX + nZ)Y2Y lX2 + nZ2( 􏼁 + lX2 + nZ2( 􏼁
2
Y
2

+(lX + mY)
2
Z
2
2 − 2(lX + mY)

Z2Z lX2 + mY2( 􏼁 + lX2 + mY2( 􏼁
2
Z
2

� R
2

l
2
X

2
2 + m

2
Y
2
2 + n

2
Z
2
2 + 2lmX2Y2 + 2 ln X2Z2 + 2mnY2Z2􏼐 􏼑.

(A.5)

By replacing Z2 with f, the parameter model of 2D
ellipse curve equation with pose parameter ξ is expressed as
follows:
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A � (mY + nZ)
2

+ l
2
Y
2

+ l
2
Z
2

− R
2
l
2
;

B � − 2mX(mY + nZ) − 2lY(lX + nZ) + 2lmZ
2

− 2lmR
2
;

C � m
2
X

2
+(lX + nZ)

2
+ m

2
Z
2

− R
2
m

2
;

D � − 2Xnf(mY + nZ) + 2nlfY
2

− 2flZ(lX + mY) − 2 ln fR
2
;

E � 2mnfX
2

− 2nfY(lX + nZ) − 2mfZ(lX + mY) − 2mnfR
2
;

F � X
2
n
2
f
2

+ Y
2
n
2
f
2

+(lX + mY)
2
f
2

− R
2
n
2
f
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.6)

where f is focal length of the camera. By replacing (l, m, n)T

with (sinβcosα, sinβsinα, cosβ)T, equation (A.5) can be
written as

A � ((sinβsinα)Y + cosβZ)
2

+(sinβcosα)
2

Y
2

+ Z
2

− R
2

􏼐 􏼑;

B � − 2(sinβ)
2
XY − 2(sinβsinα)cosβXZ

− 2(sinβcosα)cosβYZ + 2((sinβcosα) · (sinβsinα)) Z
2

− R
2

􏼐 􏼑;

C � (sinβsinα)
2

X
2

+ Z
2

− R
2

􏼐 􏼑((sinβcosα)X + cosβZ)
2
;

D � − 2Xcosβf((sinβsinα)Y + cosβZ) + 2cosβ(sinβcosα)fY
2

− 2f(sinβcosα) Z((sinβcosα)X +(sinβsinα)Y) − cosβR
2

􏼐 􏼑;

E � 2(sinβsinα)cosβR
2

− 2cosβfY((sinβcosα)X + cosβZ)

− 2(sinβsinα)f Z((sinβcosα)X +(sinβsinα)Y) − cosβR
2

􏼐 􏼑;

F � X
2
(cosβ)

2
+ Y

2
(cosβ)

2
+((sinβcosα)X +(sinβsinα)Y)

2
f
2

− R
2
(cosβ)

2
f
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.7)

B. Objective Function for 2D-3D Object Pose
Estimation Using Circular Feature

)e ultimate goal of object 2D-3D pose estimation is to
identify 3D pose of an object of interest from a 2D image or
image sequence.

Given the observed image z (possibly consisting of several
image sequences), we shall give the objective function using the
maximum posterior probability estimation (MAP) for 2D-3D
object pose estimation. By maximizing the conditional prob-
ability distribution of the pose ξ, the objective function for 2D-
3D object pose estimation is defined as follows:

argmaxξ p
ξ
z

􏼠 􏼡􏼨 􏼩, (B.1)

where p(ξ/z) can be expanded as the following equation:

p
ξ
z

􏼠 􏼡 �
1

p(z)
p

z
ξ

􏼠 􏼡 · p(ξ), (B.2)

where p(z/ξ) is the likelihood of the arrived observation z
and p(ξ) represents the prior information of pose ξ of the
circular feature in 3D.

UKF, CKF, and PF can be employed in 2D-3D object
pose estimation problems, where the overall objective is to
estimate pose of a moving object from a collection of
samples arriving sequentially. )e UKF can be seen as

population-based Monte Carlo algorithms, in which the
distribution of the pose space is approximated using a
minimal set of carefully chosen sample points, called sigma
points. Each sigma point is composed by a single pose and
has an associated weighting coefficient. Let χk− 1 be a set of
2L + 1 sigma points in time step k − 1 (where L is the di-
mension of the state space), containing information about
the pose ξk− 1

j and their associated weights ωξ
j as follows:

χ(k− 1)
� ξξj,ω

ξ
j􏼐 􏼑, j � 1, 2, . . . , 2L + 1􏽮 􏽯. (B.3)

For the 2D-3D object pose estimation using circular
feature, the sigma points ξ(k− 1)

j are given by the location
coordinates ‘X(k− 1)

j , Y
(k− 1)
j , Z

(k− 1)
j ’, orientation angles

‘α(k− 1)
j , β(k− 1)

j ’, and their velocity vector as follows:

ξk− 1
j � X

k− 1
i , _X

k− 1
j , Y

k− 1
j , _Y

k− 1
j , Z

k− 1
j , _Z

k− 1
j , αk− 1

j , _αk− 1
j , βk− 1

j , _β
k− 1
j􏼔 􏼕.

(B.4)

Note that a sigma point described in equation (4) rep-
resents a single pose state in the time step k − 1.

To estimate the pose of the object with these sigma
points, each sigma point is propagated through the non-
linear process model. )e transformed points are used to
compute the mean and covariance of the prediction value 􏽢ξ

k

j .
We propagate then the sigma points through the nonlinear
observation model equation (2) as follows:
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􏽥zk
j � 􏽢Φ 􏽢ξ

k

j􏼒 􏼓, (B.5)

with the resulted transformed observations, their mean μk
z ,

covariance Pk
z , and the cross covariance Pk

ξz are computed,
respectively. We combine the information obtained in the
prediction step with the new observation measured zk, and
the gain Kk is given, and then the posterior mean and co-
variance are updated.

Algorithm steps are as follows: Algorithm 2
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