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In this study, a novel analytical solution to the integrable undamping Duffing equation with constant forced term is obtained. Also,
a new approximate analytical (semianalytical) solution for the nonintegrable linear damping Duffing oscillator with constant
forced term is reported. )e analytical solution is given in terms of the Weierstrass elliptic function with arbitrary initial
conditions. With respect to it, the semianalytical solution is constructed depending on a new ansatz and the exact solution of the
standard Duffing equation (in the absence of both damping and forced terms). A comparison between the obtained solutions and
the Runge–Kutta fourth-order (RK4) is carried out. Moreover, some complicated oscillator equations such as the constant forced
damping pendulum equation, forced damping cubic-quintic Duffing equation, and constant forced damping Helmholtz–Duffing
equation are reduced to the forced damping Duffing oscillator, in which its solution is known. As a practical application, the
proposed techniques are applied to investigate the characteristics behavior of the signal oscillations arising in the RLC circuit with
externally applied voltage.

1. Introduction

Since the early century until now, Duffing equation [1–3] has
been devoted by many authors in order to investigate the
nonlinear oscillations in engineering technology fields and
in several physical systems including electrical and me-
chanical with nonlinear restoring force [4]. So far, this
equation and its family have remained a good model in
studying and explaining many nonlinear structures in the
dynamic systems and various branches of sciences [5]. )is
family is considered an excellent example for the dynamic
system that exhibits chaotic behavior. )e Duffing equation
with a cubic stiffness term was introduced for the first time

by Duffing [6] in 1918 for describing the hardening spring
effect observed in many mechanical problems. Since then,
this equation has become one of the commonest examples in
nonlinear oscillation texts and research articles [4, 7].

)e exact analytic solutions of the standard (unforced
and undamping) Duffing equation ( €x + αx + βx3 � 0) and
the cubic-quintic Duffing equation (€x + px + qx3 + rx5 � 0)
have been obtained by many authors in terms of Jacobian
elliptic functions [8–14]. Since most realistic physical sys-
tems are subjected to the influence of some frictional forces,
these forces must be taken into account in Duffing equation
to become unforced damping Duffing equation ( €x + 2c _x +

αx + βx3 � 0) [15–19]. )e unforced undamping Duffing
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equation has been solved numerically using the differential
transform method, and the author found that both nu-
merical and exact analytic solutions coincide with each other
[13]. Also, the analytical solution of the unforced damping
Duffing equation in terms of Jacobian elliptic functions has
been derived by Johannessen [17, 18]. Moreover, Johan-
nessen [17, 18] made a comparison between the analytical
solution and the approximate numerical solution using RK4,
and he found that the two solutions were largely identical.

In some physical and engineering systems, the system
can be excited by an external force, and this force may be
constant or a function of the time. In this case, for modeling
the oscillations in these systems, the excited force must be
taken into consideration in the Duffing equation which we
finally obtain as the forced damping Duffing equation
(€x + 2c _x + αx + βx3 � F). Some authors studied the Duffing
equation solutions with (out) both damping term and
driving/external force [8, 20–24]. For instance, the exact
solutions of both undamped Duffing equation and forced
undamped Duffing equation have been derived in the form
of Jacobian elliptic functions by Hsu [8]. Furthermore, the
Jacobian elliptic functions have been devoted for getting the
approximate solution of the forced damped Duffing equa-
tion [20]. )is new equation of motion has many applica-
tions in electrical and mechanical systems [21, 22] as well as
in different branches of science such as studying the os-
cillations in plasma physics. For example, the forced
damping Duffing equation with constant force can be used
for investigating the nonlinear oscillations in RLC circuits if
the circuit has DC battery. Moreover, the forced damping
Duffing equation can be used for modeling the damping
oscillations in different plasma models. For instance, for any
plasma system having a critical value for its related pa-
rameters, we can reduce the fluid equations of the plasma
species to a modified Korteweg–de Vries–Burgers (mKdVB)
equation (ztϕ + Apϕ

2zxϕ + Bpz3xϕ − Cpz2xϕ) using the re-
ductive perturbation technique (RPT). After that the
mKdVB can be transformed to the forced damping Duffing
equation by means of a traveling wave transformation for
studying the damping oscillations in the plasma system. It
should be noted here that the last term in the mKdV
equation appeared as a result of taking the kinematic vis-
cosity of some plasma species into account. Motivated by the
mentioned investigations, we restrict our attention for
studying and solving the forced damping Duffing equation,

€x + 2c _x + αx + βx
3

� F, x(0) � x0&x′(0) � _x0,􏽮 (1)

and some related equations using some new approaches.
)us, our study will be divided into two main goals/parts.
First, we will solve the forced damping Duffing equation in
the absence of the friction force (c � 0) in order to get an
exact solution in terms of Weierstrass elliptic function. In
the second part, a new ansatz will be utilized with the help of
some exact solution of standard Duffing equation
(c � F � 0) in order to find an approximate analytic solution
for the initial value problem (1).

2. Methodology

In the beginning, we dissect the i.v.p (1) into two cases and
then solve them. In the first case, the undamping Duffing
equation with perturbation/excitation force, i.e., c � 0 and
F≠ 0, is considered. )is case has several applications in
plasma physics, oceans, mechanical fluid, and electronic
circuits in the absence viscosity and friction forces. In the
second case, the linear damping Duffing equation with
perturbation force (sometimes is called the constant forced
damping Duffing equation), i.e., c≠ 0 and F≠ 0, is con-
sidered. Also, this case has various applications in plasma
physics if the kinematic viscosity of the plasma species is
taken into account or if the dust fluctuations are taken into
consideration.

2.1. Case I: An Exact Analytic Solution for the Forced
Undamping Duffing Equation. If the damping term in the
i.v.p (1) is neglected (c � 0), then the i.v.p (1) reduces to the
following integrable i.v.p.

€x + px + qx
3

� F, x(0) � x0 andx′(0) � _x0.􏽮 (2)

Let us assume that the following solution satisfies the
i.v.p. (2)

η(t) � λ +
μ

1 + ρ℘
, (3)

where ℘ ≡ ℘(t + t0; g2, g3) is the Weierstrass elliptic func-
tion and satisfies the following condition:

℘′2 � 4℘3 − g2℘ − g3. (4)

By inserting solution (3) into equation (2) and taking
relation (4) into consideration, we get

􏽘

3

j�0
Wj℘

j
� 0, (5)

with

W0 � − 2F − 4g3μρ
2

+ g2μρ + 2pλ + 2pμ

+ 2qλ3 + 6qλ2μ + 6qλμ2 + 2qμ3,

W1 � − ρ
6F + 3g2μρ − 6pλ − 4pμ

− 6qλ3 − 12qλ2μ − 6qλμ2
􏼠 􏼡,

W2 � 2ρ
− 3Fρ + 3pλρ + pμρ

+3qλ3ρ + 3qλ2μρ − 6μ
􏼠 􏼡,

W3 � 2ρ2 − Fρ + pλρ + qλ3ρ + 2μ􏼐 􏼑.

(6)

By equating the coefficients Wj to zero, a system of
algebraic equations is obtained, and by solving this system,
the values of μ, ρ, g2, and g3 are obtained as follows:
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μ �
6 F − λ p + qλ2􏼐 􏼑􏼐 􏼑

p + 3qλ2
,

ρ �
12

p + 3qλ2
,

g2 �
1
12

− 3qλ qλ3 − 4F􏼐 􏼑 + p
2

− 6pqλ2􏼐 􏼑,

g3 �
1
216

27F
2
q + 9pqλ qλ3 − 4F􏼐 􏼑 + p

3
+ 18p

2
qλ2􏼐 􏼑.

(7)

By applying the initial conditions given in i.v.p (2), we
get

t0 � ℘− 1 λ + μ − x0

ρ x0 − λ( 􏼁
; g2, g3􏼠 􏼡. (8)

)e value of λ is a solution to the following quartic
equation:

qλ4 + 2pλ2 − 4Fλ + 4Fx0 − 2px
2
0 − qx

4
0 − 2 _x

2
0􏼐 􏼑 � 0. (9)

Note that the solution (3) is periodic with period

T � 2􏽚
∞

r

dx
������������

4x
3

− g2x − g3

􏽱 , (10)

where r is the greatest real root of the cubic equation:
4x3 − g2x − g3 � 0.

In equation (9), let us discuss the value of the following
number:

Δ � −
1
q

4Fx0 − 2px
2
0 − qx

4
0 − 2 _x

2
0􏼐 􏼑, (11)

which is called the discriminant of the i.v.p. (2). If equation
(9) has at least one real root, then all parameters that are
given in equation (7) become real for real λ. On the other
side, if all roots of equation (9) are complex, then Δ< 0.
Indeed, let r1, . . . , r4 be the roots of equation (9), and then

r1r2r3r4 �
1
q

4Fx0 − 2px
2
0 − qx

4
0 − 2 _x

2
0􏼐 􏼑 � − Δ> 0, (12)

so that Δ< 0, and in this case, we cannot obtain real values
for the parameters given in equation (7). In order to obtain a
solution to the i.v.p. (2) with real values to parameters
(μ, ρ, g2, g3), we make the following substitution:

x(t) � s −
2s

1 + v(t)
, (13)

where s≠ 0, and v ≡ v(t) is a solution to the following
Duffing equation:

€v + Mv + Nv
3

� F0. (14)

Taking into account the initial conditions given in the
i.v.p. (2), we obtain

v(0) �
2s _x0

s − x0( 􏼁
2,

v′(0) �
s + x0

s − x0
.

(15)

On the other hand, the first integration of equation (14)
gives

v′(t)
2

� C + 2F0v(t) − Mv(t)
2

−
1
2

Nv(t)
4
, (16)

and by applying initial condition given in the i.v.p. (2), we
get

C �
1

2 s − x0( 􏼁
4

− 4F0 s − x0( 􏼁
3

s + x0( 􏼁 + 2M s
2

− x
2
0􏼐 􏼑

2

+N s + x0( 􏼁
4

+ 8s
2

_x
2
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(17)

with

N �
− F + ps + qs

3

2s
,

M �
3F − ps + 3qs

3

2s
,

F0 � −
F

s
.

(18)

Inserting equations (14)–(17) into the first equation
(here,R ≡ €x + px + qx3 − F) of i.v.p (2), we have

R � −
8qs

3

(1 + v(t))
3

s − x0( 􏼁
4 s

4
+
2Fs

q
+ Δ􏼠 􏼡. (19)

Observe that the quartic equation,

s
4

+
2F

q
s + Δ � 0, (20)

has at least one real root, since Δ< 0. )us, for Δ< 0, the
solution of the i.v.p. (14) and (15) expresses the solution of
the i.v.p. (2), where the parameters (M, N, F0) are given in
equation (18).

Example 1. )e solution of the following i.v.p. according to
the relation (3)

€x + x + x
3

� 1, x(0) � 1andx′(0) � 1,􏽮 (21)
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reads

x(t) � 1.29637 −
2.45792

1 + 1.98619℘(0.521719 − t; − 0.166667, 0.171296)
. (22)

Figure 1 illustrates the comparison between the solution
(22) and the RK4 numerical solution. It is known that RK4
numerical solution to the ordinary differential equations is
the best so far. )us, our solution is compared to it, and it is
found that the obtained results are completely compatible
with each other. Moreover, the periodicity of solution (22) is
given by T � 4.24727.

2.2. Case II: An Approximate Analytic Solution for the Forced
Damping Duffing Equation. It is known that the forced
damping Duffing equation (R � €x + 2c _x + αx + βx3 − F) is
not integrable unless F � 0 and α � (8/9)c2. )us, in this
subsection, we seek an approximate analytic solution to (1)
in the form

x(t) � d + exp(− ct)η(t), (23)

where η ≡ η(t) is a solution to standard Duffing equation
( €x + αx + βx3 � 0), and d is some constant to be determined
later.

Substituting solution (23) into the forced damping
Duffing equation (R ≡ €x + 2c _x + αx + βx3 − F � 0), we
have

R � βd
3

+ αd − F􏼐 􏼑

+ 3d
2βe

− tc
+ αe

− tc
− c

2
e

− tc
􏼐 􏼑η(t)

+ 3 dβ e
− 2tcη(t)

2
+ βe

− 3tcη(t)
3

+ e
− tcη″(t).

(24)

For small c≪ 1 and not too large t, ect ≈ 1, so that
equation (24) reduces to

R ≈ η″(t) + 3d
2β + α − c

2
􏼐 􏼑η(t)

+ 3dβ η(t)
2

+ βη(t)
3

+ βd
3

+ αd − F􏼐 􏼑.

(25)

)e value of d could be obtained by equating the last
term in equation (25) to zero:

βd
3

+ α d − F � 0. (26)

Accordingly, the following new i.v.p. needs to solve.

η″(t) + 3d
2β + α − c

2
􏼐 􏼑η(t)

+3 dβ η(t)
2

+ βη(t)
3

� 0,

η(0) � _x0 + c x0 − d( 􏼁,

η′(0) � x0 − d.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

Inserting the hypothesis η(t) � z(t) − d into the i.v.p.
(27), we get

z″(t) + 􏽥αz(t) + βz(t)
3

� 􏽥F,

z(0) � _x0 + c x0 − d( 􏼁&z′(0) � x0,

⎧⎨

⎩ (28)

where 􏽥α � (α − c2) and 􏽥F � (F − dc2). Observe that the
i.v.p. (28) refers to the constant forced undamping Duffing
equation. From previous section, we already know how to
solve this problem.)en, an approximate analytical solution
to the constant forced damping Duffing equation (1) could
be given by

x(t) � d + exp(− ct)(z(t) − d), (29)

where the number d is a solution to the cubic equation (26),
and z � z(t) is the exact solution of the i.v.p. (28). Note that
for c> 0, the value of parameter d must be chosen according:
limt⟶∞x(t) � d.

Example 2. Let us analyze the i.v.p. (1) using different values
for (c, α, β, F). )e solutions of the i.v.p. (1) according to the
relation (23) and (c, α, β, F) � (0.1, 2.2, 1, 0.01) and
(c, α, β, F) � (0.1, 2.2, 1, 0) are, respectively, given by

x(t) � 0.00454541 + e
− 0.1t 0.13229 −

0.780732
1 + 5.34242℘(t + 3.15199; 0.380447, 0.0556578)

􏼠 􏼡, (30)

x(t) � e
− 0.1t 0.134868 −

0.796091
1 + 5.34624℘(t + 3.17447; 0.379675, 0.0559271)

􏼠 􏼡. (31)

Figures 2(a) and 2(b), respectively, demonstrate the
comparison between the approximate analytical solutions

(30) and (31) and the RK4 approximate solution. Also, the
maximum distance error (LD) with respect to RK4 is
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estimated for different values of the parameters (c, α, β, F) as
shown in Table 1.

It is noticed from Figure 2 and the values of distance
error (LD) given in Table 1 that the semianalytical solution
(23) gives good results as compared to the approximate
numerical solution using RK4. Also, it is seen that the
distance error decreases with the enhancement of the co-
efficient of the damping term (c), while the forced term (F)

has an opposite effect on the distance error, i.e., increasing F

leads the enhancement of the distance error LD. Moreover,
our solution gives good results for α> β. Also, it is noted that
the distance error (LD) decreases as the difference between α
and β is large.

3. Applications

Here, we try to find the link between the constant forced
damping Duffing equation and some physical and engi-
neering problems related to this equation in order to in-
vestigate the nonlinear oscillations in various fields of

physics and engineering such as the oscillations in RLC
circuits and plasma physics.

3.1. Forced Damping Pendulum Equation. )e most popular
law of motion inmechanics is 5 � ma, where 5 is the force, m
is the particle mass, and a is the particle acceleration. )us,
we have a pendulum with length l and with a ball of mass m
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Figure 2:)e comparison between the approximate analytic solutions (30) and (31) (dotted curve) and the RK4 numerical solution (dashed
curve) for the forced damping Duffing equation (22) is carried out different values for (c, α, β, F).

Table 1: )e maximum distance error (LD) is estimated for
(α, β) � (2.2, 1) and different values of (c, F).

(c, F) Time range LD

(0, 0) 0≤ t≤ 60 2.45967 × 10− 6

(0.01, 0) 0≤ t≤ 60 0.00829489
(0.1, 0) 0≤ t≤ 60 0.00142482
(1, 0) 0≤ t≤ 60 0.000434655
(0.1, 0.01) 0≤ t≤ 60 0.0021093
(0.1, 0.1) 0≤ t≤ 60 0.0272933
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0.0

0.5
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Time

A
m
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Figure 1:)e comparison between the analytical solution (20) (dotted curve) and the RK4 numerical solution (dashed curve) for the forced
undamping Duffing equation (21) is investigated for (c, α, β, F) � (0, 1, 1, 1).
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moving in a constant gravitational field g and under friction
proportional to the particle velocity and external (un)pe-
riodic force. Accordingly, the dimensionless differential
equation that can describe the pendulum motion is given by

€θ + 2c _θ + ω2 sin θ � F,

θ(0) � θ0&θ′(0) � _θ0.

⎧⎨

⎩ (32)

Note that

min
a,b

􏽚
π/2

− (π/2)
ax + bx

3
􏼐 􏼑 − sinx􏽨 􏽩

2
dx

�
− 806400 + 161280π2

− 8160π4 + π8

2π7

≈ 0.000024,

(33)

for

a �
240 21 − 2π2􏼐 􏼑

π5 ,

b �
3360 π2

− 10􏼐 􏼑

π7 .

(34)

Accordingly, and by expanding sin θ � θ − (θ3/6)

+O(θ5), the i.v.p. (32) could be replaced by the following
new i.v.p.

€θ + 2c _θ + αθ + βθ3 � F,

θ(0) � θ0&θ′(0) � _θ0,

⎧⎨

⎩ (35)

with

α �
240 21 − 2π2􏼐 􏼑ω2

π5
,

β �
3360 π2 − 10􏼐 􏼑ω2

π7
.

(36)

Now, the i.v.p. (35) is similar to the i.v.p. (1), which we
discussed as its solution in the above sections.

Example 3. )e solution of the i.v.p. (32) for
(c,ω, F, θ0, _θ0) � (0.1, 1, 0.1, 0, 0) reads

θ(t) � 0.101286 + e
− 0.1t

− 0.102309 +
0.612929

1 + 12.26℘(t + 6.22606; 0.0798509, 0.0041612)
􏼠 􏼡. (37)

)e comparison between solution (37) and the nu-
merical solution using RK4 is displayed in Figure 3. Also, the
distance error is estimated (LD � 0.00560317). It is observed
that the obtained results are completely compatible with
each other.

3.2. Forced Damping Cubic-Quintic Duffing Equation. )e
idea is to replace a cubic-quintic polynomial by an odd parity
cubic polynomial. Observe that

min
p,q

􏽚
A

− A
αx + βx

3
+ δx

5
􏼐 􏼑 − px + qx

3
􏼐 􏼑􏽨 􏽩

2
dx � ε, (38)

for

p � α −
5A

4δ
21

,

q �
10A

2δ
9

+ β,

ε �
128
43659

A
11δ2.

(39)

According to the transformation (38) and (39), the
following constant forced damping cubic-quintic Duffing
equation

€x + 2c _x + αx + βx
3

+ δx
5

� F, x(0) � x0&x′(0) � _x0,􏽮

(40)

could be reduced to the following new i.v.p.

€x + 2c _x + 􏽥αx + 􏽥βx
3

� F, x(0) � x0&x′(0) � _x0,􏽮 (41)

with

􏽥α � α −
5A

4δ
21

􏼠 􏼡,

􏽥β �
10A

2δ
9

+ β􏼠 􏼡.

(42)

Note that the approximation becomes good for small
values of ε which can be achieved for |δ|≤ 1 and 0<A≤ 1.

Example 4. )e solution of the i.v.p. (41) for
(c, 􏽥α, 􏽥β, δ, F, x0, _x0) � (0.1, 3, 0.5, 0.1, 0.1, 0, 0) reads
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x(t) � 0.0335922 + e
− 0.1t 0.000091584 −

0.000549507
1 + 4.04044℘(t +(1.82295 + 3.82875i); 0.735051, 0.121281)

􏼠 􏼡. (43)

In Figure 4, the comparison between solution (43) and
the RK4 numerical solution is introduced. Moreover, the
distance error is calculated (LD � 0.0304975).

3.3. Forced Damping Helmholtz–Duffing Equation. Let us
consider the following i.v.p.

€x + 2c _x + px + qx
2

+ βx
3

� F, x(0) � x0&x′(0) � _x0.􏽮

(44)

To convert the i.v.p. (44) to the i.v.p. (1), the following
transformation is introduced:

x(t) � z(t) −
q

3β
, (45)

and by substituting this transformation into the i.v.p. (44),
we finally get

z″(t) + 2cz′(t) + 􏽥αz(t) + βz(t)
3

� 􏽥5,

z(0) � x0 +
q

3β
and z′(0) � _x0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(46)

with

􏽥α � p −
q
2

3r
􏼠 􏼡,

􏽥5 � F +
pq

3β
−

2q
3

27β2
.

(47)

)is is a constant forced damping Duffing equation with
its initial conditions.

3.4. NonlinearOscillations in RLC Series Circuits with Applied
External Source. In an RLC series circuits consisting of a
resistor with resistance R (ohm), an inductor with induc-
tance L (H), and ferroelectric nonlinear capacitor with ca-
pacitance C (F) as well as external applied voltage E (V),
Kirchhoff’s voltage law (KVL) could be written as

Lzti′(t) + i(t)R + sq + aq
3

� E, (48)

where the relation between the current and charge is given
by i � ztq ≡ _q, i′ ≡ zti, the coefficients (a, s) are related to
the nonlinear capacitor, and E represents the voltage of the
battery which is constant. By reorganizing equation (48), the
following constant forced and damped Helmholtz equation
could be obtained as

€q + 2c _q + αq + βq
3

� F, (49)

with c � (R/(2L)), α � (1/(LC)), β � 1/(Cq0L), and
F � E/L, where q0 � q(t � 0) is the initial charge value at
t � 0, €q ≡ z2t q, and _q ≡ ztq.

Let us now apply the obtained solution on equation (49)
and analyze it numerically using some various values to the
coefficients (α, β, c, F) according to the RLC series circuit.
)e solution of the following i.v.p. according to the relation
(23) and for (α, β, c, F) � (4, 1, 0.1, 0.2) reads

x(t) � 0.0499688 + e
− 0.1t 0.130143 −

0.770662
2.93591℘(t + 2.55163; 1.29763, 0.318372) + 1

􏼠 􏼡. (50)
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Figure 3: )e comparison between the solution (37) and the numerical solution using RK4 of the i.v.p. (32) is reported for
(c,ω, F, θ0, _θ0) � (0.1, 1, 0.1, 0, 0).
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Figure 5 demonstrates the behavior of the damping
oscillations in RLC series circuit for
(α, β, c, F, q0, _q0) � (4, 1, 0.1, 0.2, 0.1, 0.2). Also, in this fig-
ure, we make a comparison between the approximate an-
alytical solution (50) and the approximate numerical
solution using the RK4, and the distance error
LD(� 0.0164089) is estimated. )e harmony between two
solutions has been observed, which confirms the high ac-
curacy of the approximate analytical solutions.

4. Conclusion

Some novel solutions to the Duffing equation and its family
(including the constant forced undamping Duffing equa-
tion and constant forced damping Duffing equation) have
been derived in detail. First, we derived an analytical so-
lution to the integrable constant forced undamping Duffing
equation in the form of Weierstrass elliptic function with
arbitrary initial conditions. Also, the periodicity of this
solution has been obtained. )en, an approximate

analytical (semianalytical) solution for the nonintegrable
constant forced damping Duffing equation has been dis-
cussed depending on the exact solution of the unforced
undamping (standard) Duffing equation. )e relation be-
tween the constant forced damping Duffing equation and
the constant forced damping pendulum equation, the
constant forced damping cubic-quintic Duffing equation,
and the constant forced damping Helmholtz–Duffing
equation has been investigated. Some numerical examples
have been introduced to demonstrate the obtained results
and to make a comparison between the obtained solutions
and RK4 numerical solutions. It was found from the results
of the comparison that the semianalytical solution is
compatible with the RK4 solution.

Future work: in some physical and engineering systems,
the driving forces maybe a function of time and with an
arbitrary circular frequency such as in the RLC circuits if the
AC applied source. In this case, we obtain a new equation of
motion which is called the damping Duffing equation with
time-dependent driving force: (€x + 2c _x + αx + βx3 � F(t)).
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Figure 5: A comparison between the approximate analytical solution (50) (dotted curve) and the RK4 numerical solution (dashed curve) is
investigated for RLC series circuits parameters (R, L, C, E), i.e., for (α, β, c, F, q0, _q0) � (4, 1, 0.1, 0.2, 0.1, 0.2).
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Figure 4: )e comparison between the solution (43) and the RK4 numerical solution of the i.v.p. (40) is introduced for
(c, 􏽥α, 􏽥β, δ, F, x0, _x0) � (0.1, 3, 0.5, 0.1, 0.1, 0, 0).
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)is equation of motion needs to be solved in the form of
Weierstrass elliptic function, but it is outside the goal of the
present work.
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