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,e reliability analysis of complex mechanisms involves time-varying, high-nonlinearity, and multiparameters. ,e traditional
way is to employ Monte Carlo (MC) simulation to achieve the reliability level, but this method consumes too much computing
resources and is even computationally intractable. To improve the efficiency and accuracy of dynamic probabilistic analysis of
complex mechanisms, an intelligent extremum surrogate modeling framework (IESMF, short for) is proposed based on extremum
response surface method (ERSM), combined with artificial neural network (ANN) method and an improved optimize particle
swarm optimization (PSO) method. Hereinto, the ERSM is used to simplify the dynamic process of output response to the
extremum value of transient analysis; ANN is applied to establish a mathematical model between input variables and response,
and the improved PSOmethod is utilized in search of initial weights and thresholds of the model.,e effectiveness of the IESMF is
demonstrated to perform the Rack-and-pinion steering mechanism (RPSM) reliability analysis. ,e results show that when the
allowable value of gear root stress is equal to 850MPa, the RPSM has a reliability degree of 0.9971.,rough the validation process,
it is illustrated that IESMF is accurate and efficient in dynamic probabilistic analysis of complex mechanisms, and its com-
prehensive performance is better than theMCmethod and ERSM.,e research effort offers new ideas for the reliability estimation
of a complex mechanism, thus enriching the method and theory of mechanical reliability design.

1. Introduction

For complex mechanisms, e.g., the steering mechanism of
the aircraft nose wheel, its reliability level is seriously affected
by many time-varying factors, such as speed, acceleration,
load, and so on [1–3]. ,e limit state equation of complex
mechanisms in probabilistic analysis has the characteristics
of being highly nonlinear and multivariable. ,is leads to
some problems in the process of reliability analysis, a large
amount of calculation, and difficulty in ensuring the accu-
racy of calculation, which leads to the difficulty of mecha-
nism reliability analysis [4–6]. ,erefore, to improve the
performance of the mechanical system, the randomness of
input parameters must be considered in mechanism reli-
ability analysis. Some scholars have carried out many nu-
merical and experimental studies on complex mechanisms
through deterministic analysis methods [7–9]. However,
these studies have not paid enough attention to various
uncertain factors affecting the performance of complex

mechanisms. ,e probabilistic analysis involves random
factors such as material parameters and physical field loads.
It has acceptable accuracy in describing the failure response
and is a feasible alternative method [10–12].

As an important technology, the application of probability
analysis in many fields has been widely studied [13–15].
Nonetheless, the application of probabilistic analysis in the
reliability research of complex mechanisms with multiple
influencing factors is rare. When performing probabilistic
analysis, traditional methods include direct simulation
methods such as Monte Carlo (MC) [16–18] and surrogate
model methods such as response surface method (RSM)
[19–21]. In recent years, extreme response surface methods
(ERSM) have also been developed [22–24]. Because of its high
accuracy in reliability design and evaluation, MC simulation
has been favored by researchers in many fields in recent years,
whereas MCM cannot meet the requirements of solving high-
nonlinearity limit state functions. As one of the key points of
probabilistic analysis of complex mechanism, RSM can
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improve computational accuracy and efficiency. However,
RSM needs to establish a great number of objective functions
in the process of mechanism dynamic probability analysis,
which may lead to unacceptable calculation. To deal with the
high-nonlinearity and time-varying problems in the reliability
estimation of complex mechanisms, ERSM does not care
about the output response of the mechanism other than
extreme values. However, the fitting accuracy and efficiency of
extremum response surface function in the probabilistic
analysis are not sufficient, so it is difficult to describe the
dynamic characteristics and strong nonlinearity in dynamic
probabilistic analysis of complex mechanisms. ,erefore, we
need to develop an efficient and accurate model by improving
ERSM to further strengthen the probabilistic analysis capa-
bilities of complex mechanisms.

To improve the approximation ability and computa-
tional efficiency of ERSM, a feasible method is to establish a
high-precision extremum response surface function based
on the extreme value surrogate model. Artificial neural
network (ANN) is an intelligent learning method with ex-
cellent robustness and nonlinear mapping ability. ANN
performs well in the application of pattern recognition and
data mining due to its advantages of fewer training samples,
high computational efficiency, and high-precision [25–28].
According to the excellent characteristics of ANN, we
propose a dynamic probability analysis method (ANN-
ERSM), which combines ERSM and ANN. ,e outstanding
simplified computing ability of ERSM and the powerful
nonlinear mapping function of ANN are integrated into this
method. Nevertheless, in the process of fitting high-non-
linearity, multiparameters, and time-varying limit state
functions, there are always local optimization and overfitting
problems in the training process, which affect the prediction
accuracy, and its further application in the probability design
of complex mechanisms is limited.

,e object of this study is to propose an intelligent
extremum surrogate modeling framework (IESMF) based
on ERSM, combined with an ANN model and an improved
optimize particle swarm optimization (PSO) method. ,e
improved PSO is used to search the initial thresholds and
weights of the model. ,e feasibility and effectiveness of
IESMF are analysed by the rack-and-pinion steering
mechanism of the nose landing gear.

In what follows, the basic theory of IESMF combined
with ERSM, ANN, and improved PSO for probabilistic
analysis of complex mechanisms is discussed in Section 2.
We describe the dynamic probabilistic analysis program
using IESMF in Section 3. In Section 4, the proposed method
is verified by the reliability analysis of the rack-and-pinion
mechanism of the nose wheel steering system. We close the
paper with some conclusions in Section 5.

2. Basic Theory

2.1. Basic!ought of ERSM. ERSM is developed by applying
the extremum theory to the traditional RSM to overcome the
shortcoming that a large number of objective functions need
to be established in the process of probability analysis of
mechanisms with time-varying characteristics. It simplifies

the analysis process, improves the calculation efficiency, and
provides a new way for probabilistic analysis. ,e basic idea
of dynamic probability analysis of mechanism based on
ERSM is [23] using the extreme value idea to determine the
extreme value of the dynamic output response of the
mechanism, obtain the sample of variable parameters, and
establish the objective output function; combining the nu-
merical simulation method or approximate analytical theory
to realize the dynamic reliability analysis of mechanism. We
use the idea of extreme value to deal with the dynamic
process of output response and simplify it to transient
analysis with extreme values.,emathematical model of the
objective output function is constructed to replace the real
simulation, which can effectively improve the calculation
efficiency of dynamic probability analysis [24]. Figure 1
shows the basic principle of ERSM.

Assuming that Yj (t, xj) (j� 1, 2, . . ., m) is the output
response of the jth input vector xj, Yj, max (xj) is the dynamic
extremum ofYj (t, xj) in the time domain [0, T].,e extreme
response surface function f (x) is fitted by the data set {Yj, max
(xj): j� 1, 2, . . .,m,m is the number of samples} consisting of
the maximum output response and the extreme response
curve Y (x) is donated by the following:

Y(x) � f(x) � Yj,max xj  . (1)

For ERSM, its function is usually described by quadratic
polynomials. ,e above equation can be written as follows:

YERSM(x)� a + bx + xTcx, (2)

where a is the constant coefficient; b is the vector of a linear
term; c is the matrix of the quadratic term. Among them, b
and c can be expressed as follows:

b � b1 b2 . . . bn( , (3)

c �

c11

c21 c22

⋮ ⋮ ⋮

cn1 cn2 . . . cnn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Based on Equations (3) and (4), the ERSM function is
written as follows:

YERSM(x)� a+ 
n

i�1
bixi+ 

n

i�1


n

i�1

ciixixi, (5)

where i � 1, 2, . . . , n, n is the number of random variables.
Although ERSM can effectively improve the calculation

efficiency of dynamic probability analysis of mechanism, its
analysis accuracy cannot meet the engineering require-
ments. ,e main reason is that the modeling accuracy of
traditional ERSM is limited by the quadratic polynomial
itself, which cannot effectively reflect the relationship be-
tween input variables and output response for highly
nonlinear problems; in addition, it is unable to reasonably
determine and use effective sample data for modeling, which
makes the predicted value deviate from the real simulation
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results. Extremum response surface function is an important
part of dynamic probabilistic analysis. Effective extremum
response surface function can improve efficiency and ac-
curacy. To solve this problem, we need to establish an ef-
ficient and high-accuracy fitting model.

2.2. ERSM Based on ANN, ANN-ERSM. To reasonably use
the sample data to establish a high-precision model meeting
the engineering requirements, the back-propagation artifi-
cial neural network (BP-ANN) model is selected to fit the
extremum response surface function of the limit state
equation, namely ANN-ERSM.,is method takes advantage
of the nonlinear mapping of ANN and fits the high-non-
linearity extreme response surface to replace the dynamic
equation, which improves the computational accuracy and
efficiency. ,e artificial neural network has strong adapt-
ability, its shape is flexible and changeable, and it can be
more accurate in fitting the complex functional relationship
between random variables and output response [29]. Fig-
ure 2 shows the BP-ANN topology model.

According to the idea of ERSM, the ANN regression
function f(x) is used to fit the input random variables x
(x ∈Rn) and the dynamic extremum response Yj,max (xj)
(y ∈R). ,e ANN-ERSM function is donated by the
following:

f(x) � Yj,max xj  � f(x,W),W ∈ Λ|f: Rn⟶ R ,

(6)

whereW is the weight and threshold vector of ANN-ERSM,
respectively.

,rough the above analysis, we transformed the fitting
problem of ANN-ERSM into a search problem of the optimal
weight and threshold of the neural network. Combined with
the idea of three-layer BP-ANN, the training performance
function of ANN-ERSM is represented by the following:

y � f2 

n

i�1
Wijf1 

m

j�1
Wjkxi + bj

⎛⎝ ⎞⎠ + bk
⎛⎝ ⎞⎠, (7)

where bj is the jth threshold value of hidden layer; Wij, the
connection weight between the ith node of the input layer

and the jth node of a hidden layer; bk, the kth threshold value
of the output layer; Wjk, the connection weight between the
jth node of hidden layer and the kth node of output layer; f1
(·) is the transfer function of a hidden layer; f2 (·) is the
transfer function of output layer; m is the number of nodes
in a hidden layer; n is the number of nodes in the input layer.

To prevent the training algorithm from falling into the
local optimum and immature convergence, this research
uses the Bayesian regularization (BR) algorithm for network
training, which has strong generalization ability. By adding
prior conditions, the solution space is reduced and the
possibility of finding wrong solutions is reduced. Studies
have shown that smaller weights and thresholds can effec-
tively reduce the occurrence of overfitting and have faster
convergence characteristics [11]. We reduce the network
weights to reduce training errors and improve training
capability, avoid overfitting of BP-ANN, and improve cal-
culation accuracy. ,e training performance function E
based on BR is expressed as follows:

E � k1ED + k2EW, (8)

where k1 and k2 are the proportional coefficients; ED and EW
are introduced as follows:

ED �
1
2
ε WK

+ Z WK+1
− WK

  
�����

�����
2

+ λ WK+1
− WK

����
����
2
,

EW �
1
N



N

j�1
w2

j ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where W is the vector of weight and threshold value for
network layers;wj, the network weights; ε, the expected error
function of output response; Z, the Jacobian matrix of ε; K,
the iteration number; λ, the iteration variable.

2.3. IESMF Modeling. Since the search accuracy and effi-
ciency of the initial thresholds and weights directly affect the
prediction results of ANN-ERSM, we should pay more at-
tention to the search algorithms of the initial weights and
thresholds.

Particle Swarm Optimization (PSO) is a kind of random
search algorithm based on group collaboration developed
through the research on the predation behaviour of bio-
logical groups. Because of its fast convergence speed and
high search accuracy, some researchers in different fields pay
attention to it [30–33]. However, the traditional PSO al-
gorithm using fixed inertial weights is easy to fall into blind
search and obtain local optimal solutions, which will greatly
affect the search accuracy and efficiency of the global optimal
initial weights and thresholds.

To solve the above problems, based on ANN-ERSM and
the improved PSO algorithm, an intelligent extreme value
agent modeling framework (IESMF) is developed. Give full
play to the advantages of the improved PSO algorithm and
use it to search for the initial optimal weights and thresholds
of IESMF to avoid premature convergence.

Yj (t, xj)
Yj,max (xj)

xj

Y (x)

Y

O

T

t

Figure 1: Basic thought of ERSM.
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,e basic idea of the improved PSO algorithm is to use
the training error of the BP-ANN model as the fitness value,
the weights, and thresholds as the particle position. ,e
process of searching the initial optimal thresholds and
weights of the neural network by improved PSO is as follows:

(1) Firstly, initialize a group of particles in space and use
the ANN weight and threshold string as the position of the
particle. Currently, each particle is a potential solution; (2) the
particles are searched according to the current best particles
and use the training error function as the fitness function;
update the individual position by tracking the individual and
group extreme values; (3) update the individual and group
extreme value position by selecting the optimal particle until
the optimal solution is found, that is, the initial optimal
threshold and weight of the neural network.

,e update of particle velocity and position is deter-
mined by the following:

Vk+1
id � wVk

id + c1r1 Pk
id − Xk

id  + c2r2 Pk
gd − Xk

gd ,

Xk+1
id � Xk

id + Vk+1
id ,

⎧⎪⎨

⎪⎩

(10)

where d is the dimension of search space; w, the inertia
weight; i, the ith particle; k, the current iteration number;
Vid, the current particle velocity; Xid, the current particle
position; Pgd, the current population extremum; Pid, the
current individual extremum; r1, r2 the random numbers
during the domain [0, 1]; c1 and c2 the individual and
population learning factor respectively. w is the inertia
weight, representing the extent to which the current velocity
of the particle inherits the previous velocity. When the
inertial weight is relatively small, the local search ability is
strong. On the other hand, the relatively large inertial weight
has more advantages in the global search.

Adaptive inertia weight varying with the number of
iterations:

w(t) � w1 − w1 − w2( ∗
t
T

, (11)

where T is the maximum iteration number; t, the current
iteration number; w1, the initial inertia weight; w2, the in-
ertia weight when iterating to the maximum number of
iterations.

,e IESMF function is donated by the following:

f(x) � Yj,max xj  � f(x,W,P),W ∈ Λ|f: Rn⟶ R ,

(12)

where P is the particle position and velocity of IESMF, W is
the vector of weights and thresholds.

Combining equation (12) with the target allowable value,
the limit state function of the complex mechanism is do-
nated by the following:

hIESMF(x) � yallow − yIESMF(x). (13)

According to the above analysis, IESMF, which com-
bined with ERSM, ANN, and improved PSO algorithms, is
expected to improve the efficiency and accuracy of dynamic
probability analysis of complex mechanisms.

,e main reasons are as follows: (1) ERSM does not
calculate the overall output response, but only focuses on the
maximum output response in the analysis time domain,
thereby reducing the amount of calculation for each analysis
and significantly improving the calculation efficiency; (2)
ANN is good at handing nonlinear relationships, so as to
improve the calculation accuracy; (3) ANN-ERSM has the
advantage of fitting a function through a small number of
samples, avoiding a large amount of calculation for solving
complex dynamic equations, thereby improving the effi-
ciency of calculation; (4) the improved PSO algorithm with
dynamic inertial weight introduced can improve the search
accuracy of weights and thresholds in IESMF.

3. Basic Thought of Probabilistic Analysis

3.1. Reliability Analysis. Dynamic reliability of the mecha-
nism refers to the ability of the mechanism to perform the
predetermined function during movement. ,e reliability of
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Figure 2: BP-ANN topology model.
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the parameters such as displacement, velocity, and stress in
the specified range is included [12].

It is assumed that the mechanism system consists of n
components, Si (xi, t), is the dynamic response of com-
ponent i (i � 1, 2, ..., n) in the motion time domain [0, T],
which is a complex random process, where xi is the
random variable corresponding to the dynamic response
of component i. Si (xi, t) is the dynamic response of
component i at time t.

In the motion time domain [0, T], Di (xi, t) is the output
response of component i at time t, and [Di] is the allowable
value. ,e reliability of component i can be expressed as
follows:

Ri(t) � P Di xi, t( ≤ Di  . (14)

,e output extremum response of component i in the
motion time domain [0, T] is Si (xi, t), and the allowable
value is [Si], then the reliability of component i can be
expressed as follows:

Ri � P Si xi( ≤ Si  . (15)

3.2. Essential Process. Reliability analysis is to use the ran-
dom variable analysis mechanism with random dispersion
characteristics to meet the probability of the specified
function under the specified conditions within the specified
time in the actual project. Combining ERSM, ANN, and
improved PSO algorithm, the IESMF method for reliability
analysis of complex mechanism is established. Figure 3
shows the flow of dynamic reliability analysis of the com-
plex mechanism using IESMF.

As shown in Figure 3, the basic idea of using IESMF for
dynamic reliability analysis of complex mechanism is de-
scribed as follows:

(1) First, according to the characteristics of complex
mechanism, combine the comprehensive modal
theory with mechanical system dynamics theory,
determine the random input variables, and establish
the transient dynamics finite element model of the
mechanism

(2) According to the finite element model, combined
with the deterministic analysis results, extract a
sufficient number of samples as training samples

(3) To make the neural network model suitable for these
training samples, the structure of the neural network
is defined by referring to the characteristics of input
random variables and the output response, such as
the number of nodes in each layer

(4) Use the BR algorithm to establish a neural network
extreme value response surface model

(5) Employ the improved PSO to search the initial
optimal weight and threshold of IESMF; finally, use
the Monte Carlo method to sample the IESMF to
obtain the output response value

4. Case Study

,e rack-and-pinion steering mechanism (RPSM) of the
nose landing gear is a typical complex mechanismwith time-
varying, high-nonlinearity, and multiparameters charac-
teristics, which is applied to many existing aircraft [34]. In
this study, a certain type of nose landing gear RPSM is the
research object. Considering the dynamic operation process
of speed, load, and relative position with time, the dynamic
probability analysis of RPSM will be carried out in this
section to verify the proposed IESMF.

4.1. Problem Description. ,e landing gear system deter-
mines the safe take-off and landing performance of the
aircraft and is the key load-bearing part in the take-off and
landing process. Studies have shown that up to 40% of
aircraft accidents are caused by landing gear failures, which
can lead to extremely serious consequences [34]. Among
them, the performance of the nose wheel steering system is a
factor that cannot be ignored. To improve the safety and
flexibility of aircraft ground control, the nose wheel steering
system has been implemented in the full range of aircraft
ground speeds. Frequent ground handling and complex
working environment put forward higher requirements on
the fatigue performance and functional reliability of the
front wheel turning mechanism.

,e power source of the front wheel turning mechanism
is a hydraulic drive system, which controls the flow of
hydraulic oil to the left/right cavity of the turning control
actuator by adjusting the hydraulic reversing valve, which
determines the movement of the hydraulic piston connected
to the steering shaft (Figure 4). ,e pinion is linked to the
steering axis, while the rack is inserted between the two
strokes [2]. Pistons located at both ends of the rack push the
rack to reciprocate linearly. ,e linear motion of the rack is
transformed into the rotation of the gear through the gear
and rack meshing transmission to drive the steering axis to
rotate, as shown in Figure 5. ,e RPSM is easy to achieve a
large operating angle and has a compact structure. ,e
meshing motion of the rack-and-pinion is an important part
of the turning mechanism to realize the turning motion,
which has a great impact on the load-bearing capacity and
reliability of the turning mechanism.

4.2. Deterministic Analysis. ,e probabilistic design of the
RPSM of the nose landing gear is based on the failure mode
of the gear root stress. To realize the dynamic probability
analysis of RPSM, the first work is to establish the three-
dimensional model and FE model of the research object. ,e
three-dimensional model and the finite element model of
RPSM are obtained after reasonable simplification of the real
rack-and-pinion steering mechanism of a nose landing gear
which is shown in Figures 6 and 7.

Choosing a reasonable mesh type and size can improve
the accuracy and efficiency of finite element analysis [35, 36].
To ensure the accuracy of the calculation, the meshing
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position between the tooth root and the tooth is small, and
the larger mesh is used for the rest of the structure to reduce
the calculation time. As shown in Figure 7, the FE model of
rack-and-pinion is composed of tetrahedral elements, in-
cluding 382133 nodes and 263 567 nodes, 109 539 nodes and
72 294 elements, respectively.

300M steel is used as the material of the rack-and-
pinion. Table 1 shows its mechanical properties. In the
turning process, the motion cycle is 11s. Figure 8 shows the
change curve of the gear speed in the analysis time domain
[0s, 11s] in a cycle.

,e dynamic finite element simulation is carried out in
ANSYS, and a series of stress cloud diagrams during the gear
transmission process are obtained, as shown in Figure 9.
According to the finite element simulation calculation, the
meshing process, and characteristics of the RPSM can be
obtained, and the root stress of the gear has a certain pe-
riodicity. Figure 10 is the meshing stress cloud diagram of
the RPSM. ,e analysis shows that when the double-tooth
meshing of RPSM is transformed into single-tooth meshing,
the gear root stress reaches the maximum. ,is is because
when the double-tooth mesh is converted to single-tooth,

the contact part is located at the highest point of single-tooth
mesh, so the root stress of gear reaches the maximum.

4.3. Dynamic Probabilistic Analysis of RPSM

4.3.1. Establish IESMF Mathematical Model. Based on the
dynamic deterministic analysis of RPSM, considering the
operating conditions and uncertainty of material parame-
ters, the material density ρ, friction coefficient µ, turning rate
v, and load M are selected as the random parameters of
RPSM, which are shown in Table 2. In the probabilistic
analysis, we assume that these random variables are inde-
pendent of each other and obey a normal distribution.

According to the distribution characteristics of input
random variables in Table 2, 50 groups of input data are
extracted by the Latin hypercube sampling (LHS) method.
,rough 50 times of dynamic deterministic analysis, the
maximum root stress corresponding to the input data was
obtained to form 50 samples. Among them, 30 are used as
training samples to create IESMF, and 20 are used as test
samples for IESMF verification.
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To make IESMF suitable for these training samples,
according to the characteristics of input random variables
and output response, the ANN model uses a 4-3-1 three-
layer structure. Choose ‘tansig’ as the transfer function from
the input layer to the hidden layer; ‘purelin’ as the transfer
function from the hidden layer to the output layer; ‘trainbr’
as the training function. ,e number of particles N� 40 and
the particle dimension θ� 16 are selected for the model.
After 100 iterations, Figure 11 shows the optimal fitness
value curves.

,e initial optimal weights and threshold values are
inputted into the ANN model. Using the Bayesian regula-
rization (BR) algorithm for network training, the IESMF
function can be obtained, where the weights and thresholds
are shown in the following equation:

w1 �

0.2749 0.6536 −0.3338 0.3520

−0.1257 −0.0009 −0.6495 0.1037

0.0699 −0.4073 −0.5431 −0.2979

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

b1 �

−0.7589

−2.7129

−3.0362

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

w2 � −0.5973 −0.8071 −0.7876 ,

b2 � [−0.0228],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Combining 20 test samples, the IESMF modeling
characteristic analysis was carried out by comparing the
predicted value with the true value, and the result is shown in
Figure 12.,e predicted value of IESMF is basically the same
as the real value obtained by deterministic analysis, and its
prediction error is within the acceptable range of the project.
,erefore, IESMF can meet the prediction accuracy
requirements.

4.3.2. Reliability Analysis of RPSM. ,rough 10 000 simu-
lations of IESMF through MC simulation, the output re-
sponses are obtained by inversed normalization. ,e
simulation history and distribution histogram of gear root
stress are shown in Figure 13.,e number of response values
greater than the set allowable value is defined as the number
of failures. ,e ratio of the number of response values less
than the set allowable value to the total number of responses
is defined as reliability.,e gear root stress obeys the normal
distribution with the mean value of 780.12MPa and the
standard deviation of 25.42MPa. When the allowable value
is 850MPa, the failure number is 29 and the reliability is
0.9971.,e allowable value is determined by the 3σ principle
based on the mean value and standard deviation of the gear
root stress.

4.4. Validation of IESMF. To verify the applicability and
performance of the IESMF proposed in this research, the
reliability analysis of RPSM of nose landing gear is carried
out using IESMF, MC simulation, and ERSM, respectively.
,e calculation time and accuracy are shown in Table 3.

Steering
cylinders

Steering
axis

Figure 4: Nose landing gear with steering cylinders.

Le� cylinder Right cylinder

Steering axis Rack-and-pinion

Figure 5: Rack-and-pinion steering mechanism (RPSM) of a nose
landing gear.

Figure 6: ,ree-dimensional RPSM.

Mathematical Problems in Engineering 7



Figure 7: Finite element (FE) model of the gear and rack.

Table 1: Mechanical property parameters of 300M steel.

Material parameters σb (MPa) σ0.2 (MPa) δ (%) φ (%) E (GPa)
Value 1963 1615 11.3 46.9 199
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Figure 8: Angular velocity curve of the steering axis.
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Figure 9: Stress nephogram during gear rotation.
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As shown in Table 3, IESMF and ERSM are far less than
MC in terms of calculation time. As the number of simu-
lations increases, the computational efficiency of IESMF is
significantly higher than that of ERSM.,e results show that
IESMF, which combines ANN and PSO based on the ERSM
idea, has a higher computational efficiency in the analysis of
mechanism dynamic reliability. ,e reason is that: (i)
,anks to the fact that ERSM only pays attention to the
extreme value of the dynamic response, the nonlinear re-
sponse surface function can be quickly fitted. (ii) ANN has
fast and accurate characteristics in training for uncertain
parameters. (iii) Using the improved PSO algorithm to
optimize the initial weights and thresholds, IESMF can be
obtained quickly, and the computational efficiency of dy-
namic reliability analysis of complex mechanisms is
improved.

Regarding the calculation accuracy of IESMF, almost all
sampling points are fitted by it with low training error,
showing the strong generalization ability and nonlinear
fitting ability of IESMF. As shown in Table 3, compared with
ERSM, IESMF is more precise and similar to the MC
method. ,e reasons are as follows: (i) IESMF combined
with BP-ANN has excellent generalization ability and
nonlinear mapping ability. ,e mathematical model is more
accurate, and the calculation accuracy is higher. (ii) ,e BR
algorithm reduces the training error by reducing the weight
of the network. (iii) Combined with the improved PSO
algorithm, the search accuracy of global initial optimal
weights and thresholds is improved.

To sum up, IESMF guarantees the calculation accuracy
and greatly improves the calculation efficiency. ,is method
has good adaptability to dynamic probability analysis of
complex mechanisms, and its comprehensive performance
is satisfactory.
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Figure 10: ,e maximum stress position of the gear root.

Table 2: Distribution features of input random variables.

Random variable ρ (kg·m−3) µ V (°/s) Mf (N·m)
Mean 7740 0.05 12 1910
Standard deviation 232 0.00333 1.33 66.67
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Figure 12: Prediction results of IESMF.

Mathematical Problems in Engineering 9



5. Conclusions

,e purpose of this research is to establish an efficient and
high-precision surrogate model, called the intelligent extre-
mum surrogate modeling framework (IESMF), which is used
to process the probabilistic analysis of complex mechanisms
with time-varying, high-nonlinearity, and multiparameters
characteristics. ,e feasibility and effectiveness of the method
are verified by analysing and calculating the engineering ex-
amples of rack-and-pinion steering mechanism (RPSM).
Some conclusions are summarized as follows.

(1) ,e distribution features and simulation history of
output responses under the gear root stress failure
mode of RPSM are obtained. RPSM stress reliability
probability is 0.9971.

(2) ,e improved PSO algorithm has an excellent per-
formance in finding the optimal initial weight and
threshold of the network. ,e IESMF established by
combining ERSM, ANN, and improved PSO can
successfully complete the dynamic reliability analysis
of complex mechanisms.

(3) By comparing with traditional methods, the results
show that the IESMF proposed in this research has
high efficiency and high precision for dynamic re-
liability analysis of complex mechanisms. As the
number of simulations increases, the advantages of
IESMF are more obvious.

(4) ,e work in this paper enriches the theory of
probabilistic analysis and provides a promising

approach for the optimal design of complex mech-
anisms in the fields of aerospace engineering and
mechanical engineering.
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