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With the continuous popularization and development of highway traffic in mountainous areas, the number of rock slopes is also
increasing. In order to improve the stability of rock slope and reduce the harm caused by slope slip, this paper carries out
numerical simulation of rock slope sliding based on particle swarm optimization algorithm. Firstly, this paper combines the
differential evolution algorithm and simplex method to improve the global and local search ability of particle swarm optimization
(PSO) algorithm and analyzes the performance of the algorithm. ABAQUS software is used to simulate rock slope sliding, the
finite element method is used to analyze the stability of rock slope, and LS-DYNA program is used to simulate rockfall impact rock
slope. During the numerical simulation, the improved algorithm is used to analyze all the data. Experimental data show that the
improved PSO algorithm converges after nearly 100 iterations and the convergence speed and optimization accuracy are high. In
the numerical simulation, the average failure probability of the left and right sides of the main section at the top, middle, and foot
of the slope is 0.0820 and 0.0723, 0.0772 and 0.0492, and 0.0837 and 0.0677, respectively, indicating that the overall instability
probability of the left side of the rock slope is higher than that of the right side. 2e rock slope with the same direction through
joint is mainly affected by the joint at the toe of the slope, the rock slope with reverse through joint is mainly affected by the joint in
the slope, and the sliding occurs from the middle to both ends. In addition, with the increase of the size and height of rockfall, the
total energy of rock slope is also increasing, and the possibility and degree of rock slope sliding are higher. 2is shows that the
improved particle swarm optimization algorithm can effectively analyze some factors affecting slope slip in numerical simulation
of saturated rock slope slip.

1. Introduction

1.1. Background Significance. In mountainous areas, because
of the development of traffic and economy, the construction
of roads and buildings, there are a large number of rock
slopes with potential safety hazards. 2e stability of rock
slope has a direct impact on the safety of traffic and residents
in nearby areas. Once landslide disaster occurs, it will bring
huge economic losses and security threats [1, 2].2erefore, it
is necessary to detect and predict the slip of rock slope in real
time. Numerical simulation of slip of rock slope can ef-
fectively analyze the stability of rock slope, but it requires a
large amount of calculation in data analysis. Particle swarm

optimization algorithm has the advantages of simple op-
eration and fast convergence speed, which can improve the
efficiency of analysis [3, 4].2erefore, this paper proposes an
improved algorithm based on particle swarm optimization
algorithm and applies it to the numerical simulation of slope
sliding, which provides a new idea for solving the engi-
neering problem of rock slope stability.

1.2. Related Work. Particle swarm optimization (PSO) is
widely used in many fields because of its advantages of
simple operation and fast convergence speed. Mohamadi
proposed a multiobjective stochastic programming model to

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6682659, 11 pages
https://doi.org/10.1155/2021/6682659

mailto:bqt1800101016@student.cumtb.edu.cn
mailto:kingzw627@163.com
https://orcid.org/0000-0002-8632-5257
https://orcid.org/0000-0001-5309-0757
https://orcid.org/0000-0002-6297-2361
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6682659


establish an earthquake response plan integrating predis-
aster and postdisaster decision-making. Aiming at this
model, he proposed a new multiobjective particle swarm
optimization algorithm and designed binary particle swarm
optimization algorithm and continuous particle swarm
optimization algorithm based on genotype sound pattern to
deal with binary position and other continuous decision
variables. Zhang et al. proposed a chaos multiobjective
particle swarm optimization algorithm based on particle
swarm optimization algorithm and invasive weed algorithm
and evaluated the performance of the method through four
common two-objective problems [5]. 2eir improvement of
particle swarm optimization algorithm provides a reference
for this study, but, after the improvement of the algorithm,
they did not carry out more comparative analysis to prove
the effectiveness of the improvement.

2e problem of rock slope sliding has always been the
focus of engineering. Wang et al. studied the sliding failure
of jointed rock slope caused by mechanical degradation of
rock mass under dry wet cycle [6]. According to the me-
chanical parameters of reservoir limestone under different
drying and wetting cycles, he used the discrete element
method to analyze the slippage failure mode of the North-
South slope of the Yellow River in the 2ree Gorges Res-
ervoir area. Zhuang et al. studied the sliding mechanism of
Earth rock slope by using transparent soil technology and
considered the influence of rock joint roughness coefficient,
soil angle, rock angle, and soil layer thickness on slope
stability [7]. He also used particle image velocimetry and
laser speckle technology to obtain the deformation char-
acteristics of rock and soil slope. Although their research on
rock slope slip is effective, there are still some deficiencies in
the technology of predicting the occurrence time of rock
slope slip.

1.3. Innovative Points in 0is Paper. In order to conduct
more accurate numerical simulation of rock slope slip,
improve the stability of rock slope, and reduce the eco-
nomic and life hazards brought by rock slope sliding, this
paper analyzes the rock slope sliding based on particle
swarm optimization algorithm. 2e innovation points of
this study are as follows: (1) based on the differential
evolution algorithm and simplex method, the standard
particle swarm optimization algorithm is improved,
which improves the global and local search ability of the
particle swarm optimization algorithm in the early and
late iterations [8]. It is found that the proposed algorithm
has faster convergence speed and higher optimization
accuracy. (2) ABAQUS software is used for numerical
simulation of rock slope sliding, and finite element
method is used for analysis. 2e top, middle, and foot of
slope are selected as feature points. It is found that the
failure probability of the left side of the rock slope model is
higher than that of the right side. (3) LS-DYNA program
was used to construct the slope model of rockfall impact
rock, and numerical simulation was carried out. It was
found that the size and height of rockfall were propor-
tional to the possibility of slope slip.

2. Particle Swarm Optimization Algorithm and
Sliding Analysis of Saturated Rock Slope

2.1. Particle Swarm Optimization Algorithm

2.1.1. Mathematical Model and Process. 2e particle swarm
optimization (PSO) algorithm simulates the foraging be-
havior of birds, taking birds as potential optimal solutions,
that is, particles [9]. Because the mass and volume of the
birds are ignored, the number of parameters is small and
easy to operate. Local and global optimal values are found
through population iterative optimization [10]. Assuming
that there are m particles in the solution space, the ex-
pressions of the position and velocity of the I-th particle in
the n-dimensional space are shown in the following
formulae:

Pi � pi1, pi2, . . . , piN( , (1)

Vi � vi1, vi2, . . . , viN( , (2)

where i � 1, 2, . . . , M. 2e historical optimal position of the
particle is Hbest and the global optimal position is Gbest.
Formulae (1) and (2) are improved by introducing inertia
weight and learning factor. 2e position and speed of
particles are updated as shown in the following formulae:

P
e+1
i � P

e
i + V

e+1
i , (3)

V
e+1
i � ϖVe

i + s1r1 Hbest − P
e
i(  + s2r2 Gbest − P

e
i( , (4)

where ϖ is the inertia weight, e is the current iteration
number, s1, s2 are the learning factor, and r1, r2 are the
random number between [0, 1].ϖVe

i is the inertial motion of
the previous generation of particles, s1r1(Hbest − Pe

i ) is the
particle’s own position, s2r2(Gbest − Pe

i ) represents the group
information sharing, and the three parts restrain each other
to achieve balance. 2e dynamic value of inertia weight ϖ is
shown in the following formula:

ϖ(e) � ϖmax −
e

max ie
ϖmax − ϖmin( . (5)

2e running process of particle swarm optimization
algorithm is as follows:

As shown in Figure 1, the parameters of the particle
swarm are initialized first, and then the fitness value of each
particle is calculated. 2e third step is to calculate the his-
torical optimal value and the global optimal value of the
particle to determine whether the particle speed is less than
or beyond the speed constraint, and, if so, set it to the
maximum or minimum speed. 2e fourth step is to de-
termine whether the termination conditions are met. If not,
the fitness value of particles is recalculated, the position and
velocity of particles are updated, and the following steps are
repeated.

2.1.2. Influence of Algorithm Parameter Setting. 2e param-
eters of PSO algorithm directly affect the performance of
PSO algorithm, so we must consider it again when choosing
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parameters, in order to improve the convergence speed of
the algorithm and find the global optimal solution. Inertia
weight can balance the local and global distribution of
particle swarm optimization search ability [11]. In order to
ensure the global search ability at the beginning of the it-
eration and the local search ability at the later stage of the
iteration, the inertia weight should be gradually reduced
with the increase of iteration times.

2e two learning factors affect the degree of historical
optimization and global optimization of particles, respec-
tively, so the local and global search can be adjusted to
balance their capabilities [12]. Small learning factors tend to
fall into local optimality, while large learning factors tend to
ignore the optimal solution even though they accelerate the
convergence speed.

2e number of particles affects particle swarm search.
Too many particles will improve the information sharing
ability between particles, but it will also increase the search
time. Too few particles will reduce the communication,
leading to the algorithm falling into local optimization. 2e
maximum flight speed of the particle determines the moving
distance of the particle and the search ability of the algorithm
[13]. 2e faster the speed, the stronger the search ability, but
it is easy tomiss the optimal solution.2e slower the reading,
the stronger the development ability, but it is easy to fall into
local optimum. In addition, the range of particles, the ter-
mination condition, and fitness function of the algorithm
will also affect the optimization results, which need to be
determined according to the specific situation of the
problem.

2.1.3. Convergence Analysis and Deficiency. If the current
position, historical optimal position, and global optimal
position of a particle are the same, then the particle cannot
approach the optimal position because its inertia weight

and speed are not zero, so the algorithm cannot converge
[14]. If the inertia weight and velocity are very close to
zero, the particles can approach the optimal position, but
the diversity of the population will be affected [15]. Be-
cause almost all particles will gather in the same optimal
position, the optimization will be stagnant and unable to
find the global optimal value. It is not advisable for
particles to keep the initialization speed and iterate until
the end of the algorithm, because the historical optimal
and global optimal of particles cannot work, which will
reduce the adaptability of the algorithm. 2is also shows
that if the algorithm does not find the global optimal
solution before convergence, premature convergence will
occur.

2e particle iterative optimization of the PSO algorithm
inevitably has the defect of only optimizing a part. 2e local
optimal solution will cause the particle to stop searching and
communicating with other particles. 2is will affect the
diversity of the population and the optimization results,
resulting in the final optimal solution which is not ideal.

2.2. Improved Method of Particle Swarm Optimization
Algorithm

2.2.1. Improvement of Inertia Weight. 2e traditional PSO
algorithm uses the inertia weight decreasing strategy to
realize the dynamic change of inertia weight, but this
method cannot reflect the dynamic search process of
particle swarm optimization, and it is easy to lead to the
local optimization of the algorithm. 2erefore, a sine
adjustment strategy with random disturbance appears.
Adding sine adjusted inertia weight before and after the
search can accelerate the convergence speed of the al-
gorithm [16]. 2e inertia weight is adjusted according to
the following formula:

ϖ � ϖ1 × 1 − sin
πt

emax
   + r × ϖ2 × sin

πt

emax
 , (6)

where r is a random number, emax is the maximum
number of iterations, and ϖ1,ϖ2 are the initial inertia
weight and the final inertia weight, respectively. After the
inertia weight is adjusted according to formula (6), the
inertia weight is close to the initial value in the initial
iteration of the algorithm, so the global search ability of
the algorithm is strong, but the local search ability is weak.
In the later stage of iteration, the inertia weight will be
close to the final value, which can improve the local search
ability and search accuracy.

PSO algorithms with different inertia weights have
different balance points in global and local search capabil-
ities [17]. 2e improved PSO algorithm process of inertia
weight increases the threshold and the maximum number of
iterations on the basis of the standard PSO algorithm
process. When updating the velocity and position of par-
ticles, the inertia weight is determined first. When choosing
the value of inertia weight, the decreasing strategy is no
longer used, but the sine adjustment strategy of random
disturbance is adopted.

Randomize the velocity and
position of the initial particles

Evaluate each particle and calculate
the fitness value of function

End condition
satisfied

Calculate the historical optimal
value and population optimal value

Update the speed and position
of particles

Output optimal
solution

No

Yes

Figure 1: Flow chart of particle swarm optimization algorithm.
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2.2.2. Improvement of Learning Factors. In the standard
PSO algorithm, the value range of two learning factors
s1, s2 is generally [0, 2] [18]. When solving complex
optimization problems, particles at the beginning of
iteration are easy to gather together, resulting in the
algorithm falling into local optimal value. 2e dynamic
learning factor can help the algorithm avoid local op-
timization and avoid premature convergence under the
premise of accelerating the convergence speed. At the
beginning of iteration, if s1 is larger and s2 is smaller, the
ability of particles of learning themselves can be
strengthened and a large number of particles can be
avoided. At the later stage of iteration, if s1 is smaller and
s2 is larger, it can enhance the ability of particles of
learning groups and quickly and accurately finding the
global optimal solution [19].

2e value of learning factor is determined on the basis of
formulae (3) and (4). At that time, the values of the two
learning factors were as follows:

s1 � 0.6 × u

emax− e

emax
 

,

s2 � 0.4 + 0.1 × r.

(7)

When e> 0.6 × emax, the values of the two learning
factors are as follows:

s1 � 0.4 + 0.1 × u,

s2 � 0.6 × u

e

emax
 

,

(8)

where u is a random number. 2is improvement can im-
prove the convergence speed of the algorithm at the be-
ginning of the iteration and the accuracy of the solution in
the late iteration. Based on the standard PSO algorithm, the
improved PSO algorithm process also increases the
threshold and the maximum number of iterations. When
updating the velocity and position of particles, the two
learning factors are determined first. Instead of fixed values,
the dynamic changes of learning factors are realized by
adding random numbers according to the maximum iter-
ations of particles.

2.2.3. Improvement of Differential Evolution Algorithm.
2e differential evolution (DE) algorithm performs ran-
dom search based on population differences [17]. Firstly,
the initial population is generated randomly and evenly,
and m individuals are randomly generated in N-dimen-
sional space. 2en, three individuals xv1, xv2, xv3 are
randomly selected from the feasible solutions for muta-
tion operation. 2e mutation individuals are shown in the
following formula:

bij(k) � xv1j + F xv2j − xv3j . (9)

where F is the scaling factor. In order to increase the di-
versity of feasible solutions, cross operation is carried out, as
shown in the following formula:

cij(k + 1) �
bij(k), if rand(0, 1)≤p or j � rand(1, n),

xij(k), if rand(0, 1)>p or j≠ rand(1, n),

⎧⎨

⎩

(10)

where p is the crossover probability and the value range is [0,
1]. 2en, select and update the target individual, as shown in
the following formula:

xi(k + 1) �
ci(k + 1), if f ci(k + 1)( <f ci(k)( ,

xi(k), if f ci(k + 1)( ≥f ci(k)( .


(11)

2e mutation, crossover, and selection operations are
repeated until the convergence accuracy of the algorithm
meets the requirements or the iteration times meet the
termination conditions. 2e DE algorithm is used to im-
prove the PSO algorithm. In the specific operation, the
mutation, crossover, and selection operations in DE algo-
rithm are used to mutate the historical optimal position of
particles, so as to maintain the diversity of particles and
avoid the weakening of global search ability in the late it-
eration stage and the emergence of premature scene. In
order to judge the aggregation degree of particles, the
particle aggregation factor is introduced into the basic PSO
algorithm, as shown in the following formula:

d(e) �
min y pg(e) , y 

max y pg(e) , y 
, (12)

where y(pg(e)) is the fitness value of the historical optimal
position, e is the current iteration number, and y is the
average of the current fitness of the particle. 2e value range
of aggregation factor is (0, 1], and the value is directly
proportional to the degree of aggregation. In other words,
the smaller the value, the lower the aggregation degree of
particles and the greater the diversity of particle swarm
[20, 21].

Improved PSO algorithm flow based onDE algorithm on
the basis of standard PSO algorithm, after calculating the
historical optimal position and fitness value, the calculation
of aggregation factor, and mutation operation of historical
optimal position are added, and then the position and speed
of particles are updated according to aggregation factor and
mutation operation. In this way, the diversity of particles can
be maintained throughout the iteration process, the global
search ability can be improved, and the optimization results
can be optimized.

2.3. Sliding of Saturated Rock Slope

2.3.1. Monitoring Technology of Saturated Rock Slope Slip.
2e geophysical methods for slope monitoring include ra-
dioactive measurement method, seismic exploration
method, ground penetrating radar, and acoustic emission
technology [22]. 2e radioactive measurement method can
determine the geological form of slope slip by monitoring
radon and its daughters in rock slope. It has the advantages
of simplicity and economy, but the results are easily affected
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by many factors and the accuracy is not high. In order to
excite seismic wave, seismic exploration company uses re-
flection and refraction signal of seismic wave to judge the
nature and shape of rock. Ground penetrating radar (GPR)
is similar to seismic exploration, which uses the reflected
signal of electromagnetic wave to find the position of slope
slip. 2rough the monitoring of two closely connected
acoustic emission probes, acoustic emission technology can
judge the position of slope sliding and the time of slope
sliding according to the intensity of acoustic emission.

2e surface deformation morphology monitoring
methods for slope monitoring include digital close range
photogrammetry, global positioning system, geographic
information system, and remote sensing and telemetry
system [23]. Digital close range photogrammetry compares
the pictures of the same position in different time periods
and then uses computer processing technology to sort out
and analyze the data to determine the relevant value of slip.
2e global positioning system (GPS) can locate and monitor
the rock slope from multiple angles and in all directions and
has the advantages of high accuracy and efficiency. 2e
digital map of GIS can explore, analyze, and process huge
geographic data. It can not only analyze the stability of rock,
but also predict the stability of potential rock slope slip area.
Remote sensing system uses remote sensing sensor device to
survey and monitor large area of landform and geological
disasters.

2e deep deformation morphology detection methods
for slope monitoring mainly include inclinometer tech-
nology, strain tubemonitoring technology, and time domain
reflection technology [24]. 2e inclinometer uses the
movement law of the pendulum under the action of gravity,
measures the relevant angle and horizontal displacement
data, calculates the deformation trend and depth, and has
high measurement accuracy. 2e strain tube monitoring
technology can judge the deep displacement of the slope by
monitoring the resistance change of the resistance strain
gauge embedded in the strain tube in the slope body. Time
domain reflectometry (TDR) is used to collect and analyze
the reflected and projected signals of electromagnetic wave
to monitor the stability of slope.

2.3.2. Stability Analysis of Saturated Rock Slope. 2e
Swedish circular arc method considers that the ratio of the
shear strength of the whole slip surface to the actual shear
stress is the stability safety factor, which has the advantages
of easy implementation and practical application [25]. In a
homogeneous cohesive rock slope, l is a slip arc, and its
center and radius are o, r, respectively. 2e antisliding
moment c · l · R on the slip arc and the reaction force caused
by the self-weight of the sliding rock are NR. When the
internal friction angle between reaction force and rock is 0,
the stability safety factor is shown in the following formula:

Fs �
NR

Ns

�
c · l · R

wk
. (13)

Among them, the rotational moment Ns � wk, w is the
self-weight of the sliding rock, and k is the horizontal

distance from the vertical line of the rock center to the center
of the circle.

2e Bishop method takes into account the effect of
interslice forces, assuming that the vertical shear forces on
both sides of the soil strip are the same, but the direction is
opposite. 2e total normal force and tangential resistance at
the bottom of soil strip are zi, ti, respectively. 2e equilib-
rium condition of vertical force of each soil strip is shown in
the following formula:

wi + qi − qi+1 − zi cos αi − ti sin αi � 0, (14)

where wi is the self-weight and qi is the tangential interstrip
force. 2e tangential resistance at the bottom of the soil strip
is shown in the following formula:

ti �
ci
′gi

Fs

+
Ni − μgi

Fs

adϕ′. (15)

In limit equilibrium, the overall moment equilibrium
condition is shown in the following formula:

 wiqi +  viei −  tir � 0, (16)

where v is the horizontal force. 2e stability safety factor
under Bishop method is shown in the following formula:

Fs �
 1/mαi(  ci

′gi + wi − μigi( adϕ′ 

 wi sin αi +  vi ei/r( 
. (17)

2.3.3. Numerical Analysis Method of Saturated Rock Slope.
2e numerical analysis method mainly depends on the
constitutive relation of materials to analyze the slip of rock
slope, which can solve the slip field and stress field of the
slope and can also simulate the specific process of the slip.
2e commonly used numerical analysis methods include
finite element method, discrete element method, fast La-
grangian method, and boundary element method [26]. In
the finite element method, the wireless element problem is
discretized into a finite element problem, and then it is
solved. 2e function equation is established and analyzed.
2e application of finite element method in slope mainly
includes finite element arc search method and finite element
strength reduction method. 2is method has the advantages
of strong applicability and high authenticity of stress cal-
culation, but the workload of calculation is very large and it
is easy to make mistakes.

2e discrete element method (DEM) discretizes the
research object into rigid units and uses the central differ-
ence method to solve the motion equation. 2e result is the
motion state of the research object. 2is method can solve
the problem of large displacement of rock mass and simulate
the process of rock sliding. 2e principle of the fast La-
grangian method is consistent with that of the discrete el-
ement method, but, compared with the discrete element
method, it can be applied to the nonlinear solution of various
boundary conditions and constitutive models. Although the
solution speed is fast, the accuracy is not high.

2e boundary element method transforms the partial
differential equation into the boundary integral equation
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and then discretizes it into an algebraic equation with only
boundary nodes to solve the unknown variables. 2e al-
gorithm can reduce the dimension of the problem, so it
greatly reduces the calculation workload and improves the
efficiency. But, when dealing with nonlinear problems, the
performance is poor. Sometimes, the results are complex and
not clear enough.

3. Experiments on Numerical Simulation of
Rock Slope Sliding Based on PSO Algorithm

3.1. Improvement of Particle Swarm Optimization Algorithm.
Although the improved PSO algorithm based on DE algo-
rithmmentioned in Chapter 2 can improve the global search
ability, it needs a strong local search ability in the later stage
of iteration. Simplex method has a small amount of com-
putation. It has the advantages of strong local search ability
and fast convergence speed, but poor convergence charac-
teristics. It is difficult to achieve good optimization results
only by using simplex method when solving complex
functions with higher dimensions. 2erefore, on the basis of
optimizing the global search capability based on DE algo-
rithm, this paper also uses the simplex method to optimize
the local search capability of PSO algorithm.

2e flow of the improved algorithm is as follows: firstly,
the parameters of particle swarm are initialized, and then the
fitness value of each particle is calculated. 2e second step is
to calculate the historical optimal value and global optimal
value of particles and update the position and velocity of
particles. 2e third step is to calculate the aggregation factor
of particles. If it is greater than 0.1, the DE algorithm is used
for mutation, crossover, and selection to update the his-
torical optimal position of particles. In the fourth step, after
the fitness values of particles are arranged in ascending
order, the first few particles are selected to form a simplex,
and simplex search is carried out to update the historical
optimal position of particles. 2e fifth step is to judge
whether the termination condition is satisfied. If it is sat-
isfied, the algorithm will be terminated. If not, it will return
to the second step to repeat the search.

3.2. StageAnalysis ofRock Slope Sliding. 2e first is the elastic
deformation stage, the rock slope under the load force of
instantaneous deformation. 2en, in the initial deformation
stage, the structural planes and pores in the rock body are
gradually closed under the action of sliding force, resulting
in elastic aftereffect deformation.2e third stage is isokinetic
deformation stage, in which the material of rock slope shows
viscous damage or creep damage, and the deformation
develops at constant speed. 2e fourth stage is the
accelerated deformation stage. Plastic damage and viscous
damage appear simultaneously in the rock slope, and the
deformation speed will accelerate with time. 2e last stage is
the instability stage, the deformation of the slope presents a
steep increase and failure situation, the cracks in the slope
spread to the maximum, and the duration of the instability
stage is relatively short.

3.3. Numerical Simulation of Rock Slope Slip. 2e slip of rock
slope was simulated numerically by ABAQUS software, the
stability of rock slope was analyzed by finite element
method, and all data were analyzed by the improved PSO
algorithm in this paper. 2e Mohr-Coulomb model of
ABAQUS software can simulate the main characteristics of
rock and can be used to analyze transversely isotropic rock
slope. 2e finite element analysis model of rock slope has a
slope height of 45 m and a slope angle of 40°. 2e physical
property parameters of the material are the common sandy
mudstone with density of 2.44 g/cm3, elastic modulus of
1.21× 104mpa, and porosity of 5.42%. After confirming the
model data and material parameters, the model was
established by ABAQUS software. 2e top, middle, and foot
of the slope are selected as feature points to judge whether
the slope is sliding.

In order to analyze the effect of rockfall impact on rock
slope slip, lS-DYNA program is used to simulate rock slope
with rockfall impact. Assuming that the rock slope under
impact has uniform texture and fixed boundary, the rockfall
in the simulated value is a rigid cube, and then the rockfall
drop model is established.

4. Discussion on Results of Numerical
Simulation Analysis

4.1. Performance of the Improved Algorithm in 0is Paper.
2e convergence performance of improved algorithm (TP-
PSO), standard PSO algorithm, and improved PSO algo-
rithm based on DE algorithm (DE-PSO) is compared and
analyzed.

As shown in Figure 2, the improved PSO algorithm
converges after nearly 100 iterations, and the improved PSO
algorithm based on DE algorithm converges after 150 it-
erations, while the standard PSO algorithm shows a slow
convergence trend. 2erefore, in terms of convergence
speed, the improved PSO algorithm is better than the im-
proved PSO algorithm based on DE and the standard PSO
algorithm.

2e performance of the algorithm is also reflected in the
optimization effect.2erefore, the optimization results of the
test function under different algorithms are compared. 2e
optimal value results obtained by the three algorithms are as
follows:

As shown in Table 1, the optimization results of TP-PSO
algorithm in four functions are 3.5712, 0.0572, 5.0417, and
2.2401. In different test functions, the optimal values ob-
tained by different algorithms are not consistent, and they
are greatly different due to the characteristics of the function
itself.

As shown in Figure 3, the minimum optimization result
of TP-PSO algorithm is 0.0572 and the maximum is 5.0417.
2e minimum optimization result of DE-PSO algorithm is
0.0275 and the maximum is 15.3622. 2e minimum and
maximum results of PSO algorithm are 2.8083 and 19.7796,
respectively. 2is shows that the accuracy of TP-PSO al-
gorithm is higher than that of DE-PSO algorithm and PSO
algorithm.
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4.2. Numerical Simulation Results of Rock Slope Slip. In this
paper, the stability of rock slope is analyzed by numerical
simulation of finite element method. 2ree main sections of
the top, middle, and foot of the slope are selected to calculate
the instability probability of the left and right sides of each
main section. 2e results are as follows:

As shown in Table 2, the maximum failure probability of
the left and right sides of the main section at the top of the
slope is 0.1789 and 0.1816, and the minimum probability of
instability is 0.0021 and 0.0059. However, in most cases, the
instability probability of the left side is slightly higher than
that of the right side, and it is impossible to judge which side

has the higher instability probability only by the maximum
and minimum value.

As shown in Figure 4, in the main section at the top of
the slope, the average instability probability on the left is
0.0820, and the average instability probability on the right is
0.0723.2is shows that, in general, the instability probability
of the left side is slightly higher than that of the right side.
2erefore, for the top of slope, more attention should be paid
to the generation of left side slope slip.

2en, the stability of the main section in the middle of
the slope is analyzed, and the instability probability of the left
and right sides of the main section is calculated.

As shown in Table 3, the maximum instability proba-
bility of the left and right sides of the main section in the
slope is 0.1557 and 0.1353, and the minimum instability
probability is 0.0111 and 0.0029. 2e variation trend of
instability probability of the left and right sides of the main
section in the slope is as follows:

As shown in Figure 5, in the main section of the middle
slope, the average instability probability on the left side is
0.0772, and that on the right side is 0.0492. 2is shows that,
in general, the instability probability of the left side is higher
than that of the right side. 2erefore, it is necessary to pay
more attention to the left side slope slip for the middle slope.

2en, the stability of the main section at the toe of the
slope is analyzed, and the instability probability of the left
and right sides of the main section of the toe is calculated.

As shown in Table 4, the maximum failure probability of
the left and right sides of the main section at the toe of the
slope is 0.1755 and 0.1784, and the minimum probability of
instability is 0.0115 and 0.0063. 2e variation trend of the
instability probability of the left and right sides of the main
section of the slope toe is as follows:

As shown in Figure 6, in the main section of slope toe,
the average instability probability on the left side is 0.0837,
and that on the right side is 0.0677. 2is shows that, in
general, the instability probability of the left side is higher
than that of the right side. 2erefore, for the toe of slope, it is
necessary to pay more attention to the left side slope slip.

To sum up, in the three main sections of the top, middle,
and toe of the slope, the trend of the instability probability of
the top and foot of the slope is similar, and the instability
probability of the left side is higher than that of the right side.
Although the left side of the slope is higher than the right
side, it is relatively stable.

Table 1: Optimal values of different algorithms.

Algorithm Function 1 Function 2 Function 3 Function 4
TP-PSO 3.7512 0.0572 5.0417 2.2401
DE-PSO 2.0458 15.3622 9.1219 0.0275
PSO 2.8083 3.6157 19.7796 19.4803
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Figure 2: Convergence curve of the algorithm.
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Figure 3: Comparison of optimal values of different algorithms.

Table 2: Instability probability of main section at the top of slope.

Xi (m) μA (x) left P left μA (x) right P right
0 1 0.1789 1 0.1816
1 0.9272 0.1473 0.8924 0.1489
2 0.8815 0.1279 0.7718 0.1147
3 0.8251 0.1056 0.6675 0.0873
4 0.7762 0.0857 0.5781 0.0671
5 0.7264 0.0653 0.5004 0.0481
6 0.6835 0.0510 0.4332 0.0328
7 0.6399 0.0347 0.3753 0.0226
8 0.5907 0.0213 0.3267 0.0142
9 0.5346 0.0021 0.2750 0.0059
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4.3. Influencing Factors of Rock Slope Slip

4.3.1. Influence of Rock through Joint. 2e influence of joint
on rock slope slip is analyzed from the same direction
through joint and reverse through joint. 2e same joint
parameters are used in the experiment, 5 joints are set in the
same direction and 5 joints in the reverse direction, re-
spectively. Starting from the foot of the rock, 5 reference
points were selected on average to observe and calculate the

displacement of the upper and lower sides and the left and
right sides of the reference points.

As shown in Table 5, in the same direction through joint,
reference point no. 1 has the largest displacement at the
upper and lower sides, which are −5.992 cm and −4.481 cm,
respectively; in the reverse through joint, the largest dis-
placement at the upper and lower sides is reference point 3,
which is −5.782 cm and −7.626 cm, respectively.

As shown in Figure 7, the relative displacement of no. 1
reference point is the largest, which is 1.511 cm, and the
relative displacement of no. 5 reference point is the smallest,
which is 0.122 cm. 2is shows that the rock slope with the
same direction through joint is mainly affected by the joint at
the toe of the slope and the sliding occurs from bottom to
top.

As shown in Figure 8, the relative displacement of no. 3
reference point is the largest, which is 1.656 cm, while the
relative displacement of no. 1 reference point is the smallest,
which is 0.401 cm. 2is shows that the rock slope with re-
verse through joints is mainly affected by the joints in the
slope and the sliding occurs from the middle to both ends.

4.3.2. Impact of Rockfall. 2e influence of rockfall on rock
sliding can be analyzed from the impact position, height, and
size of rockfall. 2is study analyzes the height and size of
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Figure 4: Variation trend of instability probability of main section
at the top of slope.

Table 3: Instability probability of main section in middle slope.

Xi (m) μA (x) left P left μA (x) right P right
0 1 0.1557 1 0.1353
1 0.9538 0.1489 0.8516 0.1082
2 0.8979 0.1158 0.6963 0.0793
3 0.8452 0.0963 0.5692 0.0574
4 0.7956 0.0785 0.4653 0.0408
5 0.7484 0.0621 0.3804 0.0284
6 0.7051 0.0478 0.3112 0.0191
7 0.6637 0.0347 0.2549 0.0127
8 0.6226 0.0215 0.2081 0.0074
9 0.5860 0.0111 0.1688 0.0029
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Figure 5: Variation trend of instability probability of main section
in middle slope.

Table 4: Instability probability of main section of slope toe.

Xi (m) μA (x) left P left μA (x) right P right
0 1 0.1755 1 0.1784
1 0.9391 0.1519 0.8672 0.1427
2 0.8815 0.1279 0.7512 0.1108
3 0.8272 0.1058 0.6507 0.0847
4 0.7762 0.0857 0.5626 0.0408
5 0.7284 0.0675 0.4884 0.0463
6 0.6835 0.0511 0.4231 0.0325
7 0.6414 0.0364 0.3666 0.0215
8 0.6019 0.0232 0.3176 0.0129
9 0.5648 0.0115 0.2752 0.0063
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Figure 6: Variation trend of instability probability of main section
at slope toe.
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rockfall and unifies the material and impact position of
rockfall. 2e total energy of rock slope is analyzed by
selecting cubic rockfall with side length of 0.25m, 0.5m,
0.75m, and 1m, respectively, from the height of 3m, 6m,
9m, 12m, and 15m.

As shown in Figure 9, the total energy of a rockfall with a side
length of 0.25m impacting the rock slope at 3m is the mini-
mum, which is 30019 J. When the rockfall with a side length of
1m impacts the rock slope at 15m, the maximum energy is
310252J. 2e difference between the minimum and the maxi-
mum is about 10 times. With the increase of the size and height
of rockfall, the total energy of rock slope is also increasing, and
the possibility and degree of rock slope sliding are higher.

5. Conclusions

Particle swarm optimization (PSO) algorithm is bound to
fall into local optimization due to its continuous iterative
optimization. In this paper, based on DE algorithm and
simplex method, the particle swarm optimization algorithm
is improved, which improves the global search ability in the
initial iteration stage and the local search ability in the late
iteration stage. 2rough comparative analysis, it is found
that the algorithm in this paper has faster convergence speed
and higher optimization accuracy.

2e traditional algorithm is always difficult to improve
the analysis efficiency because of the large amount of cal-
culation in the analysis of data of rock slope. 2e improved
algorithm can effectively solve this problem. 2e stability of
rock slope is analyzed by finite element method, and all
simulation data are analyzed by improved PSO algorithm. In
the sliding model of rock slope constructed in this paper, the
instability probability of the left side is higher than that of the
right side, and the sliding is more likely to occur. 2e rock
slope with the same direction through joint is mainly af-
fected by the joint at the toe of the slope, and the rock slope
with reverse through joint is mainly affected by the joint in
the slope, and the sliding occurs from the middle to both
ends. In addition, the size and height of rockfall will directly
affect the possibility of rock slope sliding.

Due to the limited time and knowledge, there are some
deficiencies in this study. 2e first is the defect of the nu-
merical simulation method itself. 2ere is a big difference
between the numerical simulation in the laboratory and the
actual situation, so it is difficult to achieve complete

Table 5: Displacement of reference point.

Reference point
Displacement in the same direction Reverse displacement

Upside Downside Relative Left side Right side Relative
1 −5.992 −4.481 1.511 −4.523 −4.122 0.401
2 −5.331 −4.476 0.855 −5.210 −4.258 0.952
3 −4.235 −3.993 0.242 −6.982 −5.326 1.656
4 −3.426 −3.019 0.407 −4.731 −3.877 0.854
5 −2.223 −2.101 0.122 −3.906 −3.019 0.887
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same direction.
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reduction. Secondly, when analyzing the factors affecting
slope slip, the condition of unbroken joints and irregular
rockfall is not taken into account. 2ese shortcomings in the
future research work need to be improved as far as possible,
in order to improve the reliability of the data.
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