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Connectivity is a key theory in fuzzy incidence graphs (FIGs). In this paper, we introduced connectivity index (CI), average
connectivity index (ACI), andWiener index (WI) of FIGs.,ree types of nodes including fuzzy incidence connectivity enhancing
node (FICEN), fuzzy incidence connectivity reducing node (FICRN), and fuzzy incidence connectivity neutral node (FICNN)

are also discussed in this paper. A correspondence between WI and CI of a FIG is also computed.

1. Introduction and Preliminaries

Zadeh [1] presented the theory of fuzzy set (FS) to resolve
complications in tackling with precariousness. Since then,
the FS theory becomes a rich area in multiple disciplines,
including mathematics, computer science, and signal pro-
cessing. ,e theory of graphs has been considered to play a
vital role in dealing with real-life situations. A graph is an
easy way of expressing information, including the rela-
tionship between different objects. ,e objects are shown by
nodes, and relations are represented by edges. In this paper,
all graphs are finite, simple, without loops, and undirected.
When there is a lack of certainty in the illustration of the
objects and their association, we need to draw a fuzzy graph
(FG) model. Zadeh’s FS provided a productive ground for
the theory of FGs which has been proposed by Rosenfeld [2].
In a graph, the strength of connectedness (SC) between any
two vertices is either 0 or 1, whereas in FG, it is a real number
∈∈[0, 1].,e study of FGs leadsmany scientists to contribute
in this field, such as Yeh and Bang [3] studied the concept of
FGs independently and discussed its applications in clus-
tering analysis. Bhattacharya and Suraweera [4] discussed an
algorithm to compute the max-min powers and property of
FGs. Bhutani [5] worked on automorphism of FGs. Mor-
deson [6] introduced fuzzy line graphs. Bhutani and
Rosenfeld [7, 8] studied strong arcs as well as fuzzy end

nodes in FGs. Sunitha and Vijayakumar [9, 10] defined fuzzy
trees and fuzzy blocks in FGs. Samanta et al. [11] inaugu-
rated completeness and regularity of generalized FGs.
Samanta and Pal [12] studied fuzzy planner graphs. Mathew
and Sunitha [13] classified the edges of a FG as an
α − strong, β − strong, and δ − edge. Mathew and Sunitha
[14, 15] presented vertex, edge connectivity, and cycle
connectivity in FGs.Mathew et al. [16] initiated saturation in
FGs, and Binu et al. [17] explored CI and its application in
FGs. Binu et al. [18] investigated CI of FG and its application
to human trafficking. For some other significant works on
graphs and FGs, one may refer to [19–25].

Wiener [26] was the first who investigated WI when he
was studying about the boiling point of paraffin. After the
landmark work of HaroldWiener aboutWI, in the middle of
1970s, new results related to WI were described. In graphs,
WI has been studied in different fields such as Chemistry,
Mathematics, and Physics. Binu et al. [27] discussed WI of
FG and its application to illegal immigration networks.

FGs are unable to provide any information on the effect
of a vertex on edges of the graph. ,erefore, this disad-
vantage opens a way to introduce FIGs. FIGs talk about the
effect of a vertex on an edge. Dinesh [28] presented the idea
of FIGs. For example, if vertices show different residence
societies and edges show roads joining these residence so-
cieties, we can have a FG expressing the extent of traffic from
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one society to another. ,e society has the maximum
number of residents and will have maximum ramps in
society. So, if c and d are two societies and c d is a road
joining them, then (c, c d) could express the ramp system
from the road c d to the society c. In the case of an un-
weighted graph, c and d both will have an influence of 1 on
c d. In a directed graph, the influence of c on c d represented
by (c, c d) is 1, whereas (d, c d) is 0. ,is idea can be gen-
eralized by FIGs. Mordeson [29] studied numerous con-
nectivity perceptions in FIGs. Malik et al. [30] explained
different uses of FIGs. Mordeson et al. [31] proposed a fuzzy
incidence (HTML translation failed) blocks along with their
applications. Mordeson andMathew [32] discussed different
connectivity ideas in FIGs.

,e motivation of our work is that CI, ACI, and WI of
FGs exists in literature, but these indices are unknown for
FIGs. ,ese indices will make a way to study different
properties of FIGs at length. ,is is why we propose these
concepts for FIGs. Our work will open the new doors for
many researchers to study FIGs in detail. ,e outline of this
paper is as follows. In Section 1, we provide elementary
definitions, results, and expressions of FIGs, which are re-
quired for the development of the content. In Section 2, we
discuss CI of FIGs. Section 3 describes certain boundaries for
CI of FIGs. CI of vertex and edge deleted fuzzy incidence
subgraph (FIS) is illustrated in Section 4. Section 5 explains
ACI and its characteristics. In Section 6, we discuss WI of
FIG and a relationship between connectivity andWI. Below,
we present some preliminary definitions from [17, 19, 32].

Let G be a simple graph with vertex set V(G) and edge set
E(G). ,en, an incidence graph (IG) is given by G � (V,

E, I), where I⊆V × E. An IG is shown in Figure 1, and if
(u, uv) is in IG, then (u, uv) is said to be an incidence pair or
pair. Assume an IGG � (V, E, I). A sequence v0, (v0, v0v1),

v0v1, (v1, v0v1), v1, . . . , vn− 1, (vn− 1, vn− 1vn), vn− 1vn, (vn, vn− 1
vn), vn is said to be a walk. It is closed if v0 � vn. A walk is
called a path if it has all distinct vertices. An IG is said to be
connected if all pair of vertices are joined by a path. An edge
ab is said to be a fuzzy bridge (FB) if the deletion of ab ∈ θ∗
lessens the SC between some pair of vertices in G.

In this paper, minimum is represented by ∧ and max-
imum is expressed by ∨.

Definition 1. Consider a graph G � (V, E), and η and θ are
fuzzy subsets of V and E, respectively. Assume V × E has a
fuzzy subset ψ. If ψ(v∗, e∗)≤ η(v∗)∧θ(e∗) for every v∗ ∈ V

and e∗ ∈ E, then ψ is called a FI of G.

Definition 2. Assume a graph G � (V, E) and (η, θ) be a
fuzzy subgraph of G, if ψ is a FI of G, then G � (η, θ,ψ) is
called a FIG of G.

Definition 3. Consider a FIGG � (η, θ,ψ). ,en,
H � (κ,ϕ,Ω) is a FIS of G if κ⊆η, ϕ⊆ θ and Ω⊆ψ.

Definition 4. AssumeG � (η, θ,ψ) is a FIG. A FI path λ from
g to h, g, gh ∈ η∗ ∪ θ∗, is defined as a sequence of elements
η∗, θ∗, and ψ∗ beginning with g and closing with h. ,e

minimum value of ψ(x, xy) is called incidence strength (IS),
where (x, xy) ∈ λ.

In FIG, the incidence paths (IPs) can take distinct forms.
u0 � (u0, u0u1), u0u1 is an IP of length one. u0 � (u0,

u0u1), u0u1, (u1, u0u1)u1 is an IP of length two.

Definition 5. Consider G be a FIG. An incidence pair
(a, ab) is strong if ψ(a, ab)≥ ICONNG− (a,ab)(a, ab) where
ICONNG− (a,ab) (a, ab) shows the highest IS of a − ab. If
ψ(a, ab)> ICONNG− (a,ab)(a, ab), then the pair is called
α − strong. If ψ(a, ab) � ICONNG− (a,ab)(a, ab), then this
type of pair is β − strong. If an incidence pair is α − strong
or β − strong, then this kind of pair is a strong pair. If
HTML translation failed, then this type of pair is called
δ − incidence pair.

Definition 6. Assume G be a FIG. If all pairs of λ are strong,
then an IP λ in G is called strong IP.

Definition 7. Consider G � (η, θ,ψ) be a FIG. H � (κ,ϕ,Ω)

is called a subgraph of G if κ(a) � η(a) for all a ∈ κ∗,
ϕ(ab) � θ(ab) for all ab ∈ ϕ∗, and Ω(a, ab) � ψ(a, ab) for
all pair (a, ab) ∈ Ω∗.

Proposition 1. If H is a FIS of G, then ICONNH(a,ab)

≤ ICONNG(a,ab).

Definition 8. A FIG of G is said to be complete if ψ(a, ab) �

η(a)∧θ(ab) for every (a, ab) ∈ ψ∗.

Definition 9 (see [19]). ,e distance d(u, v) between two
vertices u, v ∈ V(G) is the minimum number of edges in a
path between u and v in G.

u

v w

x

Figure 1: Incidence graph.
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Definition 10. In a graph G, a path of shortest length is called
geodesic.

Definition 11. (see [19]). WI of a graph G is the sum of
distances between all pairs of vertices of G. ,en, the WI of a
graph G is given by W(G) � 􏽐u,v∈V(G)d(u, v).

2. Connectivity Index of Fuzzy Incidence Graph

Connectivity is a common parameter associated with a
network. ,is section includes the introduction and formula
to calculate CI of FIG. For easiness, in the coming sections,
we will take η(a) � 1 for every a ∈ η∗.

Definition 12. LetG � (η, θ,ψ) be a FIG.,e CI of G is given
by

CI(G) � 􏽘
a,b∈η∗

η(a)η(b)ICONNG(a, b),
(1)

ICONNG(a, b) is the maximum value of ISs for all the
possible IPs between a and b.

Example 1. Assume G is a FIG given in Figure 2 having
η∗ � i, j, k, l􏼈 􏼉; θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7, θ(kl) �

0.9;ψ(i, ij) � 0.7,ψ(j, ji) � 0.5,ψ(i, ik) � 0.3,ψ(k, ki) � 0.2,

ψ(j, jk) � 0.3,ψ(k, kj) � 0.7,ψ(k, kl) � 0.7, and ψ(l, lk) �

0.3 with CI(G) � 2.0.

,e connectivity indices of subgraphs of FIGs can never
be surpassed that of the FIGs. ,erefore, a subgraph H of
FIGG will have to be less than or equal to CI than the CI(G).
,is is shown in the coming proposition.

Proposition 2. If H � (κ,ϕ,Ω) is a FIS of G � (η, θ,ψ), then
CI(H)≤CI(G).

Proof. Let a, b ∈ κ∗. As H � (κ, ϕ,Ω) is a FIS ofG � (η, θ,ψ),
κ(a) ≤ η(a). Also, if H is a FIS of G, then ICONNH(a, b) ≤
ICONNG(a, b) for any two a, b ∈ κ∗. ,is implies
􏽐a,b∈κ∗κ(a)κ(b) ICONNH(a, b)≤􏽐a,b∈η∗η(a)η(b) ICONNG

(a, b) which implies CI(H)≤CI(G). □

Example 2. Consider G be a FIG provided in Figure 3 having
η∗ � i, j, k􏼈 􏼉, θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7;ψ(i, ij) �

0.7,ψ(j, ji) � 0.5,ψ(i, ik) � 0.3,ψ(k, ki) � 0.2,ψ(j, jk) �

0.3,ψ(k, kj) � 0.7. It is a subgraph of a FIG given in Example
1 (Figure 2) with CI 1.1.

3. Bounds for Connectivity Index of Fuzzy
Incidence Graph

,is section discusses some bounds for the CI of FIGs. Every
FIG has a different CI. ,erefore, all FIGs have different
bounds for the CI. From all FIGs, the complete FIGs will
have the highest CI. It is shown in the next theorem.

Theorem 1. Consider a FIG, G having |η∗| � n, then
0≤CI(G)≤CI(G″), where G″ indicates a complete FIG.

Proof. Assume G is a FIG. If |θ∗| � 0, then CI of G � 0. Let
G″ be the complete FIG having |η∗| � n and η″(a) � η(a).
,en, θ(a, b)≤ θ″(a, b). Also, ICONNG(a, b)≤
ICONNG″(a, b). ,is implies 0≤CI(G)≤CI(G″). □

Example 3. Assume G″ is a complete FIG given in Figure 4
having η∗ � i, j, k􏼈 􏼉, θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7,

ψ(i, ij) � 0.8,ψ(j, ji) � 0.8, ψ(i, ik) � 0.4, ψ(k, ki) � 0.4,ψ
(j, jk) � 0.7 and ψ(k, kj) � 0.7. We get CI(G″) � 2.2.

4. Vertex-Deleted and Edge-Deleted Fuzzy
Incidence Subgraphs with
Connectivity Indices

,is section talks about the deletion of some edge or vertex
of any FIG will become a cause of reducing a CI of FIG. An
edge deleted and vertex deleted subgraph of a FIG will have
small values of CI. ,e CI of FISs relies upon the nature of
vertex or edge deleted.

Example 4. Let G � (η, θ,ψ) be the FIG given in Figure 5
with η∗ � p, q, r, s, t􏼈 􏼉, θ(pq) � 0.7,θ(pr) � 0.5,θ(qr) �

0.9,θ(rs) � 0.3,θ(rt) � 0.5,θ(st) � 0.6;ψ(p, pq) � 0.6,ψ (q,

qp) � 0.7,ψ(p, pr) � 0.4, ψ(r, rp) � 0.2, ψ(q, qr) � 0.8,ψ(r,

rq) � 0.6,ψ(r, rs) � 0.2,ψ(s, sr) � 0.3, ψ(r, rt) � 0.5,ψ(t, tr)

� 0.4,ψ(s, st) � 0.6, and ψ(t, ts) � 0.4. After calculation, we
get CI(G) � 4.6, whereas CI(G − qr) � 3.0 and CI(G−

rt) � 3.4. Here, we conclude that deletion of some of the
incidence pair reduces CI(G).,is motivation leads us to the
following result.

Theorem 2. LetG � (η, θ,ψ) be a FIG and G∗ � (η∗, θ∗,ψ∗)
be the FIS of G by deleting an incidence pair (a, ab) ∈ ψ∗.
Den, CI(G∗)<CI(G) iff (a, ab) is a FB.
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Figure 2: A fuzzy incidence graph with CI � 2.0.
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Proof. Consider a pair (a, ab) be a FB. ,en, according to
definition of FB, ICONNG− (a,ab)(a, b)< ICONNG(a, b),
which shows that CI(G∗)<CI(G). Conversely, assume that
CI(G∗)<CI(G). Now, consider three different cases:

Case 1: consider a δ − pair, ψ(a, ab), and then
ψ(a, ab)< ICONNG− (a,ab)(a, b) which implies
ICONNG− (a,ab)(a, b)< ICONNG(a, b). ,is implies
CI(G∗)<CI(G).
Case 2: consider a β − strong incidence pair ψ(a, ab).
,en, ψ(a, ab) � ICONNG− (a,ab)(a, b) which means
that there is an another strongest path a, (a, ab),

ab, (b, ab), b different from the edge ψ(a, ab). ,e IS

does not affect when we delete ψ(a, ab). ,is means
CI(G∗) � CI(G).
Case 3: consider an α − strong incidence pair ψ(a, ab).
,en, ψ(a, ab)> ICONNG− (a,ab)(a, b). ,is means an
edge ab is the only strongest path whose strength is
equal to ψ(a, ab). From this, it is obvious that
CI(G∗)<CI(G). As by definition α, strong arcs are FBs.
,is means if CI(G∗)<CI(G), then ab is a FB. ,is
shows that CI(G∗)<CI(G) iff uv is a FB. □

5. ACI of FIG

We measure the average flow in the network to check how
much flow is stable in the network.,erefore, in this section,
we are going to introduce a new parameter named ACI of
FIG. Assume the FIG given in Example 1.

Example 5. Assume G is a FIG given in Example 1 (Figure 2)
having η∗ � i, j, k, l􏼈 􏼉, θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7,

θ(kl) � 0.9;ψ(i, ij) � 0.7,ψ(j, ji) � 0.5,ψ(i, ik) � 0.3,ψ (k,

ki) � 0.2,ψ(j, jk) � 0.3,ψ(k, kj) � 0.7,ψ(k, kl) � 0.7 and
ψ(l, lk) � 0.3 with CI(G) � 2.0. G contains 4!/((4 − 2)!2!) �

6 pairs of nodes with ACI(G) � CI(G)/6 � 2/6 � 0.33.

Definition 13. Consider a FIG. ,e ACI of FIG is given by

ACI(G) �
1
n

2
⎛⎝ ⎞⎠

􏽘
a,b∈η∗

η(a)η(b)ICONNG(a, b).

(2)

Definition 14. Assume a FIG and z ∈ η∗. z will be FICRN of
G if ACI(G − z)<ACI(G). We call z a FICEN if ACI
(G − z)>ACI(G). z will be FICNN if ACI(G − z) �ACI(G).

Example 6. Let G be a FIG given in Figure 6 with
(HTML translation failed), θ(ij) � 0.3, θ(ik) � 0.8, θ(jk) �

0.7, θ(jn)) � 0.5, θ(kl) � 0.9, θ(lm) � 0.8;ψ(i, ij) � 0.3,ψ(j,

ji) � 0.2, ψ(i, ik) � 0.4, ψ(k, ki) � 0.6, ψ(j, jk) � 0.6, ψ(k,

k j) � 0.7, ψ(j, jn) � 0.5,ψ(n, nj) � 0.4, ψ(k, kl) � 0.8,ψ(l,

lk) � 0.2,ψ(l, lm) � 0.3, and ψ(m, ml) � 0.7. ACI(G) �

0.3, ACI(G − i) � 0.29, ACI(G − j) � 0.25, ACI(G − k) �
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Figure 3: Subgraph of the fuzzy incidence graph in Figure 2.
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Figure 4: A complete fuzzy incidence graph.
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Figure 5: Fuzzy incidence graph with CI 4.6.
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0.11,ACI(G − l) � 0.36,ACI(G − m) � 0.34,ACI(G − n) �

0.29. ,erefore, i, j, k, and n are FICRNs; l and m are
FICENs.

In the following proposition with the help of CI, we
classify these nodes:

Proposition 3. Consider a FIG. Let z ∈ η∗ having
n � |η∗|≥ 3. Assume q � CI(G)/CI(G − m). z is a FICEN iff
q< (n/(n − 2)). z is a FICRN iff q> n/(n − 2). z is a FICNN
iff q � n/(n − 2).

Proof. Let z be FICNN of FIG.,en, ACI(G) � ACI(G − z),

that is, CI(G)/ n

2􏼠 􏼡 � CI(G− z)/ n − 1
2􏼠 􏼡 and CI(G)

/CI(G − z) �
n

2􏼠 􏼡/ n − 1
2􏼠 􏼡, which implies

CI(G)/CI(G − z) � n/(n− 2). By reversing the argument, the
sufficient part can easily be proved. In similar manners, the
other two cases can be solved. □

Definition 15. Let G be a FIG. G will be FI connectivity
enhancing graph if G contains minimum one FICEN. If G

contains no FICEN and has minimum one FICRN, then we
call it FI connectivity reducing graph. We call G a FI
connectivity neutral graph if all nodes of G are neutral.

6. Wiener Index of FIG

In this section, we establish the concept of WI. WI is a
topological index used in different fields like medicine,
communication, and cryptology. A proper definition to
calculate WI of FIG is given next.

Definition 16. Let G be a FIG. WI of G can be calculated as

WI(G) � 􏽘
a,b∈η∗

η(a)η(b)ds(a, b),
(3)

where ds(a, b) represents weights of those strong geodesics
from a − b whose sum is minimum.

Example 7. Consider G be a FIG given in Figure 7 with
η∗ � i, j, k􏼈 􏼉, θ(ij) � 0.7, θ(ik) � 0.8, θ(jk) � 0.7;ψ(i, ij) �

0.6, ψ(j, ji) � 0.6, ψ(i, ik) � 0.8, ψ(k, ki) � 0.8, ψ(j, jk) �

0.6,ψ(k, kj) � 0.6. Here, each incidence pair is a strong pair.
Because i − j is a geodesic, it is a strongest path from i − j.
Similarly, i − k and j − k are all strongest paths. ,us,
WI(G) � 4.

Assume a FIG. Let H be the FIS of G. ,en, it is not
necessary that WI(H)≤WI(G). It can be seen in the next
example

Example 8. Let H � (κ, ϕ,Ω) is a FIS (see Figure 8) of G �

(η, θ,ψ) (in Figure 7) such that ϕ(ik) � 0 and ϕ(ij) �

0.7, ϕ(jk) � 0.7,Ω(i, ij) � 0.6,Ω(j, ij) � 0.6,Ω(j, jk) � 0.6,

Ω(k, jk) � 0.6. Geodesic from i to k is i, j, k. ds(i, j) �

ψ(i, ij) + ψ(j, ij) � 1.2 Similarly, ds(i, k) � 2.4, ds(j, k) �

1.2. ,en, WI(H) � 4.8 and WI(G) � 4<WI(H) � 4.8.

Link between WI and CI of a FIG
In FIGs, it could be noted that CI will be less than WI.

Example 9. Consider a FIG given in Figure 9 with η∗ �

i, j, k, l􏼈 􏼉, θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7, θ(kl) � 0.9;

ψ(i, ij) � 0.5,ψ(j, ji) � 0.7,ψ(i, ik) � 0.3,ψ(k, ki) � 0.2,ψ
(j, jk) � 0.3,ψ(k, kj) � 0.7,ψ(k, kl) � 0.7, and ψ(l, lk) � 0.3.
,is FIG contains each pair strong except ψ(i, ki) � 0.2
because ICONNG− (i,ki) � 0.3. For (i, k) ∈ η∗ × η∗∖ψ(i, ki).
Now, CI(G) � 0.5 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 � 2 and
WI(G) � 1.2 + 2.2 + 3.2 + 1 + 2 + 1 � 10.6 ,us, CI(G)<
WI(G).

Theorem 3. Assume a FIG having |η∗|≥ 3. Den,
WI(G)>CI(G).

Proof. Consider a FIG with |η∗|≥ 3. For every a, b ∈ η∗, the
sum of membership values of every strong incidence pairs
connecting a and b is ds(a, b), whereas the minimum
membership value of all strong incidence pairs is
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Figure 7: Fuzzy incidence graph with WI(G) � 4.
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Figure 6: Fuzzy incidence graph with FICRNs and FICENs.
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ICONNG(a, b), which means ICOONG(a, b)< ds(a, b). ,is
implies 􏽐a,b∈η∗η(a)η(b)ICONNG(a, b)<􏽐a,b∈η∗η(a)η
(b)ds(a, b). Hence, CI(G)<WI(G). □

Theorem 4. Assume a complete FIG, G with |η∗| � 2, and
(a) � (b) � 1. Den, 2CI(G) � WI(G).

Proof. Consider G be a complete FIG with |η∗| � 2 and
(a) � (b) � 1. ∃ ,ere exist a strong path P″ which is the
strongest path in complete FIG, G. For any two nodes
a, b ∈ η∗, the sum of membership values of incidence pair in
the only strongest path P″ connecting a with b is ds(a, b),
whereas the minimum membership value of incidence pair

of P is ICONNG(a, b). ,is implies
2 ICONNG(a, b) � ds(a, b). ,us, 2􏽐a,b∈η∗η
(a)η(b)ICONNG(a, b) � 􏽐a,b∈η∗η(a)η(b)ds(a, b). Hence,
2 CI(G) � WI(G). □

Example 10. Let G be the complete FIG, as shown in Fig-
ure 10. Here, u, v ∈ η∗ and θ(uv) � 0.3,ψ(u, uv) �

0.3,ψ(v, vu) � 0.3. Clearly, CI(G) � 0.3 and WI(G) � 0.6.

7. Conclusion

Connectivity is an essential parameter attached to a net-
work. ,e idea of connectivity is inseparable from the
theory of FIGs. In this paper, we have come up with dif-
ferent results about WI and CI of FIGs. Relevant examples
related to WI and CI of FIGs are too obtained. In this
article, CI, ACI, and WI of FIGs linked with networks are
expressed. Nodes of FIGs are classified as FICRN, FICEN,
and FICNN by using these incidences. Various types of
FIGs are also obtained. A crucial relationship between CI
andWI of FIG is derived too. Our objective is to enlarge our
research work to soft FIGs, bipolar FIGs, threshold FIGs,
competition FIGs, regular FIGs, and q-rung FIGs. More
similar results and applications will be reported in up-
coming papers.
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Figure 9: Fuzzy incidence graph with CI<WI.
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Figure 10: Complete fuzzy incidence graph with 2CI(G) � WI(G).
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