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It is vital for a strapdown inertial navigation system (SINS) to be calibrated before normal use. In this paper, a new kind of norm-
observed calibration method is proposed. Considering that the norm of the output of accelerometers and gyroscopes can be exactly
the norm of local acceleration of gravity and Earth rotation angular velocity, respectively, optimization function about all-parameter
calibration and the corresponding 24-position calibration path is established. Differential evolutionary algorithm (DE) is supposed to
be the best option in parameter identification due to its strong search and fast convergence abilities. However, the high-dimensional
individual vector from calibration error equations restrains the algorithm’s optimum speed and accuracy. To overcome this
drawback, improved DE (IDE) optimization is specially designed: First, current “DE/rand/1” and “DE/current-to-best/1” mutation
strategies are combined as one with complementary advantages and overall balance during the whole optimization process. Next,
with the increase of the evolutionary generation, themutation factor can adjust itself according to the convergence situation.Multiple
identification tests prove that our IDE optimization has rapid convergence and high repeatability. Besides, certain motivation of
external angular velocity is added to the gyroscope calibration, and a series of dynamic observation paths is formed, further
improving the optimization accuracy. )e final static navigation experiment shows that SINS with calibration parameters solved by
IDE has better performance over other identification methods, which further explains that our novel method is more accurate and
reliable in parameter identification.

1. Introduction

Calibration is a key technology for inertial navigation sys-
tems to maintain high accuracy in the long term. Strapdown
inertial navigation systems, once mounted on mobile car-
riers, should avoid repeated disassembly and keep high
reliability for a long time in case of emergency usage.
)erefore, parameters downloaded inside the system need to
be precisely identified and remain stable regardless of
outside adverse circumstances, which brings a huge chal-
lenge for SINS calibration [1–3].

Separate calibration is a typical method and has been
widely used for decades. Generally, the calibration process
contains multiple static positions and continuous rotation
tests with the aid of turntables. In each individual test, with
the Earth’s rotation rate and local gravity acceleration as a
reference, a turntable can provide precise excitation of

specific forces and angular rates for inertial measurement
unit (IMU) [4–6]. However, the manufacturing error and
installation error do exist in the actual platform, which
causes considerable measure errors of specific forces and
angular rates and will badly influence the parameter iden-
tification accuracy [7]. In [8], mounting errors between the
IMU axes and the turntable axes are studied and the
compensation is conducted successfully by using a thin-shell
algorithm. In [9], a new calibration method based on
D-suboptimal design is proposed in order to identify the
IMU error model parameters and the turntable errors si-
multaneously. Although the above methods can restrain
navigation errors caused by skew angles, it is rather difficult
to eliminate them. Besides external factors that lead to the
decrease of calibration accuracy, the effects of parameter-
float, nonlinearity, and coupling are also inevitable during
the calibration process [10]. In [11], the accelerometer
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nonlinear scale factor is added to the error model and finally
computed through the estimation of velocity errors. In [12],
a general nonlinear model of the IMU output is derived, and
online parameter estimation is performed well by means of a
transformed unscented Kalman filter.

Later some scholar comes up with the idea of the norm-
observed calibration method [13]. Under the guidance that the
norm of three accelerometer outputs is equal to local gravity
and the norm of three gyroscope outputs is equal to the Earth’s
rotation rate in stationary condition [14], this method has been
successfully applied and widely spread on many occasions. In
[15], an autocalibration procedure for accelerometers is pro-
posed. It requires no high-precision equipment and allows
increasing the accuracy of this kind of sensor. In [16], a
modified calibration method that takes advantage of norm
observation is utilized to enhance the accuracy and perfor-
mance of MEMS inertial sensor module. So far, most cali-
bration models contain high-dimensional parameters and are
usually computed through nonlinear optimization, which
brings a great challenge to algorithm performance, such as
convergence, stability, and other characteristics. In [5], the
particle swarm optimization (PSO) algorithm is introduced in
accelerometer calibration. )e experiment shows it can suc-
cessfully identify the accelerometer nonlinear scale factor and
improve the multiposition calibration accuracy. In [17], the
proposed PSO algorithm incorporates constriction factor along
with time-varying inertial weight for improved results than the
traditional PSO scheme. In [18], a novel calibration method by
using the optimal artificial fish swarm algorithm is described in
detail. Final results show that the system can be recalibrated
without disassembly while ensuring accuracy and reliability. In
[19], the genetic algorithm is utilized to obtain the inertial
platform’s optimal rotation trajectory based on the measure-
ment of observability for all parameters.

With the rise of infield inertial sensor calibration, the
optimization method needs to shorten the calculation time
while ensuring accuracy. Among all the optimization al-
gorithms, a differential evolutionary algorithm is foundmost
suitable for the parameter identification processes, such as
calibration of three-axis magnetometers, gyroscopes, and
camera calibration. As an optimization heuristic algorithm
that searches the global minimum or maximum, it can avoid
local solutions of numerical problems. At the same time, it
has the characteristics of fast convergence and strong ro-
bustness. Most importantly, the DE algorithm is proved not
sensitive to initial parameters, which is an important ad-
vantage compared with traditional iteration algorithms. In
[20], DE algorithm is used for the determination of the scale
factor, misalignment, and bias of low-cost gyroscope
L3GD20. However, the author in this paper only gave a
rough plan and did not verify the final result. In [21], a
calibration method using differential evolution is presented
to determine the correction parameters of IMU. )e final
result shows the trend of convergence, and the introduction
of root mean square error (RMSE) proves the reliability of
DE algorithm identification in this area. But the running
speed of the algorithm and the resource usage is not de-
scribed in this article.With the aid of a nonmagnetic rotation
platform, calibration of three-axis magnetometers with DE

algorithm is analysed [22]. Compared with the unscented
Kalman filter (UKF), recursive least squares (RLS), and
genetic algorithm (GA), the DE algorithm has not only the
least calibration error but also the best robustness. It is
believed that for a three-axis sensor, the number of pa-
rameters to be identified is relatively not much. High-end
inertial devices such as SINS, Attitude and Heading Ref-
erence System (AHRS) usually contain gyroscope, acceler-
ometer, altimeter, magnetometer, and others, which greatly
increases the type and number of sensors and complicate the
identification process.

For this high-dimensional identification problem, in this
paper, a novel norm-observed calibration method based on
IDE optimization is proposed. In order to achieve engi-
neering applications, a self-designed calibration scheme is
introduced in detail and according to this, real inertial device
data is collected and used to verify the performance of our
optimization algorithm. After special upgrade and im-
provement, it is found that IDE greatly enhances the ac-
curacy and repeatability of all-sensor parameter
identification compared with the conventional ones. )e
final static navigation experiment also confirms that point.

)is paper is organized as follows: In Section 2, sensor
error models and calibration paths are established. Section 3
introduces optimization operation instructions and the al-
gorithm improvement process is explained in detail. Ex-
perimental results of the proposed method and the
traditional ones are provided in Section 4. Finally, conclu-
sions are drawn in Section 5.

2. Error Model of Inertial Sensors and SINS
Calibration Path Design

2.1. Inertial Sensors Error Model. )e symbols involved in
this paper are defined as follows (the bold symbols in the
formula are all represented as vectors):

b: orthogonal body frame with right-front-up axis
Ng: three-axis gyroscope output in the nonorthogonal
frame
Na: three-axis accelerometer output in the
nonorthogonal frame
ωb: three-axis angular velocities input in the b frame
fb: three-axis specific forces input in the b frame
Kg: diagonal matrix of the gyros’ scale factors
Ka: diagonal matrix of the accelerometers’ scale factors
ε: three-axis gyroscope constant drift vector
∇: three-axis accelerometer constant drift vector
Eg: installation error matrix from the b frame to the
gyro frame
Ea: installation error matrix from the b frame to the
accelerometer frame

)e ideal error model of the gyros can be defined as
follows [23]:

Ng � KgEgω
b

+ ε. (1)
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)e matrix expansion of (1) is as follows:
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Similarly, the ideal error model of the accelerometers can
be written as follows:

Na � KaEaf
b

+ ∇. (3)

)e matrix expansion of (3) is as follows:
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(4)

2.2. Principle of Norm-Observed Calibration and Its Path
Design. It is already known that the norm of SINS input
angular velocities and specific forces are fixed values in static
condition. According to (1) and (3),
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where g represents local gravitational acceleration and Ω is
the Earth’s rotation angular velocity.

Practically, the calibration process contains measure-
ment noises and identification errors. So, according to the
actual situation, we have the following equations:
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Symbols with upper wavy lines represent the actual
values. )en the above objective optimization function can
be established based on multiple static position observations

La �

��������������������


M
m�1 g

2
− f

b
 

m





2
 

2

M − 1




,

Lg �

�������������������


M
m�1 Ω

2
− ωb

 
m




2

 
2

M − 1




,

(7)

where M represents the total number of static positions in
the calibration path.

)e objective optimization functions La and Lg takes the
form similar to the standard deviation and the optimal
solution must be reached at the moment when the objective
function is minimized.

In order to ensure that the parameters are fully stimu-
lated, the optimal arrangement of static positions is also
necessary. According to (2) and (4), each of them has 12
accelerometer feature parameters that need to be calibrated,
that is, 3 scale factors, 6 installation errors, and 3 constant
biases. )us a 24-position calibration scheme is designed to
completely recognize those parameters.

)e whole calibration path is divided into three phases
and every phase contains 8 locating places.

Phase 1: assume the SINS’s body frame is the O − XbYbZb

right-handed coordinates and axis Xb is fixed towards
north (N). In position 1 (POS1), the axis Zb is adjusted
towards up (U). Rotating 45° around axis Xb from POS1,
we can get POS2. )en, do the same rotation around axis
Xb until reaching POS8. In each position, the turntable
stops around 1minute for SINS to collect enough data. All
8 locating places are illustrated in Figure 1(a).
Phase 2: AxisYb is fixed towards north. Follow the same
rotation operation as Phase 1 around axis Yb 8 times
and get 8 positions. Also, keep standing time in each
position. )e rotation scheme of Phase 2 is shown in
Figure 1(b).
Phase 3: Axis Zb is fixed towards north. Follow the
same rotation operation as Phase 1 around axis Zb 8
times and get 8 positions. Also, keep standing time in
each position. )e rotation scheme of Phase 3 is shown
in Figure 1(c).

3. Parameter Optimization and Algorithm
Improvement Process

3.1. Calibration Parameter Identification Process Based onDE
Algorithm. )e differential evolution algorithm shows great
performance in solving optimization problems due to its
simple structure, strong searching capability, and robustness
[24, 25]. )e operation of this method normally contains 4
main stages, that is, initialization, mutation, crossover, and
selection [26, 27]. Counting on the algorithm’s global search
ability and rapid convergence characteristic, we decide to put
DE into accurate identification of calibration parameters.

First, determine initial population size NP, evolutional
generation EG, and objective function f to be maximized.
Take the accelerometer calibration as an example, and there
are 12 feature parameters that need to be calibrated, so the
individual vector θi is created:

θi � Kax− i Kay− i Kaz− i Eaxy− i Eaxz− i Eayx− i Eayz− i Eazx− i Eazy− i ∇x− i ∇y− i ∇z− i , i � 1, 2, . . . ,NP. (8)
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For every element αj(j � 1, 2, . . . 12) in the vector θi, its
value should be randomly generated between the lower
bound LBjand upper bound UBj.

αj � LBj + rand(0,1) × UBj − LBj , j � 1,2, . . . ,12, (9)

where rand (0, 1) denotes a random number in the interval
[0, 1].

According to the results acquired from the traditional
separate calibration, we may set boundaries among different
elements. See details in Table 1.

)e population size is generally 3–8 times the dimension,
so we set NP� 60. Other settings include EG� 1200 and
objective function is set as follows:

f �
1
La

. (10)

Secondly, in the mutation operation, “DE/rand/1”
mutation strategy is initially selected [28]. And mutant
vector at the next generation is generated by three different
existing individuals:

θM (t + 1) � θx(t) + F θy(t) − θz(t) , (11)

where θx, θy, θz are distinct vectors uniformly chosen from
the set θ1, θ2, . . . , θNP , θM is the mutant vector, t and t+ 1
represent certain generation and its next, F is the mutation
factor.

In this optimization process, the initial setting of F is set
as 1.2, which normally ranges on the interval of (0, 2].

Next, in order to increase the diversity of the group,
crossover operation is conducted by replacing some com-
ponents αi

j of θi with the corresponding components αM
j of

θM as follows:
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Figure 1: 24-position calibration path. (a) Phase 1. (b) Phase 2. (c) Phase 3.

4 Mathematical Problems in Engineering



αc
j(t + 1) �

αM
j (t + 1), if rand(0, 1)<CR,

αi
j(t), otherwise,

⎧⎪⎨

⎪⎩
(12)

where αc
j stands for elements in the vector θC generated after

the crossover operation, CR denotes crossover probability
and is set as 0.6.

At last, to select the better one from the parent vector
θi(t) and the trial vector θc (t + 1), the objective function is
introduced to identify next-generation members:

θi(t + 1) �
θc(t + 1), if f θc(t + 1)( >f θi(t)( ,

θi(t), otherwise.


(13)

)e latest generation members will be treated as parent
vector and the mutation, crossover, and selection operation
will start a new cycle until it reaches maximum generation or
falls within preset convergence interval. In this way, an
optimal solution will be obtained.

3.2. Improvement of Conventional DE Algorithm and Opti-
mization Strategy of Key Parameters. Follow the instructions
in the previous subsection and perform 5 times optimization
processes, and the convergence trend of the fitness function
is shown in Figure 2.

It is clear to see that slow convergence in the early stage
and poor repeatability among fitness values make the
identified calibration parameters unconvincing. )rough
comprehensive analysis, we know that the whole calibration
process needs to identify a total of 12 parameters, which
means a high-dimensional optimization problem and will

absolutely complicate the solving process. Besides, there are
huge differences in the magnitude of parameters in Table 1.
All these characteristics require the optimization algorithm
must have strong traversal search ability and should not be
too time-consuming for practical application.

)e chosen “DE/rand/1” strategy has very good global
search capabilities [28], but local search is insufficient, and
population diversity will become worse in the later stages of
evolution. )erefore, the current results are of poor re-
peatability and stability and it will take a lot more time to get
a global optimum solution. “DE/current-to-best/1” is an-
other frequently used mutation strategy and its basic con-
figuration can be written as follows:

θM(t + 1) � θi(t) + F θbest(t) − θi(t)(  + F θx(t) − θy(t) ,

(14)

where θbest (t) is the best vector at the current generation t.
Replace (11) with (14) and restart the optimization

process, then we can get new convergence progress in
Figure 3.

As is shown in Figure 3, “DE/current-to-best/1” usually
has a faster convergence rate and performs well when solving
unimodal problems. However, when solving multimodal
problems, it is more likely to fall into a local optimum,
leading to premature convergence. And the fitness function
value obtained by this method is much smaller than the one
solved by “DE/rand/1”.

Since the above two schemes have their own advantages
and disadvantages, they can be used in combination to
achieve a nearly perfect equilibrium strategy.)e integration
mutation strategy we designed here is as follows:

θM(t + 1) � (1 − b)θx(t) + b θi(t) + F θbest(t) − θi(t)( (  + F θy(t) − θz(t) , (15)

where b represents weight distribution factor and it is related
to the current evolutional generation:

b �
2t

EG
−

t

EG
 

2
. (16)

Assuming that the initial value of b is 0, at this moment,
the integration mutation strategy can be simplified as
“DE/rand/1” in (11). With the increase of evolutionary gen-
eration, the value of b is also increasing. When b is equal to 1,
the evolution strategy degenerates to “DE/current-to-best/1” in
(14). In this way, the improved combination strategy can
ensure the global ergodic feature in the early stage of evolution,
and in the later stage of evolution, it can improve the con-
vergence speed and the local search performance.

Put (15) into the mutation operation and restart the
optimization process. )e new results are illustrated in
Figure 4.

It can be seen that under the guidance of the new in-
tegration strategy, the final fitness value is a lot better than
those in Figures 2 and 3. Besides, in the later stages of

evolution, all of the results have converged to a stable state.
We can transform the fitness function values into the ob-
jective optimization function in (7) and get the value range
[0.007656, 0.008999], which shows that the final results have
acceptable repeatability.

Back to (15), the mutation factor F remains a fixed value
throughout the evolution process. Actually, the selection of
this parameter has a great influence on the final evolu-
tionary effect. It is generally believed that a smaller scaling
factor F value is likely to cause the algorithm to converge
locally, while a larger F value will reduce the convergence
speed and even make the algorithm difficult to converge.
)erefore, F should have the ability to dynamically adjust
itself during the entire evolution process: In the early stage
of differential evolution algorithm, in order to avoid local
optimization, the mutation factor should be larger. In the
later stage, in order to retain elite individuals and improve
search efficiency, the mutation factor should be smaller.
Based on the above ideas, the adaptive design of the mu-
tation factor is as follows:

Mathematical Problems in Engineering 5



F(t) � Fmax − Fmax − Fmin( 
1

1 + α 1/fmin(t)(  − 1/fmax(t)( (  + β(1 − (t/EG))
, (17)

Table 1: Accelerometer calibration parameter boundary settings.

Accelerometers Scale factors Constant biases Installation errors

Separate calibration results
13942.35422951 − 206.59251066 0.00336420 0.00191168
13345.72485877 87.24553607 0.00271530 − 0.00204019
13062.44709817 333.71033323 − 0.00739421 − 0.00044851

Lower bound 13000 − 400 − 0.01
Upper bound 14000 400 0.01
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Figure 2: Accelerometer’s convergence process of fitness function (DE/rand/1).
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Figure 3: Accelerometer’s convergence process of fitness function (DE/current-to-best/1).
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where Fmax, Fmin indicate the upper and lower limits of the
mutation factor, fmax(t), fmin(t) represent maximum and
minimum values of fitness function at generation t, α, β are
different weight factors. After many trials, finally, we make
α � 0.1, β � 0.15.

Now that mutation factor has the ability of self-
adjustment. )e combined mutation strategy can be further
modified as follows:

θM(t + 1) � (1 − b)θx(t) + b θi(t) + F(t) θbest(t) − θi(t)( (  + F(t) θy(t) − θz(t) . (18)

Conduct 3 more optimization process and make a
comparison with the results shown in Figure 4. )e im-
provement effect after parameter dynamic adaptation is
illustrated in Figure 5.

)e 3 new tests (test01, test02, and test03) are in use of
the mutation strategy in (18). As is shown in Figure 5, the
introduction of parameter dynamic adaptation further im-
proves the identification accuracy. )e corresponding
function values in (7) of the new tests are in the range of
[0.004162, 0.005808], which is smaller than those of the old
tests. Final statistical results are listed in Table 2.

3.3. 7e Application and Correction of IDE Algorithm in
Gyroscope Parameter Identification. )e improved DE al-
gorithm has been successful in the identification of accel-
erometer parameters. Now IDE is applied in the parameter
identification process of the gyroscope. What should be
noted is that gyro data is collected from the same calibration
path in Figure 1 as the accelerometer. )e new individual
vector φi can be written as follows:

φi � Kgx− i Kgy− i Kgz− i Egxy− i Egxz− i Egyx− i Egyz− i Egzx− i Egzy− i εx− i εy− i εz− i , i � 1, 2, . . . ,NP. (19)

)e new boundary settings are shown in Table 3.
)e new fitness function is as follows:

f �
1

Lg

. (20)

)en following the same instructions as the acceler-
ometer’s identification and using the latest mutation strategy
in (18), the gyroscope parameter identification results are
illustrated in Figure 6.

With the same mutation strategy applied, the gyro-
scope’s final fitness values are obviously smaller than the
accelerometer’s ones, which means the poor recognition
process and substandard accuracy. )e key reason for this
phenomenon is the ill-fitted data selection. )e calibra-
tion scheme is a kind of stationary method. During the
24-position static observations, the turntable stays still
and the only input for gyros is the Earth’s rotation angular
velocity. It cannot create sufficient external excitation to
be sensed. )en the usage of static observation data causes
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Figure 4: Accelerometer’s Convergence process of fitness function (integration strategy).
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considerable deviation in scale factors recognition and
further makes the installation errors so disordered that
some of the values have reached preset thresholds.

)erefore, dynamic observation data is needed and a
supplementary calibration path is added to the whole
program. See the details in Figure 7.
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Figure 5: Accelerometer’s convergence process of fitness function (integration strategy with parameter dynamic adaptation).

Table 2: Statistical results of different DE algorithms in accelerometer calibration.

Traditional DE IDE (integration strategy only) IDE (integration strategy and parameter adaptation)
Average value of La 0.045558 0.008171 0.004854
Standard deviation of La 0.015841 6.1852e − 04 8.5377e − 04

Table 3: Gyroscope calibration parameters boundary settings.

Gyroscopes Scale factors Constant biases Installation errors

Separate calibration results
7921.74760617 − 208.33680363 − 0.00489132 0.00096090
7911.54386049 − 33.24299533 0.00058152 0.00018519
7924.57007346 − 54.56475774 0.00449350 0.00137873

Lower bound 7800 − 500 − 0.01
Upper bound 8000 100 0.01
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Figure 6: Gyroscope’s convergence process of the fitness function.
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)e main purpose of the extra calibration scheme is to
add some certain motivation of external angular velocity to
the gyroscopes. As is shown in Figure 7, each axis is con-
ducted with continuous positive and negative rotation. Take

Z axis rotations (ROT1 and ROT2 in Figure 7) for example,
the input of three-axis gyrosωx1,ωy1,ωz1 in positive rotation
(ROT1) can be expressed as follows:

ωx1

ωy1

ωz1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

cosωt sinωt 0

− sinωt cosωt 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

ωie cos ϕ

ω + ωie sinϕ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (21)

where ωie is the Earth’s rotation angular velocity, ω is the
turntable’s rotation angular velocity, ϕ stands for local

latitude, and t is the turntable rotation time. Substituting
(21) into (2), we can get

Ngx1 � Kgxωie cos ϕ sinωt + KgxEgxyωie cos ϕ cosωt + KgxEgxz ω + ωie sinϕ(  + εx,

Ngy1 � KgyEgyxωie cos ϕ sinωt + Kgyωie cosϕ cosωt + KgyEgyz ω + ωie sinϕ(  + εy,

Ngz1 � KgzEgzxωie cos ϕ sinωt + KgzEgzyωie cos ϕ cosωt + Kgz ω + ωie sinϕ(  + εz,

(22)

After the turntable turning n circles, take the sum of both
sides in (22) and average the results:

Ngx1 � KgxEgxz ω + ωie sinϕ(  + εx,

Ngy1 � KgyEgyz
ω + ωie sinϕ(  + εy,

Ngz1 � Kgz ω + ωie sinϕ(  + εz.

(23)

Similarly, during negative rotation (ROT2), we can get
the following:

Ngx2 � KgxEgxz − ω + ωie sinϕ(  + εx,

Ngy2 � KgyEgyz
− ω + ωie sinϕ(  + εy,

Ngz2 � Kgz − ω + ωie sinϕ(  + εz.

(24)
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Figure 7: Gyroscope supplementary calibration process.
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Adding (23) and (24), then we obtain the following:

Ngx1 − Ngx2

2ω
� KgxEgxz,

Ngy1 − Ngy2

2ω
� KgyEgyz,

Ngz1 − Ngz2

2ω
� Kgz.

(25)

Take the same steps for X and Y axis; then scale factors
and installation errors of three-axis gyros can all be received.
Due to the introduction of additional paths, the fitness
function is no longer applicable and according to the derived
solution in (25), the modified fitness function can be written
as follows:

f �
1

Lgm

,

Lgm �

�������������������������������


J
j�1 N

+

j − N
−

j 
2

− K
gE

g 2ωb
o 

j





2
 

2

J − 1




,

(26)

where J represents the total number of symmetrical rota-
tions, N

+

j , N
−

j stand for average outputs during positive and
negative rotation along the same axis. ωb

o is the angular
velocity of external excitation provided by the turntable. In
our calibration scheme, the norm of ωb

o is set as 10°/s, 20°/s,
and 30°/s, respectively. Use the improved fitness function to
rerun the parameter optimization process. )e convergence
process is shown in Figure 8 and the final statistical results
are listed in Table 4.

It can be seen from Table 4 that the high repeatability of
the objective function occurs when the static calibration path
is used. )is is the result of falling into a local extreme. After
adjusting the calibration path, the final convergence of the
gyro parameter optimization is maintained at the same level
as the accelerometer, which proves that the path selection
and algorithm performance are equally important for ac-
curate calibration.

What needs to be added is there are still constant biases
waiting to be recognized. )e already obtained scale factors
and installation errors are now input parameters and sub-
stitute them into the static objective function in (7). At this
time, the remaining optimization process only needs to
identify the constant drifts of the three-axis gyroscope and is
easy to complete.

4. Experimental Results and Algorithm
Performance Comparison

4.1. Experimental Condition Setting. )e system’s configu-
ration is shown in Figure 9(a). It should be noted that all the
calibration paths of the above optimization tests are gen-
erated by the turntable in Figure 9(b) according to manual
control instructions. )e original calibration data of the

accelerometers and gyroscopes are collected by the data
acquisition device in Figure 9(c). Now in order to test
navigation performance under different calibration pa-
rameters, a static navigation experiment is conducted under
the same experimental environment and equipment.

4.2. Comparison of Experiment Results. Since completely
accurate calibration parameters are not available in advance,
the accuracy of the identified parameters can be decided by
the degree of divergence of the static navigation error. In this
static navigation experiment, first preheat SINS long enough
to eliminate changes of the ambient temperature on the
effects of navigation accuracy. Next, download local latitude,
longitude, and initial attitudes into the systems, respectively,
and make preparations for navigation solution. During the
formal navigation phase, raw data from inertial components
are collected and several navigation solutions are operated
inside with parameters gained from different identification
methods.

To ensure the fairness of the comparative test, first, in the
process of parameter optimization, the fitness functions used
are all the same. )e number of repeated optimization and
iteration remains the same. Next, in each navigation solution
with acquired calibration parameters, raw data are all
measured and collected under the same calibration path we
proposed in Subsections 2.2 and 3.3. Finally, statistical re-
sults of parameter identification are shown in Table 5 and
navigation results are illustrated in Figure 10.

It is clear that the IDE method has the best performance
in Table 5. Experiment results in Figure 10 show that the
system calibrated by our proposed method IDE has the
smallest velocity error divergence during the static navi-
gation process: less than 2m/s velocity error in the north and
10m/s in the east. )erefore, parameters gained from IDE
optimization calibration are proved to be accurate and show
better navigation performance.

4.3. Cost Effectiveness and Limitations of IDE Algorithm.
Now we discuss the time and space complexity of the al-
gorithm as follows: Suppose the number of iterations is N,
the dimension of the solution isM, and the population size is
generally 3–8 times the dimension, taking 5M.)e standard
differential evolution algorithm includes three steps of
mutation, crossover, and selection. According to the number
of times the basic sentence is executed, the time complexity
of each step can be determined as follows:

O(NM) O 5NM2
  O(NM) . (27)

)e overall time complexity of the traditional algorithm
is as follows:

O NM + 5NM2
+ NM  � O NM2

 . (28)

As for our IDE method, due to the addition of the
population optimal value calculation in the mutation pro-
cess, the time complexity of each step of the algorithm
becomes as follows:
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Figure 8: Gyroscope’s convergence process of the new fitness function.

Table 4: Statistical results of different DE algorithms in gyroscope calibration.

IDE with static calibration path IDE with dynamic calibration path
Average value of Lg/Lgm 0.4935 0.003075
Standard deviation of Lg/Lgm 4.0192e − 06 7.8156e − 04

SINS

(a)

Turntable

(b)

DC power 
supply

Condition monitoring computer

Data 
acquisition 

device

(c)

Figure 9: Configuration of the test system. (a) SINS. (b) Turntable. (c) Power supply and acquisition equipment.
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O NM2
  O 5NM2

  O(NM) . (29)

And time complexity of the new algorithm is as follows:

O NM2
+ 5NM2

+ NM  � O NM2
 . (30)

In a word, the improved DE algorithm and the standard
DE algorithm have the same time complexity, and there is
only a constant difference in running time, which shows that
the new method can be used efficiently.

In terms of space complexity, the storage space required
during the execution of the algorithm includes three parts:
the space occupied by the algorithm program, the storage
space occupied by the input initial data, and the extra space
required during the execution of the algorithm. Compared

with the standard DE algorithm, the improved DE algo-
rithm adds the determination of the best individual in
group history and the adjustment process of the variation
factor. )erefore, the new method adds a certain storage
unit.

It can be seen that the proposed IDE algorithm repre-
sents the compromise between accuracy and efficiency. )e
improved method sacrifices a certain convergence speed but
in exchange for better optimization accuracy. However,
compared with system-level calibration where the Kalman
filter is used to estimate parameters, our algorithm has a
slight advantage in time consumption. For further appli-
cation in the field environment and fast calibration occa-
sions, there are still improvements and modifications that
need to be studied.
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Figure 10: Comparison of navigation results. (a) East velocity errors. (b) North velocity errors. (c) Latitude errors. (d) Longitude errors.

Table 5: Statistical results of different methods in SINS calibration.

Comparison in accelerometer parameter identification
GA PSO IDE

Success rate (%) 73.33 86.67 96.67
Average value of La 0.1513 0.03387 0.004854
Standard deviation of La 0.1096 0.04783 8.5377e − 04

Comparison in gyroscope parameter identification
Success rate (%) 60 83.33 100
Average value of Lgm 0.08360 0.05049 0.003075
Standard deviation of Lgm 0.09456 0.03806 7.8156e-04
PS: GA represents genetic algorithm and PSO represents particle swarm optimization.
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5. Conclusions

To overcome the impacts of turntable errors for traditional
separate calibration, in this paper, a novel norm-observed
calibration based on an improved differential evolution
algorithm is introduced. First error models of inertial sen-
sors are established and according to this, fitness functions
for the identification of accelerometer and gyroscope pa-
rameters are built, respectively. Secondly, the 24-position
calibration path is designed for traditional DE optimization.
After the improvement of the integration mutation strategy
and parameter dynamic adaptation, our IDE proves to be
more efficient and accurate in finding a global optimum for
the calibration problem. Aiming at the degeneration of the
gyroscope parameter recognition, the analysis concludes
that small motivation of external angular velocity occurs
during static observation. So in the optimization process of
gyroscope calibration, raw data is changed into a dynamic
one and accordingly, its fitness function is modified. )e
final static navigation experiment shows that recalibrated
parameters by IDE indeed improve the navigation perfor-
mance. In a word, the norm-observed calibration method of
SINS proposed in this paper is an effective way in parameter
identification, which has great advancement in the SINS
calibration field and much potential in future practical use,
such as the temperature drift modeling and compensation,
the alignment of different coordinate systems during camera
shooting, and extraction and decomposition of various
harmonic components in gravity measurement.
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