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+e landslide of dump is a man-made geological disaster which will bring great harm to the surrounding people and environment,
and probabilistic reliability analysis is commonly used to analyze the probability of slope landslide or whether protective measures
should be taken. Monte Carlo simulation is the most commonly used method, but there are some problems, such as low efficiency,
statistical ambiguity of small samples, and the fuzzy transition interval of the stability criterion. +is paper proposes an improved
Monte Carlo method that uses an improved bootstrap method to process small samples of geotechnical data, employs ELM
(extreme learning machine) based on PSO (particle swarm optimization) to fit the limit equilibrium method function, and
constructs the safety factor membership function of the dump site considering the fuzzy transition interval. +is method was
applied to an example slope of the dump site in Chengmenshan, Jiangxi. Comparing the analysis result with the result of the
traditional MCS (Monte Carlo Search) method, it was found that after adding the safety factor membership function, the result
was closer to the actual situation of the dump site, and the probability of failure and reliability index values were closer to those of
the dangerous state; after the original function was replaced by the PSO-ELMmodel, the efficiency of theMCSmethod was greatly
improved while the results maintained high consistency with the original results; the MCS method combined with the bootstrap
method not only simulated the fuzzy uncertainty of the original sample statistics and distribution type but also expressed the
reliability index and probability of failure as a two-sided confidence interval with a certain confidence level. +e above conclusion
proves the effectiveness and superiority of this method compared with the original MCS method.

1. Introduction

As a man-made geological disaster with the rise of mining
industry, dump landslide not only threatens the life and
property safety of mine personnel but also has a huge impact
on the surrounding environment. Dump sites in mining
areas have been studied by domestic and foreign scholars for
stability analysis. At present, the most commonly used
methods [1] in engineering are the limit equilibriummethod
and numerical analysis based on the finite element method,
obtaining a certain safety factor value of the analyzed slope
and clarifying the sliding surface or part that is most likely to
be damaged. However, it often ignores widespread uncer-
tainty of slopes’ stability analysis (such as the uncertainty of
the calculation parameters of the rock and soil, the geometric

model, and the functional relationship between the slope-
influencing factors and the safety factor), so the effect is not
satisfactory. Reliability analysis introduces probability the-
ory into the slope stability evaluation system and obtains the
slope failure probability and reliability index based on
consideration of the above uncertain factors, so as to achieve
a more reasonable and scientific evaluation of the stability of
the slope. In recent years, it has been widely valued and
studied by scholars.

+e reliability analysis methods of soil slopes can be
roughly divided into the first-order second moment method
[2–8], Monte Carlo method [9–14], and response surface
method [11, 15–23]. Among them, the Monte Carlo method
is favored in soil slope reliability analysis due to its accuracy
and ease of operation (no matter how complicated the limit
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state equations and calculations are, according to statistical
principles, only enough simulation sampling times and
random number sequences are needed to obtain an accurate
failure probability value), but some problems also exist.

Firstly, the original limit equilibrium iterative calculation
method that links the soil parameters and the slope safety
factor requires a certain amount of time, and the Monte Carlo
method has to repeat the process hundreds of thousands or
even millions of times, so a huge amount of time is needed.
Many scholars use models from other fields to simulate and
approximate the functional relationship between slope safety
factors and soil parameters to solve the problem of low effi-
ciency. He [24] used sample data obtained by deterministic
calculations to train a support vectormachine (SVM)model to
approximate the functional function in the reliability analysis
and then combined it with the Monte Carlo method to cal-
culate the probability of slope instability. After the application,
it was proved that the accuracy of this method was better than
the (first-order reliability method) FORM method, and the
efficiency was higher than the ordinaryMCSmethod. Tan et al.
[25] proposed a method to replace the original functional
function in reliability analysis with an SVM and (radial basis
function) RBFmodel fitted based on two new sample selection
methods and combined different examples to illustrate the
accuracy and efficiency of the two. Su [26] constructed a
Monte Carlo method based on Gaussian regression response
surface and verified the effectiveness and efficiency of the
method through three slope calculation examples. In addition,
artificial bee colony evolution algorithm [27], artificial neural
network [28], Kriging [29–31], and vector projection [32] have
been used to construct the functional relationship between
input parameters and output safety factors, alleviating the
problem of low efficiency to a certain extent.

Secondly, the traditional MCS method also has the
problem of fuzziness. Fuzziness is mainly reflected in two
aspects: the traditional reliability analysis using Z< 0 as the
criterion to judge slope failure is too arbitrary, ignoring the
fuzzy interval of the intermediate transition between stability
and instability, and the variability of the sample mean and
standard deviation caused by insufficient sample test data will
further cause fuzzy uncertainty of the soil parameter distri-
bution types and statistics and ultimately affect the reliability
calculation results. In response, some scholars try to solve these
problems from the perspective of combining fuzzy mathe-
matics theory and mathematical statistics methods. Hab-
ibagahi and Meidani [33], Xu et al. [34], Jia and He [35], Lou
[36], Xu [37], Anvar et al. [38], and others successively
established themembership function between safety factor and
slope stability based on fuzzy mathematics theory. +e
membership function form has undergone an evolution from
linear to nonlinear, triangular to trapezoidal and then to ridge
distribution, and it has become closer to the reality of slope
stability. However, the ways to determine the undetermined
coefficients of the membership function are relatively scarce
and subjective. It is necessary to collect as many corresponding
slope examples as possible to help judge the rationality of the
membership function. Most and Knabe [39], Luo et al. [40],
and Tang [41] used the well-known bootstrap theory in sta-
tistics to expand the sample in order to reduce the turbulence

of the reliability calculation caused by the variability of the
parameter sample mean, standard deviation, and distribution,
and the reliability index can be more reasonably characterized
as a confidence interval with a certain confidence level. +is
will not only fully simulate the variability of sample statistics,
distribution types, and reliability calculation results but also
make the slope reliability calculation results more reasonable
and true. However, the current combination of bootstrap and
Monte Carlo methods is rarely applied, because each bootstrap
subsample generated by sampling requires a Monte Carlo
calculation, which brings a huge computational burden, so it is
necessary to combine somemeasures to improve the efficiency
of the Monte Carlo method.

+e Chengmenshan Copper Mine in Jiujiang, Jiangxi
Province, due to site selection constraints, had to construct a
dump in the lake area near the mining area where the base
bearing capacity is weak. In addition, the height of the heap
load is relatively high, so it is very easy for progressive
landslide instability to be produced over time. Wang [1]
conducted a comprehensive reliability analysis on the tra-
ditional MCS used in the Chengmenshan dump site (natural
unsupported state); the average value of the calculation
results under different limit equilibrium functions is
Pf � 6.65%, β � 1.71, and the results of different methods
are highly variable. According to the 1997 US Army Corps of
Engineers Index [42], the situation is between unsatisfactory
and poor, which is slightly different from the actual situation
of the Nanpo dump site (support measures are needed to
prevent landslide). +e reason might be that the statistical
uncertainty caused by insufficient rock and soil samples and
the fuzziness of the traditional MCS method were ignored.

According to the question above, an improved Monte
Carlo method was proposed that uses improved bootstrap
methods to process small samples of geotechnical data,
applies particle swarm optimization (PSO)-optimized ex-
treme learning machine (ELM) to fit limit equilibrium
method function, and constructs the safety factor mem-
bership function of the dump site considering the fuzzy
transition interval. It was applied to the reliability analysis of
the second-stage dump site of Chengmenshan Copper Mine,
and the results were compared with those of the traditional
MCS method for the purpose of verifying effectiveness and
rationality of the improved Monte Carlo method.

2. Traditional Monte Carlo Analysis of
Chengmenshan Dump

2.1. Overview of the Dump. Chengmenshan Copper Mine is
located in Chengmen Town, Jiujiang, Jiangxi. +e second-
stage dump site is located at the Nanpo ravine and
Dachengmen valley on the southeast side of the slope. It is
divided into two parts: Nanpo (south slope) and Cheng-
mengou dump sites. +e climate in the mining area has four
distinct seasons, humid, hot spring/summer, cold, and dry
autumn/winter, the annual average temperature is 17°C, and
the annual average precipitation is 1420mm. +e basement
of the dump site on the south slope is generally a slippery
stratum.When the overlying wastematerial accumulates to a
certain extent, under the pressure of its own weight and
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external factors, it is easy for a slip surface to be produced
along the slippery bottom layer to the slope surface area and
cause a landslide accident. So far, many bottom heaves of
dump slope have been found.

+e second-stage dump site of the mine has six charac-
teristic sections within the delineated area. Section E-E in the
eastern part of the Nanpo dump site was selected for analysis
(natural unsupported state). A cross-sectional view is shown in
Figure 1, and the statistical characteristics of the 20 experi-
mental datasets and 14 expanded datasets are shown in Table 1.
In the process of parameter sampling, the cohesion and internal
friction angle of rock and soil mass meet the linear negative
correlation, and the correlation coefficient is taken as −0.5.

2.2. Results of Traditional Monte Carlo Slope Reliability
Analysis (LimitEquilibrium)Method. For geotechnical slope
engineering, the state function of the slope’s stability can be
expressed as

Z � g X1, X2, X3, . . . , Xm( , (1)

where the value of the state functionZ is the safety factor and
X1, X2, X3, . . . , Xm are m-many random variables with a
certain distribution, which are generally the key factors
affecting the stability of a slope such as cohesion and severity
of rock and soil. +e number of times when the safety factor
value Z≤ 1 is counted as M and the total number of sim-
ulations is N, and then the probability of failure can be
obtained according to the law of large numbers:

Pf �
M

N
. (2)

+e reliability index can be expressed as

β � Φ−1 1 − Pf . (3)

Using different limit equilibrium methods to calculate
the safety factor, it was found that the values obtained by the
Janbu simplified method were the lowest, so this method was
used for subsequent calculation. Slide is a two-dimensional
slope stability analysis software based on limit equilibrium
method produced by Canadian Rocscience company and is
highly praised in engineering applications due to its ad-
vantages of practicality, high efficiency, and accuracy. +e
reliability analysis results obtained by “slide” software using
the MCS method are shown in Figure 2, the failure prob-
ability of the Nanpo slope dump of the copper mine is Pf �

15.25% and the reliability index is β � 1.026 (also expressed
by RI), and the average value of safe factors is 1.045. +e
results showed that the slope is basically in a stable state at
the end of dumping, but there is a lack of sufficient safety
factor reserve, so landslide accidents are very easy to occur
under static conditions. Compared with the actual situation,
the calculation results tend to be conservative.

2.3. Problems

Problem 1. It was found that the corresponding probability
of failure varies greatly when using different limit

equilibrium methods for MCS calculation. By the Janbu
simplified method, it was 15.25%, and by the Bishop sim-
plification method and Spencer’s method, it was about 1.1%,
and the relative error reached 92.4%. +e reason should be
that the basis for judging the state of the slope based on
whether the safety factor is greater than 1 does not conform
to the actual situation. +e safety factor calculated by the
simplified method for the Nanpo slope dump of the
Chengmenshan Copper Mine is basically around the critical
value 1; although calculated by other methods (such as the
Bishop simplified method), it is only 0.05 higher than the
Janbu simplified method. +e distribution is mostly on the
right side of the critical value 1, so there is a problem of large
differences in failure probability (as shown in Figure 3). And
the accuracy of the calculation results under this criterion
will also be affected. So, it is necessary to introduce a stable
membership function μ (z) containing the safety factor of the
intermediate transition state to improve the judgment
method of the slope state in traditional reliability analysis.

Problem 2. +e limit equilibrium program realized in
MATLAB not only needs to input the sliding surface co-
ordinates, number of blocks, trial radius, soil parameters,
and boundary coordinates and other parameters in advance
[43] but also needs to simplify the geometric model
boundary to a neatly planned boundary and combine some
optimized algorithms (such as genetic algorithm [44]) to
help search for minimum safety factors. In this paper, the
results of running the MCS method in MATLAB are Pf �

15.8% and β � 0.998, and the time consuming is 63005.44 s.
+e calculation efficiency of the original MCS method

has been criticized, and the bootstrap sampling method
needs to repeat the whole process of Monte Carlo simulation
tens of thousands or even hundreds of thousands of times,
which will take a huge amount of time, so other fast and
accurate methods are needed to replace the iterative cal-
culation of the limit equilibrium method in MATLAB.

Problem 3. Due to various reasons in actual slope engi-
neering, the experimental data of rock and soil parameters
are often limited, so is this dump (there are only 20 sets of
data).+e statistical uncertainty caused by small sample may
lead to deviations in the subsequent Monte Carlo calculation
results.

+e following part of this article will focus on methods
and applications to solve the above problems.

3. Methodology

3.1. Improved Bootstrap Method. Bootstrapping is an effec-
tive method to solve the statistical uncertainty of small sample
data. +e idea of the bootstrap method is to randomly sample
the initial samples with replacement to obtain a large number
of bootstrap subsamples (the sample size is the same as the
original sample) that contain the original sample information,
then calculate the estimated value of statistics and Akaike
information criterion (AIC) value for each subsample, get
their optimal probability density distribution according to the
AIC [45], and finally perform Monte Carlo calculation to
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Table 1: Statistics of rock and soil parameters.

Number
Soil-rock mixture Basement rock

Cohesion c
(kPa)

Internal friction
angle φ(°)

Bulk density
c(kN·m−3)

Cohesion c
(kPa)

Internal friction
angle φ(°)

Bulk density
c(kN·m−3)

Original 20 samples

1 38.3 23.5 17.3 913 17.1 26.5
2 41.4 20.5 16.9 918.82 17.66 22.07
3 39.9 26.2 17.1 914.5 17.27 22.24
4 34.3 20.4 17.6 909.8 16.87 22.82
5 38.1 25 18.3 904.1 14.94 19.16
6 43.1 24 17.1 912.8 18.422 27.76
7 41.5 24.1 17.0 915.5 18.21 25.31
8 36.4 22 17.6 910.7 14.75 22.93
9 45 25 19.7 909.2 16.78 27.61
10 41.4 25.96 17.2 902 18.035 20.834
11 43.4 26 17.83 914.7 14.807 27.83
12 38.2 20.1 16.16 909.7 16.976 27.79
13 40.5 19.8 17.92 907.9 19.55 18.98
14 44.3 23.7 16.07 926 19.8 18.55
15 32.4 23.3 17.9 882 17.1 24.37
16 37.8 24 17.64 919.7 16.78 24.06
17 35.6 23.5 14.7 900.6 13.07 25.3
18 35.6 22 17.3 911.9 17.58 25.29
19 35.8 20.5 17.6 917.2 13.59 22.69
20 36.1 23.96 22.22 917.8 17.1 24.53

14 sets of samples
after expansion

21 36 24.3 19.92 886 15.2 24.7
22 46.9 19.8 16.4 892.2 13.3 27.9
23 41.9 19.69 19.42 931.1 19.74 24.23
24 36.4 27 18.8 908.5 18.87 18.08
25 38.8 24.7 13.9 919.2 12.97 25.81
26 32.2 22.7 22.1 923.4 12.87 19.6
27 42.1 19.94 17.4 882.7 17.92 21.23
28 33.8 23.28 14.62 918.3 15.81 17.81
29 43.4 25.61 15.4 898.5 20.12 18.3
30 37.3 19.84 23.1 902.9 17.38 23.5
31 39.9 23.28 17.73 916.6 19.3 28.5
32 39.5 26.31 22.54 913.8 17.2 18.7
33 40.3 22.9 18.18 920.8 16.4 28.3
34 42.7 25.4 16.81 881.2 20.03 26.9

(a)

(b)

(c)

0 200m

25m
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130m
150m
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Mining area

Nanpo dump slope
E

E
River

Soil-rock mixture

Basement rock

Figure 1: (a) Contour map of Nanpo dump site; (b) real view of E-E section of dump; (c) calculation model of E-E section of dump.
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obtain their reliability index, probability of failure, and cor-
responding confidence interval.

Assume the sample of soil parameters
X � (ci,φi, ci), i � 1, 2, . . . , N , then randomly sample with
replacement N times as shown in Figure 4 to obtain a
bootstrap subsample Bj � B1,j, B2,j, . . . , BN,j , and repeat
this step M times to obtain M subsamples.

+e theoretical basis and good convergence of the
bootstrap method have long been proved by scholars, but it
also has the problem that the sampling range is small and the
probability distribution is concentrated on a small number
of points for small samples (sample size of 10–30), which
causes the calculation results to deviate from the true dis-
tribution. Some scholars [46–48] proposed an improved

Table 1: Continued.

Number
Soil-rock mixture Basement rock

Cohesion c
(kPa)

Internal friction
angle φ(°)

Bulk density
c(kN·m−3)

Cohesion c
(kPa)

Internal friction
angle φ(°)

Bulk density
c(kN·m−3)

34 sets of samples
after expansion

Mean 39.2 23.39 17.86 909.2 16.86 23.53
Standard
deviation 3.69 2.20 2.12 12.36 2.09 3.37

Original 20 samples
Mean 39 23.18 17.64 908.7 16.78 23.7

Standard
deviation 3.45 2 2.01 6.25 2.02 3.23
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Figure 2: Monte Carlo sampling calculation results.
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Figure 3: Differences in failure probability between limit equilibrium methods.
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bootstrap method for this problem: first arrange the original
sample in ascending order to get the order statistic
X � (x1, x2, x3, . . . , xn), then, for each observation xi, a
larger and a smaller statistic are randomly selected in its

neighborhood Ui according to the rule of uniform distri-
bution to expand the sampling range and obtain information
outside the observation point:

U �

U1 � x1 −
x2 − x1

m
, x1 +

x2 − x1

m
 ,

Ui � xi −
xi − xi−1

m
, xi +

xi+1 − xi

m
 ,

Un � xn −
xn − xn−1

m
, xn +

xn − xn−1

m
 ,

(i � 1, 2, 3, . . . , n − 1, n, )(m≥ 2).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

+e bootstrap method can continue to be used for pa-
rameter estimation based on the improved samples X′ �
(x1′, x2′, . . . , xn

′) obtained by formula (4). Since the original
sample size of 20 is less than 30, thus is a small sample, the
size can be expanded by formula (4) before bootstrap
sampling, but not every observation value needs to be ex-
panded in this way, especially when it is very close to (or
even the same as) an adjacent value. Use MATLAB for
random permutation and combination after the six groups
of data were, respectively, expanded, and the expanded
sample statistics are shown in Table 1.

One of four types of functions commonly used in the
distribution of rock and soil parameters, normal, lognormal,

extreme value I-type, and Wilber distribution, is selected by
calculate the AIC value of the original sample (the proba-
bility distribution function with the smallest AIC value can
be considered as the one that best fits the probability dis-
tribution of the test data). It is found that the AIC value
corresponding to the normal distribution is the smallest and
the optimal probability distributions of the six types of data
of the initial sample are all normal distributions, which
conforms to the description in the literature [1].

+e subsample mean, standard deviation, and optimal
probability density function distribution type are recorded
after each bootstrap sampling and used as the statistics and
distribution type of random variables in the subsequent
Monte Carlo calculation.

(C1, ϕ1, γ1)

(C2, ϕ2, γ2)

(C3, ϕ3, γ3)

(C4, ϕ4, γ4)

(Cn, ϕn, γn)

Bij = (C2, ϕ2, γ2)

Bij = (C4, ϕ4, γ4)

Bij = (C2, ϕ2, γ2)

Bij = (C1, ϕ1, γ1)

Bij = (C3, ϕ3, γ3)

Original sample Bootstrap sub-sample 

Figure 4: Bootstrap self-sampling method.
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3.2. PSO-ELMModel. Extreme learning machine (ELM) is a
new type of feedforward single hidden layer neural network.
In addition to inheriting the good self-organization and self-
adapting ability of general neural network algorithms, it also
has fewer adjustable parameters, faster speed, better pre-
diction accuracy, strong versatility, and other advantages.
+e input weight ωl×n and hidden layer threshold bl×n are

randomly selected, and then the input quantity Xn×Q, output
weight βl×m, and excitation function g(x) are combined to
obtain the expression of the output tj:

Hβ � T, (5)

where

H �

g w1 · x1 + b1( g w2 · x1 + b2(  · · · g wl · x1 + bl( 

g w1 · x2 + b1( g w2 · x2 + b2(  · · · g wl · x2 + bl( 

⋮

g w1 · xQ + b1 g w2 · xQ + b2  · · · g wl · xQ + bl 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

β �

β11 · · · β1m

⋮ ⋱ ⋮

βl1 · · · βlm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

T �

t1j

t2j

⋮

tmj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

β � H
+
T. (7)

In ELM, the input weight hidden layer threshold is
randomly selected, and the excitation function and input are
known. +erefore, the training of the extreme learning
machine is to calculate the output weight through equation
(7), and then use it to perform predictions.

PSO is an intelligent optimization algorithm that sim-
ulates the foraging behavior of a bird colony to achieve
swarm optimization. +is method treats the solution of each
problem as a particle. +e distance between the particle’s
spatial position and the target is used as the fitness value, and
each particle has a specific moving direction and speed. +e
PSO algorithm updates the speed and fitness in every search
by tracking the individual’s extreme values (Pbest, the op-
timal position of fitness values calculated from the positions
of individuals) and the group’s extreme values (Gbest, the
optimal position of fitness of all particles in the population)
until the termination requirements are met.+e termination
condition can be the number of iterations, the extreme value
error of two consecutive searches below a specific tolerance
value, or a mixture of both.

+e extreme learning machine algorithm optimized by
particle swarm optimization is shown in Table 2.

3.3. Membership Function of Safety Factor in Dump Sites.
Monte Carlo reliability analysis considers that there are only
three states in a slope: limit equilibrium state (Z� 1),

unstable state (Z< 1), and stable state (Z> 1). However, the
corresponding relationship between the safety factor and the
stable situation in the actual soil slope is fuzzy and uncertain,
which means the slope has a fuzzy interval of intermediate
transition between completely unstable and completely
stable. Even if the safety factor is greater than 1 or even 1.2, it
may become unstable; less than 1 also has the possibility of
stability. +erefore, the way the Monte Carlo method esti-
mates slope failure probability based on the proportion of
statistical failure times to total simulation times may be
biased, so it is necessary to introduce the stability mem-
bership function μ(Z) of the safety factor to judge the
stability of soil slope equation (2) can be improved as

Pf �


N
i�1 μi(Z)

N
. (8)

As the name implies, the membership function is the
degree to which the safety factor belongs to the stable state of
the slope, μ(Z)⟶ 0. Slope becomes more unstable,
μ(Z) � 0.5. +e probability of slope instability and stability
is 0.5. At this time, the fuzziness is the strongest and the
stability state is the most difficult to judge. At μ(Z)⟶ 1,
the slope becomes more stable.

+e membership functions commonly used to charac-
terize the stability of geotechnical engineering structures
include ridge distribution, quadratic parabolic distribution,
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and reduced semitrapezoidal distribution. Each of these
membership functions can also be divided into three types:
descending, rising, and intermediate. +e membership
function of the safety factor for stability should express the
degree to which the safety factor belongs to the concept of
stability, and additionally, the slope of the graph curve
should reflect the strength of the fuzziness that affects the
judgment of the steady state. +e smaller the safety factor,
the closer μ (Z) is to 0, the easier it is to judge that the slope is
in an unstable state. Similarly, the larger the safety factor, the
closer μ (Z) is to 1, and the slope is likely to be in a stable
state. +e fuzziness is the strongest when the safety factor
and μ (Z) are in the middle, so the curve slope of the
membership function first increases and then decreases, with
the characteristics of slow at both ends and steep in the
middle. Based on the above characteristics and engineering
application principles, the raised-ridge-shaped distribution
membership function was selected as the stable membership
function of the slope safety factor.+e function expression is
as follows:

μ Fs(  �

0, Fs ≤ a,

1
2

+
1
2
sin

π Fs − b( 

2(b − a)
 , a<Fs ≤ b,

1
2

+
1
2
sin

π Fs − b( 

2(c − b)
 , b<Fs ≤ c,

1, Fs > c.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

+e steps to determine the specific form in the mem-
bership function are as follows:

Step 1: collect the corresponding relationship between the
actual stability of the dump site and the value of the safety

factor.We collected 48 sets of statistical data on the stability
factors of different dumps in China, as shown in Table 3. In
the data, the highest value of safety factor of unstable slope
is 1.21, and the lowest value is 0.92; therefore, it can be
assumed that a dump slope with safety factor greater than
1.21must be stable, and a dump slopewith safety factor less
than 0.92 can no longer remain stable.+emedian value of
1.065 is used to divide the safety factor into two intervals.
+e stable state of dump sites changes most obviously near
1.065, so the stability state of a dump slope with a safety
factor of 1.065 is the fuzziest, and the corresponding
membership degree should be 0.5.
Step 2: preliminarily determine the undetermined
coefficient of the membership function. According to
the analysis given in Step 1,
a � 0.92, c � 1.21, b � (a + c)/2 � 1.065, and
substituting into equation (9), the membership func-
tion of the safety factor of raised-ridge-shaped distri-
bution can be expressed as

μFs �

0, Fs ≤ 0.92,

0.5 + 0.5 sin
π Fs − 1.065( 

0.29
 , 0.92<Fs ≤ 1.21,

1, Fs > 1.21.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Figure 5 shows a ridge-shaped distribution function
diagram of the relationship between the safety factor
and the steady state membership based on the collected
data. +e point with a membership value of 1 corre-
sponds to the stable state of the dump, and the point
with a membership value of 0 indicates an unstable
state.+e function diagram can fit the data points of the
dump sites well and follow the slope membership
function law mentioned above.
Step 3: use the degree of conformity between the sta-
tistical law of the dump sites and the safety factor
interval, with the membership interval corresponding
to the fuzzy language value, to judge whether the
membership function determined in Step 1 and 2 is
practical.

+ere are nine commonly used fuzzy linguistic values to
describe a certain state; however, due to the small amount of
collected samples, the number of samples in each fuzzy
subset would be too small, which could cause fluctuations in
statistical results, so it is necessary to reduce the fuzzy
language subset describing slope stability. In this paper, five
fuzzy linguistic values of stable π1, basically stable π2, critical
π3, basically unstable π4, and unstable π5 were selected to
describe the stability state of the dump slope, and the
membership interval calculation formula of fuzzy linguistic
value in [37] was reduced to 5, as shown in equation (11),
where a is a constant used to separate the interval, a ∈ [0.5,
1], and here we take a� 0.51:

Table 2: Particle swarm optimization-extreme learning machine
(PSO-ELM) algorithm program.

Algorithm: algorithmic flow of PSO-ELM
(1) Obtain the training and testing datasets
(2) Begin ELM training
(3) Set ELM parameters randomly
(4) Use the mean square error (MSE) as the fitness function
(5) Initialize PSO population (Inipop)
(6) Calculate the fitness value of each candidate solution
(7) S� global best solution
(8) For i� 1 to maximum iteration number do
(9) For i� 1 to P do
(10) Update the velocity and position of the ith particle
(11) Evaluate the fitness of the ith particle
1(2) Update the personal best solution of the ith particle
(13) S� current global best solution
(14) End for
(15) End for
(16) End
(17) Obtain the optimal input weights and hidden biases of hidden
layer neurons using S
(18) Use the optimal input weights and hidden layer neurons for
ELM test
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π1 � 1{ },

π2 � [0.2806 + 0.7194a, 1],

π3 � [0.7194 − 0.7194a, 0.2806 + 0.7294a],

π4 � [0, 0.7194 − 0.7194a],

π5 � 0{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

+e safety factor interval corresponding to the fuzzy
language value of the dump slope stability can be obtained by
substituting each end value of the membership interval into
equation (12). Table 4 lists the statistical results of the dump
sites’ samples, the membership degree interval, and the
safety factor interval, where ni represents the number of
slopes in the dump in a stable state in the πi safety factor
interval and Ni is the number of slope instances in the
corresponding safety factor interval. If the membership
function is selected reasonably, the value of ni/Ni increases
to 1 as the membership interval approaches 1:

Fs �
0.29∗ arcsin 2 μ Fs(  − 0.5( 

π
+ 1.065. (12)

It can be seen from Table 4 that the ni/Ni value is in good
agreement with the membership interval corresponding to
the ith fuzzy language value. +e closer it is to the steady
state, the closer its value is to 1. +erefore, it can be

considered that the slope stability membership function
proposed in this paper according to formula (10) can reflect
the overall law of the slope stability of the dump site with the
change of the safety factor, which can be used to improve the
criterion of the subsequent Monte Carlo calculation state
function.

+e flowchart of specific application steps of methods is
shown in Figure 6.

4. Application

4.1. Bootstrap Statistical Uncertainty Simulation. +is paper
used MATLAB to perform bootstrap sampling on the
original sample and selected NB � 104 as the number of
subsamples (also the number of samples) based on ensuring
good convergence and computational efficiency. Box-and-
whisker plots of 20 randomly selected bootstrap subsamples
and the original sample are shown in Figure 7. It can be seen
that the generated subsamples perfectly retain the data in-
formation of the original sample.

For this procedure, 10,000 simulations generated 10,000
subsamples, corresponding to the mean, standard deviation,
and AIC value of 10,000 simulated samples. Figures 8 and 9
and Table 5 show the distribution of the subsamples’ mean
and standard deviation, and the number of times that the
four common probability density functions are identified as
the optimal distribution. It is not difficult to see that except
for bedrock cohesion, for the other indicators, the distri-
bution of the mean and standard deviation of the bootstrap
subsamples is close to that of the original sample, and the
optimal probability distribution function of the subsamples
obtained by the bootstrap method is mostly the same as the
original sample, which is normal distribution, only a few of
the optimal probability distributions of the subsample are
the other indicators. +is shows that the bootstrap sub-
samples can effectively reflect the basic characteristics of the
original sample data, which means that the original limited
data sample has statistical uncertainty and AIC value var-
iability. +is problem may affect the selection of subsequent

Table 3: Examples of safety factor and stability of soil slope of dump.

Actual state Safety factor Actual state Safety factor Actual state Safety factor
Stable 1.877 Stable 1.242 Unstable 1.078
Stable 1.635 Stable 1.241 Stable 1.07
Stable 1.52 Stable 1.228 Stable 1.07
Stable 1.468 Stable 1.22 Unstable 1.06
Stable 1.421 Unstable 1.21 Unstable 1.05
Stable 1.404 Stable 1.2 Unstable 1.02
Stable 1.39 Stable 1.2 Unstable 1.015
Stable 1.39 Stable 1.19 Unstable 1.01
Stable 1.389 Stable 1.173 Unstable 1.003
Stable 1.356 Unstable 1.16 Unstable 0.98
Stable 1.351 Unstable 1.13 Unstable 0.96
Stable 1.337 Unstable 1.112 Stable 0.92
Stable 1.315 Unstable 1.11 Unstable 0.89
Stable 1.31 Unstable 1.1 Unstable 0.86
Stable 1.27 Unstable 1.08 Unstable 0.8
Stable 1.25 Stable 1.082 Unstable 0.480
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Figure 5: Membership function graph of safety factor.
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distribution parameters and probability distribution func-
tion types, and the bootstrap method can simulate such
variability.

4.2. Realizing the PSO-ELM-MCS Model in MATLAB.
+is paper uses the Janbu simplified method to calculate the
safety factor of the sample to form the training and test sets
and train the PSO-ELM model to achieve the purpose of
replacing the original limit equilibrium function. +e spe-
cific steps are as follows:

Step 1: determine training and test sets. In addition to
the 34 sets of original samples, 44 sets of samples
randomly selected from the bootstrap subsamples were
substituted in the Slide software to calculate the safety
factor to form 70 sets of training samples and 8 sets of
test samples.

Step 2: set initial parameters. Six rock and soil pa-
rameters corresponded to one safety factor value in
each group of samples, so there were six input layer
units of the PSO-ELMmodel and one output layer unit.
If the number of hidden layer units is too high, it will
lead to excess performance, and if the number is too
low, it will affect the prediction accuracy. After many
calculations, we decided to set the number to 25. +e
learning factor C1 � C2 � 1.49, the sigma function was
selected as the excitation function, and the linearly
decreasing weight that can account for both local and
global search was selected as the inertial weight.
Step 3: train and test models. +e 70 sets of training
samples obtained in Step 1 were combined with the
PSO model to start training, and the weights and
thresholds obtained after training were assigned to the
ELMmodel, then the test samples were substituted into

�e original sample

Improved bootstrap method

Expand the original
sample size

Repeat random
sampling by bootstrap

method

Check the distribution
types and statistical
parameters of the

bootstrap subsample

Data processing of rock and soil
parameters of small samples

PSO-ELM prediction model
Stability membership function of

dump Sites’ safety factor
Use the limit

equilibrium method
in “Slide” so�ware

to calculate the
safety factor

Comparative analysis of the
results

Monte Carlo simulation

Fit the limit equilibrium
function

Determine stability membership
function of dump Sites’ safety factor

Data training set,
test set

Optimize

Assist optimization

Particle swarm
optimization

Extreme learning
machine

Extreme learning machine
optimized by particle
swarm optimization

Select the stability
membership function
form of safety factor

Determine the
undetermined

coefficient

Collect dump data
Engineering
experience

Detect the rationality of membership
function by fuzzy constraint conditions

Figure 6: Operation flowchart.

Table 4: Comparison of safety factor interval and statistical law of actual dump.

Fuzzy linguistic value
a� 0.51

Membership interval Safety factor interval ni/Ni

Stable {1} [1.21, +∞) 22/22
Basically stable [0.653, 1] [1.093, 1.21) 4/9
Critical [0.316, 0.653] [1.03, 1.093) 3/7
Basically unstable [0, 0.316] [0.92, 1.03) 1/6
Unstable {0} [0, 0.92) 0/4
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the predicted value of the safety factor to test the
accuracy.

Figure 10 shows a comparison between the predicted and
real values of the PSO-ELM model, as well as the predicted
value of ordinary ELM. +e predicted values of the safety
factor obtained by the two models were not much different
from the true value, but the PSO-ELMmodel was better than
the ELM model in terms of the root mean square error
(RMSE) of prediction accuracy or the coefficient of deter-
mination (R2), which means particle swarm algorithm
optimization of extreme learning machine does improve
accuracy. +e reliability analysis result obtained by running
the PSO-ELM-MCS method in MATLAB was as follows:
probability of failure Pf � 15.02%, reliability index
RI� 1.0356, and average safety factor 1.0454, which are
highly consistent with the results obtained by the Slide
software in the previous paper, indicating that the PSO-ELM
model can perfectly fit the original Monte Carlo method to
express the functional of the relationship between soil pa-
rameters and safety factors and reliability indicators.
Meanwhile, the time to obtain the safety factor by the limit
equilibrium method and the PSO-ELM model in MATLAB

was statistically compared, and it was found that the effi-
ciency of the latter was significantly better. +e PSO-ELM
model only required 0.0741 s, while the limit equilibrium
method took 12.03 s.

4.3. 9e Analysis Result of MCS Method after Adding Mem-
bership Function. Figure 11 shows the calculation results of
the improved PSO-ELM-MCS model after adding the slope
stability membership function as the Monte Carlo calcula-
tion stable state criterion and expresses the relationship
between the safety factor value and the membership degree.
Comparing the probability of failure Pf � 36.85% and re-
liability index β� 0.34 with the calculation results of the
PSO-ELM-MCS model (Pf � 15.02%, β� 1.0356), it can be
found that the failure probability of the dump site is large
improved, and reliability is significantly decreased. Com-
paring the reliability calculation results obtained by different
limit equilibrium methods (shown in Table 6), it is found
that probability of failure and reliability indicators maintain
good consistency under different limit equilibriummethods,
which is obviously different from the previous results ob-
tained by using ordinary Monte Carlo reliability analysis
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Figure 7: Box-and-whisker diagrams of original sample and bootstrap subsample data.
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(the relative error dropped from more than 90% to about
3%). +at is to say, the results of Monte Carlo calculation
with the stability membership function of the safety factor
added are closer to reality than the traditional Monte Carlo
reliability calculation, and it will not have the illusion of
stability for simulators and engineers.

4.4. Monte Carlo Calculation Combined with PSO-ELM,
Bootstrap Method, and Fuzzy Membership Function. +is
paper calculated the probability of failure Pf,i and reliability
index βi (i � 1, 2, 3, . . . , NB) of each bootstrap subsample
and obtained the distribution probability density function
and confidence interval (using the reliability index and the
5% and 95% quantile values of failure probability as the
upper and lower limits of the 90% two-sided confidence
interval), and the results as shown in Figure 12 and Table 7.

It can be seen that the reliability index of the dump site
basically varies between −0.5 and 1, and the probability is the
highest near 0.25, with an average value of 0.243, lower than
the average value of 0.34 without bootstrap sampling. +e
probability of failure varies between 0.1 and 0.8, with the
highest probability near 0.4, and the average value is 0.4075,
slightly higher than the 0.3664 without bootstrap sampling.
+is shows that the reliability index and failure probability
obtained by the ordinary MCS method may have variability,
and the bootstrap method can simulate this variability. In
addition, compared to the MCS method, which generally
only obtains a single reliability index and failure probability
value, the MCS method combined with bootstrap can ex-
press the reliability index and probability of failure as a two-
sided confidence interval with a certain confidence level,
which can reflect the actual reliability level of the dump
slope.
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Figure 8: Standard deviation distribution of bootstrap subsamples.
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Table 5: Number of times that four common probability density functions are identified as optimal distribution.

Distribution
type

Cohesion of soil-rock
mixture (c (kPa))

Internal friction
angle of soil-rock
mixture (φ/(°))

Bulk density of soil-
rock mixture
(c/(kN·m− 3))

Bedrock
cohesion
(c (kPa))

Internal friction
angle of bedrock

(φ/(°))

Bedrock bulk
density

(c/(kN·m− 3))
Normal 9837 9918 9983 9107 9896 9943
Lognormal 163 82 17 625 104 57
Extreme value
I 0 0 0 113 0 0

Wilber 0 0 0 155 0 0
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Table 6: Reliability calculation results of different limit equilibrium methods.

Type of limit equilibrium method Janbu
simplified

Ordinary
(Fellenius)

Bishop
simplified Spencer

Original MCS method RI 1.035 1.288 2.266 2.246
Pf 15.02% 9.74% 1.14% 1.3%

MCS method with stable membership function of safety factor
added

RI 0.34 0.4067 0.4272 0.4097
Pf 36.85% 34.21% 33.46% 34.1%
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Figure 11: Monte Carlo calculation results after adding safety coefficient stable membership function.
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5. Discussion and Conclusion

+is paper proposed an improved Monte Carlo method that
uses improved bootstrap methods to process small samples
of geotechnical data, applies particle swarm optimization
(PSO)-optimized extreme learning machine (ELM) to fit
limit equilibriummethod function, and constructs the safety
factor membership function of the dump site considering
the fuzzy transition interval, the results of each method
combination are compared and analyzed, and the conclu-
sions are as follows:

+eMCSmethod using the PSO-ELMmodel to replace
the original functional function can greatly improve
efficiency on the basis of ensuring accuracy. +e time
consumed changed from the original 63005.44 s to
45.312 s, and the probability of failure (15.25% and
15.02%) and the reliability index (1.027 and 1.036) are
almost the same, which proves that the artificial in-
telligence and neural network algorithms have good
self-learning abilities and are effective at fitting implicit
functional functions.
After the safety factor membership function of the
dump site was added to the Monte Carlo method, the
fluctuation of reliability index and probability of failure
of the Nanpo dump site under different limit equi-
librium methods was effectively improved, and the
results showed an inclination toward slope instability
(the failure probability of 36.64% and reliability index
of 0.34 are significantly lower than the 15.02% and
1.036 without the membership function), which is
closer to the situation at the actual dump site. +is
shows that the addition of a fuzzy transition zone of
safety factor can take into account the uncertainty and
gradualness of the slope in the process of failure, reduce
the fluctuation of calculation results to a certain extent,
and make it more real and effective.
Although the MCS method combined with the boot-
strap method has a lot of repeated calculation work, the
time changed from 44.519 s to 20275.23 s, but time was
exchanged for accuracy, and the bootstrap subsample
was generated to simulate the uncertainty brought by
the small sample size of the experimental data (un-
certainty of sample mean, standard deviation, optimal
probability density distribution, reliability index, and
failure probability), making the reliability calculation
result change from a single value to a confidence in-
terval with fuzzy characteristics, which is closer to
reality. +e average values of reliability analysis ob-
tained by the improved Monte Carlo method based on
bootstrap in the second-phase dump site of the mine
are Pf � 40.75% and β� 0.243, which indicates a

hazardous situation that requires immediate protective
measures. +e dump site immediately implemented
preventive measures of antislip steel rail piles plus spoil
grading and classified discharge to avoid the aggra-
vation of displacement and the occurrence of
landslides.

On summary, the method proposed in this paper can be
used in the reliability analysis of the dump, and the effect is
better than the traditional MCS method.

6. Limitation

However, the methods and research in this paper still have
some shortcomings that could be improved. Such as the
calculation process of MCS is not simplified and still
consumes a lot of time, and the fuzzy membership function
of the dump safety coefficient determined in this paper
may still be subjective because of insufficient data col-
lection and requires a professional authority to collect
thousands of waste dump examples to reduce uncertainty.
Follow-up studies will be carried out to improve the above
deficiencies.

Data Availability

+e soil and rock data used to support the findings of this
study have been deposited in the (Research on Key Tech-
nology of Stability and Safety Control of Large Dump in
Open-Pit Mine) repository (Wang L, Research on Key
Technologies of Stability and Safety Control of Large Open-
Pit Mine Dump, 2015, University of Science and Technology
Beijing).
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