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As a generalization of complex fuzzy set (CFS), interval-valued complex fuzzy set (IVCFS) is a new research topic in the field of
CFS theory, which can handle two different information features with the uncertainty. Distance is an important tool in the field of
IVCFS theory. To enhance the applicability of IVCFS, this paper presents some new interval-valued complex fuzzy distances based
on traditional Hamming and Euclidean distances of complex numbers. Furthermore, we elucidate the geometric properties of
these distances. Finally, these distances are used to deal with decision-making problem in the IVCFS environment.

1. Introduction

Since Ramot et al. [1] introduced complex fuzzy set (CFS) as
a generalization of the classical fuzzy sets (FSs) in 2002, and
CFS and its generations including interval-valued complex
fuzzy set (IVCFS), complex intuitionistic fuzzy set, complex
Pythagorean fuzzy set, complex picture fuzzy set, and
complex q-rung orthopair fuzzy set have been successfully
applied to many domains such as time series prediction
[2–5], decision-making [6–10], signal processing [11–14],
and image restoration [15]. Distance is an important tool in
both theory and application of CFSs. Several distances be-
tween CFSs have been proposed [12, 16–19]. However, when
CFSs are used to address uncertainty of target’s position,
distances in [12, 16, 17] are not suitable; for instance, ε ·

ej0.25π and ε · ej1.25π are near for any small number ε> 0
where j �

���
− 1

√
, as shown in Figure 1, but by using the

method in [12], their distance is
max(|0.01 − 0.01|, (|0.25π − 1.25π|/2π)) � 0.5 when
ε � 0.01. +is is inconsistent with our vision. +e main
reason is that distances in [12, 16, 17] are combining the
difference between the amplitude terms and the difference

between the phase terms of CFSs. +is method ignored the
circular structure of CFS. Two CFSs around the center can
arbitrarily approach to each other, but their phase terms are
completely opposite with the biggest difference. +is causes
the result, which is not consistent with our intuition. In this
environment, using traditional distance between complex
number is a more reasonable selection for us to measure the
difference between CFSs.

Greenfield et al. [20, 21] introduced the IVCFS theory. In
real life, when we get some answers such as “0.5 km-0.6 km,
east” and “0.5 km–0.7 km, northwest” about the targets, we
can represent these answers in terms of IVCFSs. +en, we
may ask the simple question: what is the distance between
“0.5 km-0.6 km, east” and ”0.5 km–0.7 km, northwest” (see
Figure 2)? Dai et al. [22] proposed some distance measures
between IVCFSs. When IVCFSs are reduced to CFSs, this
inevitably leads to get the same result in the above instance of
Figure 1. +erefore, distances in [22] cannot overcome the
above drawback of distances of CFSs and are not suitable for
IVCFSs in some cases.

+e main contribution to this article is summarized as
follows:
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(1) Some new distances for IVCFSs are constructed.
+ey can overcome the above drawback of distances
in IVCFSs.+ese distances also are newmeasures for
CFS.

(2) Rotational invariance and reflectional invariance of
these distances are studied, and a comparative
analysis is provided.

(3) +ese distances are used in target selection problem
when IVCFSs express the locative information of
targets.

+e purpose of this paper is to construct some distances
between IVCFSs and apply them into decision-making
problem.+is article is structured as follows. In Section 2, we
introduce the concept of IVCFS. In Section 3, we present
some distances for IVCFSs. In Section 4, the rotational
invariance and reflectional invariance of our proposed
distances are studied. In Section 5, these distances are

applied to solve a decision-making problem in IVCFSs
information. In Section 6, a conclusion is given.

2. Preliminaries

In this paper, our discussion is based on IVCFSs. We first
recall some basic concepts [1, 20, 21, 23–27].

Let D � c ∈ C||c| � 1{ } and I[0,1] � [a, b]|0≤ a≤ b≤ 1{ }.
Let S be a fixed universe, then the following holds:

(1) A mapping A: S⟶ [0, 1] is called a FS on S.
(2) Amapping A: S⟶ I[0,1] is called an interval-valued

fuzzy set (IVFS) on S.
(3) A mapping A: S⟶ [0, 1] · D is called a CFS on S.
(4) A mapping A: S⟶ I[0,1] · D is called an IVCFS on

S.

Here, I[0,1] · D is the dot product set of I[0,1] and D and
IVCF(S) is denoted as the set of all IVCFSs of S.

For any s ∈ S, its membership degree μA(s) is

pA(s) , pA(s)􏽨 􏽩 · e
jqA(s)

. (1)

For convenience, a value a ∈ I[0,1] · D is called an in-
terval-valued complex fuzzy value (IVCFV), denoted by
a � [pa, pa] · ejqa .

For clarity, we list the membership functions for FS and
its generalizations:

(1) For an IVFS A, its membership degree χA(s) is
[pA(s) , pA(s)].

(2) For a CFS A, its membership degree ψA(s) is
pA(s) · ejqA(s).

(3) For a FS A, its membership degree ηA(s) is pA(s).

3. Distances between IVCFSs

Definition 1 (see [22]). A function d: (IVCF(S)×

IVCF(S))⟶ R+ ∪ 0{ } is called a distance measure between
IVCFSs if it satisfies the following: for any
P, Q, R ∈ IVCF(S),

(1) d(P, Q)≥ 0 and d(P, Q) � 0 if and only if P � Q

(2) d(P, Q) � d(Q, P)

(3) d(P, Q) + d(Q, R)≥ d(P, R)

Dai et al. [22] defined the following distances in IVCFSs
case as follows: for any P, Q ∈ IVCF(S), where
S � s1, s2, . . . , sn􏼈 􏼉,

DH(A, B) �
1
2

􏽘

n

i�1

1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
1
2π

qA si( 􏼁 − qB si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓, (2)

DE(A, B) �

����

1
2

􏽘

n

i�1

􏽶
􏽴

1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1
4π2

qA si( 􏼁 − qB si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼠 􏼡 , (3)
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Figure 1: Distance of A1 and A2.
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Figure 2: Distance.
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DnH(A, B) �
1
2n

􏽘

n

i�1

1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
1
2π

qA si( 􏼁 − qB si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓, (4)

DnE(A, B) �

������������������������������������������������������������

1
2n

􏽘

n

i�1

1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1
2

pA si( 􏼁 − pB si( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
1
4π2

qA si( 􏼁 − qB si( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼠 􏼡

􏽶
􏽴

. (5)

However, these distances are not suitable for localization
problem; for example, let μA(s) ≡ 0.01 · ej0.25π and
μB(s) ≡ 0.01 · ej1.25π ; they are very close, as shown in Fig-
ure 1, but we have DH(A, B) � 0.25n, DE(A, B) �

(
��
2n

√
/4), DnH(A, B) � 0.25, and DnE(A, B) �

�
2

√
/4. +is is

not consistent with our intuition.

In order to overcome the abovementioned shortcoming,
we introduce some new distances for IVCFSs. Let
u � [p1, p1] · ejq1 and v � [p2, p2] · ejq2 be two IVCFVs, and
we consider the following distances between u and v:

dH(u, v) � max p1 ·e
jq1 − p2 ·e

jq2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, p1 · e

jq1 − p2 · e
jq2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, p1 · e

jq1 − p2 ·e
jq2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, p1 ·e

jq1 − p2 · e
jq2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
􏼒 􏼓, (6)

dE(u, v) � max p1 ·e
jq1 − p2 ·e

jq2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2
, p1 · e

jq1 − p2 · e
jq2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2
, p1 · e

jq1 − p2 ·e
jq2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2
, p1 ·e

jq1 − p2 · e
jq2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2􏼒 􏼓, (7)

where |a − b|1 and |a − b|2 represent traditional Hamming
and Euclidean distances of complex numbers a, b ∈ C,
respectively.

Based on the above formulas, we define some distances
of IVCFSs, for any P, Q ∈ IVCF(S), where
S � s1, s2, . . . , sn􏼈 􏼉, we have the following.

(i) +e Hamming distance:

h(P, Q) � 􏽘
s∈S

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓
.

(8)

(ii) +e normalized Hamming distance:

l(P, Q) �
1
2n

􏽘
s∈S

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqQ(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓
.

(9)

(iii) +e Euclidean distance:

e(P, Q) � 􏽘
s∈S

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌2
, pP(s) ·e

jqQ(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2
,􏼒

· pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌2
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2
􏼓.

(10)
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(iv) +e normalized Euclidean distance:

q(P, Q) �
1
2n

􏽘
s∈S

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌2
, pP(s) ·e

jqQ(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2
,􏼒

pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌2
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌2􏼓
.

(11)

Lemma 1. Let p1, p2, q1, q2, r1, r2 ≥ 0, and if p1 + q1 ≥ r1 and
p2 + q2 ≥ r2, then max(p1, p2) + max(q1, q2)≥max(r1, r2).

Proof. It is easy from max(p1, p2) + max(q1, q2)≥ p1 +

q1 ≥ r1 and max(p1, p2) + max(q1, q2)≥p2+ q2 ≥ r2. □

Theorem 1. 9e above-defined functions h(P, Q), l(P, Q),

e(P, Q), q(P, Q) are distances of IVCFSs.

Proof

(1) It is clear that h(P, Q)≥ 0 and h(Q, Q) � 0 for any
P, Q ∈ IVCF(S). If h(P, Q) � 0, by the definition of
function h, we have pP(s) ·ejqP(s) � pQ(s) ·ejqQ(s)

and pP(s) · ejqP(s) � pQ(s) · ejqQ(s) for all s ∈ S, then
P � Q.

(2) For any P, Q ∈ IVCF(S),

h(P, Q) � 􏽘
s∈S

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓

� 􏽘
s∈S

max pQ(s) ·e
jqQ(s)

− pP(s) ·e
jqP(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pQ(s) ·e

jqQ(s)
− pP(s) · e

jqP(s)
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pQ(s) · e
jqQ(s)

− pP(s) ·e
jqP(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, pQ(s) · e

jqQ(s)
− pP(s) · e

jqP(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓

� h(Q, P).

(12)

(3) Since for any p, q, r ∈ C, we have
|p − q|1 + |q − r|1 ≥ |p − r|1. +en, for any s ∈ S,

pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
+ pQ(s) ·e

jqQ(s)
− pR(s) ·e

jqR(s)
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1

≥ pP(s) ·e
jqP(s)

− pR(s) ·e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,

· pP(s) ·e
jqP(s)

− pQ(s) · e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
+ pQ(s) ·e

jqQ(s)
− pR(s) · e

jqR(s)
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1

≥ pP(s) ·e
jqP(s)

− pR(s) · e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,

· pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
+ pQ(s) · e

jqQ(s)
− pR(s) ·e

jqR(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1

≥ pP(s) · e
jqP(s)

− pR(s) ·e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,

· pP(s) · e
jqP(s)

− pQ(s) · e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
+ pQ(s) · e

jqQ(s)
− pR(s) · e

jqR(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1

≥ pP(s) · e
jqP(s)

− pR(s) · e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
.

(13)
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Using Lemma 1, we get

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
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· pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓

+ max pR(s) ·e
jqR(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pR(s) ·e

jqR(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pR(s) · e
jqR(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pR(s) · e

jqR(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
􏼓

≥max pP(s) ·e
jqP(s)

− pR(s) ·e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqP(s)
− pR(s) · e

jqR(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pP(s) · e
jqP(s)

− pR(s) ·e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pR(s) · e

jqR(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓
.

(14)

+en,

􏽘
s∈S

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
􏼓

+ 􏽘
s∈S

max pR(s) ·e
jqR(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pR(s) ·e

jqR(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pR(s) · e
jqR(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pR(s) · e

jqR(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓

≥ 􏽘
s∈S

max pP(s) ·e
jqP(s)

− pR(s) ·e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqP(s)
− pR(s) · e

jqR(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

· pP(s) · e
jqP(s)

− pR(s) ·e
jqR(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pR(s) · e

jqR(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
􏼓.

(15)

+us, we can obtain h(P, Q) �) + h(Q, R)≥ h(P, R).
Analogously, we can get that the functions
l(P, Q), e(P, Q), q(P, Q) are distances.

+us, we have defined some new distances between IVCFSs.
Compared with equations (2)–(4), the distances of IVCFSs in
[22], our distances are conformable to human’s intuitive receipt
when IVCFSs are used to express locative information, such as
“0.5 km-0.6 km, east” and “0.5 km–0.7 km, northwest” about the
targets. Clearly, our distances can overcome the drawback of
CFS’ distances as given in Introduction; i.e., the distance between
ε · ej0.25π and ε · ej1.25π is small when ε is small. □

Theorem 2. Let S � s1, s2, . . . , sn􏼈 􏼉, for any P, Q ∈ IVCF(S),
the following inequalities hold:

(1) 0≤ h(P, Q)≤ 2
�
2

√
n.

(2) 0≤ l(P, Q)≤
�
2

√
.

(3) 0≤ e(P, Q)≤ 2n.
(4) 0≤ q(P, Q)≤ 1.

Proof. For any complex numbers a, b ∈ c ∈ C||c|≤ 1{ }, we
have 0≤ |a − b|1 ≤ 2

�
2

√
and 0≤ |a − b|2 ≤ 2, and hence,

h(P, Q)≤ 􏽐
n
1 2

�
2

√
≤ 2

�
2

√
n, e(P, Q)≤ 􏽐

n
1 2≤ 2n, l(P, Q)≤

(1/2n) 􏽐
n
1 2

�
2

√
≤

�
2

√
, and q(P, Q)≤ (1/2n) 􏽐

n
1 2≤ 1.

In general, we use e(A, B) to measure the distance be-
tween two targets A and B. But when targets are in the city,
h(A, B) is viewed as the city block distance may be more
reasonable. Figure 3 shows an instance of the difference
between two distances.

Based on the relations among IVCFS, IVFS, CFS, and
FS, we give the comparison of our proposed distances of
IVCFSs with IVFS, CFS, and FS. Based on the reduction of
IVCFSs, the comparison results are shown in Remarks
1–3. □

Remark 1. When IVCFSs are reduced to CFSs, the above-
defined functions (4)–(7) are distances for CFSs based on
traditional Hamming and Euclidean distances of complex
numbers defined as follows:
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h(P, Q) � 􏽘
s∈S

ψP(s) − ψQ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌1􏼐 􏼑,

l(P, Q) �
1
2n

􏽘
s∈S

ψP(s) − ψQ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌1􏼐 􏼑,

e(P, Q) � 􏽘
s∈S

ψP(s) − ψQ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌2􏼐 􏼑,

q(P, Q) �
1
2n

􏽘
s∈S

ψP(s) − ψQ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌2􏼐 􏼑.

(16)

Remark 2. When IVCFSs are reduced to IVFSs, the above-
defined functions (4)–(7) are distances for IVFSs based on
Hausdorff metric defined as follows:

h(P, Q) � e(P, Q)

� 􏽘
s∈S

max pP(s) − pQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, pP(s) − pQ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓,

l(P, Q) � q(P, Q)

�
1
2n

􏽘
s∈S

max pP(s) − pQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, pP(s) − pQ(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓.

(17)

Remark 3. When IVCFSs are reduced to FSs, the above-
defined functions (4)–(7) are distances for FSs as follows:

h(P, Q) � e(P, Q) � 􏽘
s∈S

|pP(s) − pQ(s)|􏼐 􏼑,

l(P, Q) � q(P, Q) �
1
2n

􏽘
s∈S

|pP(s) − pQ(s)|􏼐 􏼑.

(18)

Example 1. Let S � s1, s2, s3, s4􏼈 􏼉, P, Q ∈ IVCF(S) are de-
fined as

P �
[0.4, 0.5]e

j0.3π

s1
+

[0.6, 0.8]e
j0.5π

s2
+

[0.7, 0.9]e
j0.2π

s3
+

[0.8, 0.9]e
j0.5π

s4
,

Q �
[0.4, 0.6]e

j0.3π

s1
+

[0.3, 0.4]e
j0.5π

s2
+

[0.5, 0.6]e
j0.8π

s3
+

[0.5, 0.6]e
j1.1π

s4
.

(19)

+en, by equations (4)–(7), we have

h(P, Q) ≈ 3.8253,

l(P, Q) ≈ 0.4782,

e(P, Q) ≈ 3.1526,

q(P, Q) ≈ 0.3941.

(20)

4. Rotational Invariance and
Reflectional Invariance

Let P ∈ IVCF(S), then the rotation of P by α radians,
denoted Rotθ(P), is defined as

Rotα μP(s)( 􏼁 � pP(s), pP(s)􏽨 􏽩 · e
j qP(s)+α( ). (21)

And the reflection of P, denoted Ref(P), is defined as

Ref μP(s)( 􏼁 � pP(s), pP(s)􏽨 􏽩 · e
j 2π− qP(s)( ). (22)

Dai et al. [22] gave the following definitions for distance
measures between IVCFSs.

Definition 2 (see [22]). Let d is a distance for IVCFSs, and d

is rotationally invariant if

d Rotα(P),Rotα(Q)( 􏼁 � d(P, Q), (23)

for any α and P, Q ∈ IVCF(S).

Definition 3 (see [22]). Let d is a distance for IVCFSs, and d

is reflectionally invariant if

d(Ref(P),Ref(Q)) � d(P, Q), (24)

for any P, Q ∈ IVCF(S).

Theorem 3. 9e above-defined distances e, q are reflec-
tionally and rotationally invariant.

A

B

e (A, B)

h (A, B)

Figure 3: h(A, B) versus e(A, B).

6 Mathematical Problems in Engineering



Proof. It is easy from the facts that traditional Euclidean
distance between complex numbers is reflectionally and
rotationally invariant. □

Theorem 4. 9e above-defined distances h, l are reflection-
ally invariant, but not rotationally invariant.

Proof

(1) It is easy from the fact that |(a + bj) − (c + dj)|1 �

|a − c| + |b − d| � |(a − bj) − (c − dj)|1 for any
complex numbers a + bj and c + dj. +us,

|r1 · ejs1 − r2 · ejs2 |1 � r1 · ej− s1 − r2 · e− js2 |1. +en, for
any P, Q ∈ IVCF(S),

h(Ref(P),Ref(Q)) � 􏽘
s∈S

max pP(s) ·e
− jqP(s)

− pQ(s) ·e
j− qQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

− jqQ(s)
− pQ(s) · e

− jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

pP(s) · e
j− qP(s)

− pQ(s) ·e
− jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

j− qP(s)
− pQ(s) · e

− jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1􏼓

� 􏽘
s∈S

max pP(s) ·e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) ·e

jqQ(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
,􏼒

pP(s) · e
jqP(s)

− pQ(s) ·e
jqQ(s)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌1
, pP(s) · e

jqP(s)
− pQ(s) · e

jqQ(s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌1
􏼓

� h(P, Q).

(25)

Similarly, we can get l(Ref(P),Ref(Q)) � l(P, Q).
(2) Let α � π/4, then we have |(1 + 0j) − (0 + 1j)|1 �

|1 − 0| + |0 − 1| � 2, but |(1 + 0j)ejπ/4 − (0+ 1j)

ejπ/4|1 � |(
�
2

√
/2 + j

�
2

√
/2) − ((−

�
2

√
/2) + j

�
2

√
/2)|1 ��

2
√

. +us, the above-defined distances h, l are not
rotationally invariant. □

5. Numerical Example for Decision-Making

In real life, we may get some answers such as “0.5 km-0.6 km,
east” and “0.5 km–0.7 km, northwest” about the targets.
+ese answers can be represented in terms of IVCFSs. Now,
we consider a decision-making problem in the environment
of IVCFSs. Assume that the ideal target is 1, and there are
four alternatives (T1, T2, T3, T4). +en, rating values of these

alternatives are given by five natives (E1, E2, E3, E4), and
then, we try to find the nearest alternative. +e corre-
sponding rating values of alternatives given by natives are
shown in Table 1.

Now, we compute the distance between the ideal target
and Ai (i � 1, 2, 3, 4) based on the distance functions (5)–(8).
+e results are shown in Table 2.

Here, we use the technique for order preference by simi-
larity to an ideal solution (TOPSIS) [28] for decision-making.
Based on the TOPSIS method, we try to find the nearest al-
ternative to the ideal target, and thus, the best alternative is the
one with the nearest distance to the ideal target.

+e results are shown in Table 3, in which Ti ≻ Tk means
Ti is nearer thanTk for the ideal target.+en, as we can see in
Table 4, T2 is the best alternative in this example.

Table 1: Two properties of distance measures between IVCFSs.

Reflectional invariance Rotational invariance
Distances in [22] √ ×

h, l √ ×

e, q √ √

Table 2: Rating values of the alternatives.

E1 E2 E3 E4

T1 [0.8, 0.9] · ej1.5π [0.8, 0.9] · ej1.6π [0.7, 0.8] · ej1.5π [0.7, 0.9] · ej1.5π

T2 [0.7, 0.8] · ej1.6π [0.7, 0.8] · ej1.8π [0.8, 0.9] · ej1.7π [0.7, 0.8] · ej1.7π

T3 [0.1, 0.2] · ej0.9π [0.1, 0.3] · ej1π [0.1, 0.2] · ej1π [0.2, 0.3] · ej0.9π

T4 [0.8, 0.9] · ej0.6π [0.7, 0.8] · ej0.6π [0.6, 0.8] · ej0.4π [0.6, 0.8] · ej0.6π

Table 3: Distance results.

h l e q

T1 7.1779 0.8972 5.0911 0.6364
T2 4.7348 0.5919 3.3717 0.4215
T3 6.13 0.7663 4.9805 0.6226
T4 6.6132 0.8267 5.5305 0.6913
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6. Conclusions

CFS and IVCFSs are used to describe locative information
with uncertainty in some real-world applications; for ex-
ample, when we ask for directions, we may get answers such
as “0.5 km-0.6 km, east”, “0.8 km, West,” and
“0.5 km–0.7 km, northwest” about the targets.+en, we need
to measure the difference between objects and estimate
how long it will take to get to the close object. In this case,
distances in [12, 16, 17, 22] are not suitable. In this paper,
we have presented some new distances for IVCFSs by
using traditional Euclidean distance between complex
numbers. +ey are suitable for measuring the distance
between objects. We used these distances to deal with the
location decision problem under uncertain situations.
+ese distance measures include the Hamming distance h,
the normalized Hamming distance l, the Euclidean dis-
tance e, and the normalized Euclidean distance q. Fur-
thermore, the distances h and l are reflectionally invariant
but not rotationally invariant, and distances e and q are
both reflectionally and rotationally invariant. Finally,
based on these distances, we presented an illustrative
example for location decision-making under IVCFS
situation.

Note that we give a drawback of distances in
[12, 16, 17, 22] from a specific application of IVCFS. Many
angles of analysis of distances are needed. In future re-
search, we expect to develop more distances of CFS and its
extension from different angles and apply them in different
applications, such as engineering, economics, and
medicine.
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