
Research Article
An Unsupervised Intelligent Fault Diagnosis System Based on
Feature Transfer

Nannan Lu , Songcheng Wang , and Hanhan Xiao

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China

Correspondence should be addressed to Nannan Lu; lnn_921@126.com

Received 17 December 2020; Revised 26 February 2021; Accepted 10 March 2021; Published 18 March 2021

Academic Editor: Jun Shen

Copyright © 2021 Nannan Lu et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the booming development of intelligent manufacturing in modern industry, intelligent fault diagnosis systems have become
a necessity to equipment and machine, which have attracted many researchers’ attention. However, due to the requirements of
enough labeled data for most of the current approaches, it is difficult to implement them in real industrial scenarios. In this paper,
an unsupervised intelligent fault diagnosis system based on feature transfer is constructed to extract the historical labeled data of
the source domain, using feature transfer to facilitate the fault diagnosis of the target domain. +e original feature set is acquired
by EEMD time-frequency analysis. +en, the transfer component analysis algorithm is adopted to minimize the distance between
the marginal distributions of the source and target domains which reduces the discrepancy of features between the different
domains. Finally, SVM is used inmulticlassification to identify different categories of faults.+e performance of the fault diagnosis
system under different loads is tested on the CWRU bearing data set, and the experiments show that the proposed system could
effectively improve the recognition ability of unsupervised fault diagnosis.

1. Introduction

Rotating machinery is a crucial part of the mechanical
system in industrial manufacturing. Its healthy condition
seriously affects the safe and stable operations of equipment.
It has been demonstrated that 30% of rotating machinery
faults are caused by bearing faults [1]. Recently, the bearing
fault diagnosis becomes a hot research topic to realize its
intelligent surveillance and recognition.

+e fault diagnosis methods of rotating machinery can
be divided into a model-based method and a data-driven
method [2]. +e model-based fault diagnosis method is to
achieve fault diagnosis by establishing a mathematical model
and analyzing the residual error between the mathematical
model and the actual signal. Because of the noise and other
random factors in the working environment of equipment,
the performance of the model-based rolling bearing fault
diagnosis is seriously affected. However, data-driven
methods collect representative data from signals and design
simple models. +e data is used to train the model to make it
fit, so that we can get an ideal model. Comparatively,

data-driven methods are more popular in recent years,
owing to the amounts of available data collected from
sensors.

Data-driven fault diagnosis methods consist of signal
processing, feature extraction, and fault mode recognition
[3].+e signal processing aims to obtain the original features
by the signal transformation. But, different transformations
may bring some redundant information, which will decline
the diagnosis accuracy and make the calculation complex.
+e feature extraction is necessary to remove redundant
information. Finally, machine learning methods are used to
construct recognition models for fault diagnosis, such as
Artificial Neural Networks (ANNs), Support Vector Ma-
chines (SVMs), or Fuzzy Logic (FL) [4–6].

Fourier transformation is usually used to transform
rolling bearing signals at the beginning [7]. Yet, since the
signal has the features of nonstationary and nonlinear, it
cannot get acceptable performance. Some short-time anal-
ysis methods such as short-time Fourier transform (STFT),
wavelet transform (WT), empirical mode decomposition
(EMD), and ensemble empirical mode decomposition
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(EEMD) can explore the information hidden in the fre-
quency domain [8]. Due to the fixed size of the window, the
resolution of STFT is determined by the window size, so the
frequency and time resolution cannot be optimized at the
same time [9]. WT is easy to lose the high-frequency
components of the signal [10]. EMD has the problem of
mode mixing [11]. But, EEMD can remedy the defect of
EMD when composing the vibration signals. +en, the
features referring to the time domain, frequency domain,
and time-frequency domain of vibration signals are
extracted, which are taken as the input of the classifier to
complete the training and fault diagnosis. +e classifiers
always use traditional statistical machine learning ap-
proaches [12]. However, statistical learning is based on
mathematical statistics and requires that the learned
knowledge should have the same statistical features as the
applications [13]. +erefore, traditional statistical machine
learning always assumes that the training and testing data
come from the same distribution. However, actually, most of
the cases do not obey the same distribution. Transfer
learning relaxes the constraint that both training and testing
data must obey the same distribution in traditional statistical
machine learning [14]. It can learn the domain invariant
features or structures between the different but related
domains, so as to realize knowledge transfer and reuse
between domains [15]. On the other hand, when the training
and testing data do not satisfy the same distribution hy-
pothesis, the training data will be out of date. Transfer
learning can improve the learning ability of traditional
statistical machine learning and greatly reduce the cost of
labeling data [16].

Transfer learning is the approach that utilizes the learned
knowledge from one domain to facilitate the learning tasks
in the new domains [17]. +erefore, using transfer learning,
we can learn new knowledge more easily through outdated
experiences. Figure 1 shows the signals generated by the
sphere fault (SF) and inner race fault (IF), respectively. Due
to the different fault locations, the distributions are obvi-
ously different from each other. But, there still exist some
similarities in the condition of fault occurrence, such as the
bearing speed and fault diameter when the fault occurs.
+us, through the diagnosis of the SF, we can learn to
recognize the IF.

+erefore, the distinctive characteristic of transfer
learning is no requirement of the identical distribution
between the training and testing data, which is more suitable
for a rapid variation of sensor data [18–20]. Inspired by
transfer learning, we try to construct an unsupervised in-
telligent fault diagnosis system for the real scenario with
different distributions and without labeled data in the target
domain. In the fault diagnosis system, the domain invariant
feature representation must be learned from the extracted
features. Unlike the high cost of feature learning in deep
neural networks, we utilize EEMD to decompose the original
signals and further extract the statistical features, which is
used to learn the common feature space between the source
and target domains by reducing the marginal distribution
discrepancy. In this way, the proposed intelligent fault di-
agnosis system can uncover the hidden information in the

signals and focus on learning the transferable mapping of the
statistical features. Herein, we select transfer component
analysis (TCA) [21] to transform the source domain and
target domain features into a unified feature space, in which
the maximum mean discrepancy (MMD) is used to mini-
mize the distance between the source and target domain, so
as to achieve accurate diagnosis task of the target without
any labeled data. +en, the multiclassification-based SVM is
used to identify the unseen faults that are different from the
source domain.

+e rest of the paper is organized as follows. Section 2
reviews the related works. Section 3 introduces the proposed
intelligent fault diagnosis system from signal processing,
feature transferring, and classification. Section 4 describes
the experiments, which mainly introduce the selected data
set and show the experimental results and analysis. +e
conclusions are given in Section 5.

2. Related Works

Rotating machinery is often running under high speed and
high pressure, where the rolling bearing of mechanical
equipment is easy to be damaged and faults occur. Me-
chanical faults are a serious problem to the development of
intelligent manufacturing in modern industry. In order to
exactly identify the various categories of rotating machinery
faults, many researchers try to propose approaches to im-
prove the performance of intelligent fault diagnosis systems.
Liu et al. [22] proposed an intelligent fault diagnosis model
which is based on variational mode decomposition (VMD)
and singular value decomposition. Yu et al. [23] proposed a
deep inception net with atrous convolution (ACDIN) to
realize bearing fault diagnosis. Besides, Chen et al. [24]
proposed an integrated anomaly detection approach for
seeded bearing faults, which use EMD and the Hilbert
transformation to extract the feature set.

All the above studies utilize traditional machine learning
approaches to implement intelligent fault diagnosis systems.
However, once the training and testing data do not obey the
same distribution, the performance will significantly decline.
In real scenarios, most of the bearing faults happen ran-
domly. It is impossible to label enough samples for training a
new model. +erefore, transfer learning is necessary to
implement intelligent fault diagnosis systems into real in-
dustrial scenarios. Among the current researches about
transfer learning, Xu et al. [25] used TrAdaboost to transfer
the knowledge of source domain to target after extracting
features with WT. TrAdaboost assumed that there are a few
labeled samples in the target domain and then constructed a
mixed data set including the labeled data from the source
and target domain to be the training data set [26]. More
distinctively, the algorithm used the weight adjustment of
AdaBoost, which determined the weights of samples by the
feedback of the classification performance on the labeled
target data. +us, the method could make sure to learn an
effective model for the source domain, while it might not
obtain acceptable performance on the target task. Consid-
ering the corruption possibility of data during the collecting
procedure, there exists some extent of uncertainty in both
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the source and target domains. +us, Xiao et al. [27] pro-
posed to learn the proportions when transferring knowledge
from source to target. With the explosive increase of data,
transfer learning is combined with deep neural networks to
improve the recognition performance of the transferring
learning approaches. Prieto et al. [28] proposed a bearing
fault diagnosis model based on statistical-time features and
neural networks. Shao et al. [29] utilized the scaled expo-
nential linear unit to improve the quality of the feature
mapping, which compensated for the lack of labeled samples
in the target domain. +e good performance of all the deep
transfer models benefits from the outstanding ability of the
feature extraction of deep neural networks.

However, the training of the deep transfer learning
model needs enough samples. +erefore, the study of
shallowmachine learning methods is still necessary for some
real industrial scenarios. Unlike feature learning by some
deep neural networks, the proposed intelligent fault diag-
nosis framework utilizes the statistical features and shallow
transfer learning algorithm to learn the feature mapping that
could reduce the marginal distribution discrepancy between
the source and target domains. In this way, the proposed
intelligent fault diagnosis can give another way to solve the
data deficiency that may exist in real industrial scenarios.
Herein, TCA is used to transform the source domain and
target domain features into a unified feature space, in which
the maximum mean discrepancy (MMD) is used to minimize
the distance between the source and target domain, so as to
achieve accurate diagnosis without labeled data [30, 31]. As to
the features, we firstly use EEMD to process the signal and
extract the feature set and then transfer the features through
TCA to establish the unsupervised fault diagnosis model
named EEMD-TCA-SVM. It was verified by Case Western
ReserveUniversity’s (CWRU) public data set.+e results show
that our proposed system can obtain acceptable performance.

3. Transfer Learning-Based Intelligent
Fault Diagnosis

In this paper, EEMD is used to decompose the vibration
signals into multiple IMFs. +en, Hilbert envelope spectra
(HES) and Hilbert marginal spectra (HMS) are calculated to
acquire time and frequency features. After that, the unified
feature space is learned by TCA to realize feature transfer
from the source domain to the target domain. Finally,
various faults are identified by the multiple classifications

based on SVM. +e specific procedure of the proposed
transfer learning-based intelligent fault diagnosis system is
described in Figure 2.

3.1. Fault FeatureExtraction fromVibrationSignals byEEMD.
+e data here used to extract features are vibration signals
collected from accelerometers set on the rolling bearing.
+en, it is segmented into short waves having several pe-
riods, which is useful to extract the features of time and
frequency domains. We select EEMD to decompose the
original signals into different IMF components, which im-
proves EMD by adding white Gaussian noise to the signal to
eliminate mode aliasing [32].

Before signal decomposition, white Gaussian noise is
added to the original signal x(t).

xi(t) � ni(t) + x(t), (1)

where ni(t) (i ∈M) is the ith superimposed white Gaussian
noise, and xi(t) is the corresponding signal with noise to be
decomposed later. By subtracting the mean value mi(t) of
the upper and lower envelope from xi(t), the signal com-
ponent hi(t) could be obtained by the equation
hi(t) � x(t) − mi(t). +en, hi(t) is taken as a new signal to
be decomposed and repeat the above operations till the
termination criteria of equation (9) are satisfied.

SD � 
T

t�0

hi(k− 1)(t) − hik(t)

hi(k− 1)(t)
 

2

, (2)

where Tdenotes the length of the signal. Usually, the range of
SD is [0.2, 0.3]. When the requirements of IMF are satisfied,
hik(t) is the IMF component c(t) we would like to obtain.
And then, we can get the remaining subsequence r(t), which
is the residual component c(t) from x(t). Repeating the
above process, the ultimate residual component rn(t) is
obtained by

x(t) − c1(t) � r1(t),

r1(t) − c2(t) � r2(t),

. . .

rn− 1(t) − cn(t) � rn(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Next, equation (3) can be rewritten as equation (4).
Obviously, the original signal x(t) can be decomposed into
the IMF component and the residual subsequence rn(t),
respectively.

0.5

–0.5

Inner ring failure

0 100 200 300 400 500 600 700 800 900 1000

0.5

–0.5
0 100 200 300 400 500 600 700 800 900 1000

Sphere failure

Figure 1: +e discrepancy of signals collected from different faults.
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x(t) � 
N

j�1
cj(t) + rn(t), (4)

where cj(t) represents the jth IMF component by N de-
composition, which is defined as equation (5). +e imple-
mentation of EEMD is concretely described in Table 1.

cj(t) �
1

M


M

i�1
cij(t). (5)

Additionally, an example is given in Figure 3 to show the
decomposition performance of EEMD.+e blue waveform is
the original vibration signal, and the red ones are IMF1,
IMF2, IMF3, IMF4, and residual component, respectively.
Figure 3 shows that the original signal can be decomposed
into IMF components with different frequencies and am-
plitudes, which efficiently extract features from the original
signal. +rough the decomposition, the redundant com-
ponents can be removed, while preserving signal features.

However, not every IMF component can exactly represent
the information of the original signal. +e selection of IMF
components is necessary after EEMD decomposition. In
order to simplify the calculation, the first 4 IMF components
are empirically used to do the feature extraction. After that, 9
statistical parameters are used to represent the original signal,
HES, and HMS of EEMD decomposition. Table 2 shows the
detailed formula of 9 statistical parameters.

In order to extract the features of the time-frequency
domain, Hilbert transformation is used to extract the in-
formation of the variety of the vibration signal with time and
frequency. At first, each IMF component cj(t) is transformed
to cj(t) by Hilbert transformation of the following equation:

cj(t) �
1
π


∞

− ∞

cj(τ)

t − τ
dτ. (6)

+en, each IMF component is further analyzed to obtain
an analytical signal zj(t) by the following equation:

zj(t) � cj(t) + jcj(t) � aj(t)e
jfj(t)

, (7)

where aj(t) is amplitude function that is the spectra en-
velope actually, and ϕ(t) represents a phase function. +en,
the Fourier transformation of aj(t) is HES F(ω) of the
corresponding IMF component. Based on equation (7),
Hilbert spectra are calculated by equation (8). After that,
HMS can be obtained on the basis of Hilbert spectra, which
is specifically shown in equation (9).

H(w, t) � Re 
N

j�1
aj(t)e

jϕ(t)
� Re

N

j�1
aj(t)e

j  wj(t)dt
, (8)

h(w) � 
T

0
H(w, t)dt, (9)

Collect vibration signals for training
and decompose the signals by EEMD

Obtain HMS and HES with high
signal correlation

Calculate the initial feature set

Feature transfer by TCA

Training a multiclassification fault
diagnosis model

Collect vibration signals for testing
and decompose the signals by EEMD

Obtain HMS and HES with high
signal correlation

Calculate the initial feature set

Identify the unseen faults based on the
trained model

Training features
by transferring

Testing features
by transferring

Training phase Testing phase

Figure 2: +e general workflow of the proposed EEMD-TCA-SVM.
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where T is the length of the whole sequence.+e pseudocode
of HES and HMS calculation is shown in Table 3.

Figure 4 shows HES and HMS of the randomly selected
vibration signals generated by the OF signal with a motor
speed of 1797.

3.2. Unified Feature Space Learning between the Source and
Target Domains. Different from the traditional machine
learning approaches, we consider the real scenario where the
training and testing data come from different distributions,
P(Xs)≠P(Xt). If the training data is directly used to train a
model for the test, the trained model will show a bad per-
formance on the testing data. It is assumed that a feature
mapping Φ lets the distributions of training and testing data
approximate each other, P(Φ(Xs)) ≈ P(Φ(Xt)). TCA is a
classical transfer learning approach proposed by Pan et al.
[31], which realizes transfer learning by mapping the data of
the source and target domains into a High-dimensional
Reproducing Kernel Hilbert (HRKH) space. It utilizes fea-
ture mapping to reduce the distribution discrepancy be-
tween different data sets, and we suppose that the
conditional distributions can approximate each other by
adjusting the marginal distributions. Specifically, when
P(Φ(Xs)) ≈ P(Φ(Xt)) is satisfied, there will be
P(Ys|Φ(Xs)) ≈ P(Yt|Φ(Xt)). Here, maximum mean dis-
crepancy (MMD) is used to estimate the discrepancy be-
tween the training and testing data in the feature mapping
space. Specifically, it can be calculated by the following
equation:

DIS xs, xt(  �
1
ns



ns

i�1
Φ xi(  −

1
nt



nt

j�1
Φ xj 

����������

����������
H

, (10)

where ns and nt are the number of samples in the training
and testing set, respectively. H is the RKHS norm. Equation
(11) cannot be calculated directly, which should transform
the samples into the mapping space by some kernel method.
In order to embed both the training and testing data into a
shared low dimensional latent space, TCA introduces a
kernel matrix K and a distribution discrepancy matrix Lij.
+e kernel matrix contains the elements defined on the
source domain, target domain, and cross-domain data in the
feature mapping space, which are detailed in equation (11).
+e elements of Lij are calculated by equation (12).

K �

Kss Kst

Kts Ktt

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (11)

Lij �

1
n
2
s

, xi, xj ∈ Xs,

1
n
2
t

, xi, xj ∈ Xt,

−
1

nsnt

, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

+en, the distance of equation (10) can be rewritten as
tr(KL) − λtr(K), where the first term minimizes the dis-
tance between distributions, and the second termmaximizes
the variance in the feature space. λ (λ≥ 0) is a tradeoff
parameter.

min
W

tr W
T
KLKW  + μtr W

T
W ,

s.t. W
T
KHKW � Im,

(13)

where μ> 0 is a tradeoff parameter, and Im is an m × m

identity matrix. H is the centering matrix, which is defined
as H � In − (1/n)11T. n means the number of samples in
training and testing sets. +e values after dimension re-
duction are the mapped features.

3.3. Multicategory Fault Diagnosis. For the classification of
possible errors, a penalty term C 

n
i�1 ξi is introduced. +e

following relation is obtained:

φ(w, ξ) �
1
2
‖w‖

2
+ C 

n

i�1
ξi. (14)

+e objective function (1/2)‖w‖2 of the optimal hy-
perplane can be replaced by φ(w, ξ). And in general, the
penalty factor C is a nonnegative real number; the solution
formula of the optimal hyperplane can be expressed as
follows:

max 

n

i�1
αi −

1
2



n

i�1


n

j�1
αiαjyiyj xi · xj ,

s.t. 0≤ αi ≤C, i � 1, . . . , n,



n

i�1
αiyi � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

+e optimal hyperplane can be obtained by solving the
above objective. To sum up, the decision function of SVM
can be composed of the inner product and summation of the
support vector. +erefore, the decision function of SVM is
similar to neural networks in form. Each intermediate node

Table 1: Pseudocode of EEMD.

Algorithm 1: ensemble empirical mode decomposition
Input: the original signal x(t) and white noise ni(t)

Output: IMF component cj(t)

(1) Add white noise ni(t) to the original signal x(t) to get the new
signal xi(t)

(2) Processing xi(t) with empirical mode decomposition
(3) Calculated white noise interference by average the sum of each
IMF components to get cj(t)
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corresponds to the inner product of the input sample and
support vector x1, x2, . . . , xn completed by kernel function,
and the output vector is a linear combination of intermediate
nodes.

+e fault diagnosis studied in the paper is a ten-class
classification problem, but SVM is usually used to deal with
binary classification. +us, we combine multiple SVMs to
construct a multiclass classifier. At first, one of the SVMs is
used to identify the faults of category 1 from category 2 to 10.
Likewise, the other 9 categories are classified by the binary
classifier in the same way.

4. Experimental Analysis

4.1. Data Set. In this paper, the vibration signals of bearing
faults are collected from the platform of Case Western
Reserve University (CWRU) [33]. +e bearing device is
shown in Figure 5, which is composed of a three-phase in-
duction motor, a torque sensor, and a dynamometer. Four
kinds of motor loads of 0, 1, 2, and 3HP are given in the
database, referring to different categories of vibration signals.
+e sampling frequency is 12 kHz.+e experimental data used
in the following comes from the upper side of the drive end of
the motor. +e torque sensor collects the vibration signals in
different fault conditions at the drive end. Moreover, SVM,
TCA, and EEMD-SVM are used to be compared with our
EEMD-TCA-SVM, which further demonstrates the feasibility
of the proposed intelligent fault diagnosis system.

In the experiments, four data sets are prepared, which
refers to different motor loads shown in Table 4. A, B, C, and

0.5
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0

�e original vibration signal

IMF1
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Figure 3: +e IMF components of the signal decomposed by EEMD.

Table 2: Statistical parameters.

Feature Expression

Mean T1 � (1/n) 
n
i�1 x(i)

Standard deviation T2 �

������������������������

(1/(n − 1)) 
n
i�1 (x(i) − T1)

2


Skewness T3 � 
n
i�1 (x(i) − T1)

3/((n − 1)T3
2)

Kurtosis T4 � 
n
i�1 (x(i) − T1)

3/((n − 1)T3
2)

Crest factor T5 � max|x(i)|/
�������������

(1/n) 
n
i�1 x(i)2



Form factor T6 �

���������������������������

(1/n) 
n
i�1 x(i)2/(1/n) 

n
i�1 |x(i)|



Impact factor T7 � max(|x(i)|)/
�������������
(1/n) 

n
i�1 |x(i)|



Latitude factor T8 � max(|x(i)|)/(1/n) 
n
i�1 |x(i)|

Range T9 � max(|x(i)|) − min(|x(i)|)

Table 3: Pseudocode of HES and HMS calculation.

Algorithm 2: Hilbert envelope spectra and marginal spectra
Input: IMF component cj(t) of the signal
Output: HES F(ω) and HMS h(ω).
(1) Transform each IMF component to get cj(t) by the Hilbert
transformation.
(2) Calculate each IMF component’s analytical signal zj(t), obtain
envelope function aj(t) and phase function ϕj(t)

(3) Transform aj(t) by Fourier transformation to get HES F(ω)

(4) Calculate the Hilbert spectra H(ω, t)

(5) Calculate HMS h(ω) by H(ω, t)
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D are the bearing fault data sets under the motor loads of 0,
1, 2, and 3HP, respectively. +ere are ten fault types in total,
including IF, SF, and OF with three kinds of diameters and
health samples. For each category, the vibration signal with
length 120,000 is selected, where the window and the step
size are 2000 and 1000, respectively. Each experimental data
set (such as A) has 10 categories. +ere are 1200 samples for

each data set, where 960 samples are taken as training set,
and the other 240 samples are testing set.

4.2. Experimental Steps and Result Analysis. In order to
verify the performance of the proposed method, we use
SVM, TCA-SVM, EEMD-SVM, and EEMD-TCA-SVM for
comparing their classification performance on different
transfer pairs among A, B, C, and D, respectively. Totally, 12
groups of experiments can be set, which is shown in Table 4.

When the data set is set up, the training and testing sets
correspond to the source and target domain data in transfer
learning. SVM is trained by the training set, and the testing
set is then used to check the classification performance. As to
TCA-SVM, both the training and testing sets are used to
obtain the unified feature space by minimizing the distri-
bution distance between the training and testing sets with
TCA.+en, the training set is used to train SVM.+e testing
set is mapped to the unified feature space and then classified
by SVM. As to EEMD-SVM and EEMD-TCA-SVM, the data
sets are processed by EEMD. +e first four IMFs are used to
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Figure 4: +e examples of HES and HMS of the bearing fault signals. (a) HES of the OF signal. (b) HMS of the OF signal. (c) HMS of the IF
signal.

Figure 5: CWRU bearing fault test-bed.
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calculate HMS and HES, where 9 statistical features are
calculated. Considering 9 statistical features of the original
signal, there are 81 features in total. And the following
procedures are the same with SVM and TCA-SVM.

In order to verify the superiority of the EEMD-TCA-
SVM model over the other methods, we give the accuracy,
ROC curve, AUC value, and confusion matrix in the
following.

4.2.1. Accuracy. Accuracy is an important standard to
measure fault diagnosis systems, which denotes the ratio of
correctly predicted samples to the total samples. +rough
accuracy, we can easily evaluate the diagnosis performance
as a whole. Table 5 shows the accuracies of the methods on
the different source-target pairs.

From the results of the first four groups of Table 5,
EEMD-TCA-SVM can obtain a relatively higher average
accuracy than other methods, where TCA shows the
transferability from the average accuracy. In particular, for
some cases such as C⟶ D, it can get an almost 20%
increase. Compared with TCA-SVM, EEMD-TCA-SVM
shows good performance on both average accuracy and each
case, which is improved obviously. +us, the process of the
original signals by EEMD is necessary for the fault diagnosis
system since the hidden information of different resolutions
in time and frequency domains can be extracted through
EEMD. In order to verify the reliability of the experiment,
Random Forest (RF) is taken as an additional classifier to test
the diagnosis performance of the transfer tasks.
EEMD-TCA-RF can obtain a higher average accuracy than
other methods. Comparing the results of TCA-RF with RF,
TCA can effectively minimize the distribution discrepancy
between the source and target domain, where the recog-
nition accuracy is improved by about 16%. Comparing the
results of TCA-RF with EEMD-TCA-RF, the accuracy is
improved by about 30%. EEMD can effectively extract the
important information from the original signal. Comparing
the results of EEMD-TCA-RF with EEMD-RF, the accuracy
is improved by about 5%. +e reason is that the decom-
position by EEMD and the calculation of the components’
statistical features may alleviate the distribution discrepancy
of the original signals to some extent, which does not im-
prove the diagnosis performance so much. Overall, the

classifier RF on the different tasks of Table 3 has identical
conclusions with the classifier SVM.

4.2.2. Confusion Matrix. +e confusion matrix represents
the fact that the specific numbers of samples are classified
into each category, and then the matrix is used to display the
results [34].+e confusionmatrix is mostly used to judge the
quality of the classifier, which is applicable to the classifi-
cation methods. It is the basic, intuitive, and simple way to
further measure the accuracy of classification methods or
systems.

+e fault diagnosis is a multiclassification problem. +e
confusion matrix is a table with the size of 10 ∗ 10. Figure 6
shows the confusion matrix of SVM, TCA-SVM,
EEMD-SVM, and EEMD-TCA-SVM, respectively.

Compared to the other methods, EEMD-TCA-SVM can
identify most of the categories accurately. SVM shows the
worst performance on the confusion matrix, where some of
the categories cannot be recognized completely. In partic-
ular, for the healthy category (label 1), all the healthy data is
identified as faults shown in Figure 6(a). Other fault cate-
gories are also easy to misclassify with each other. SVM does
not have transferability, which is not used to do the fault
diagnosis directly. When TCA is used to transfer features,
the recognition performance in Figure 6(b) is improved to a
certain extent but still shows very low classification ac-
curacy. Although most of the healthy cases are identified
correctly, the faults are misclassified between each other
seriously. +erefore, it is infeasible to transfer the signals
without any feature extraction. EEMD is a signal processing
method that can separate the signals into different IMF
components. In the procedure, the more distinguished
information can be found. Based on the separation, the
statistical features are calculated, which construct the new
fault diagnosis data. Figures 6(c) and 6(d) truly show the
improvement of the recognition performance by EEDM.
But in the case B⟶D, EEMD-SVM misclassifies all the
healthy data to the 7th category of faults in which the two
categories of data may have more similarity in statistical
features. Likewise, EEMD-TCA-SVM improves the rec-
ognition rate for almost all the categories by comparison
with EEMD-SVM, especially for the healthy data. +e
domain adaptation is effective for the data with the

Table 4: Experimental data sets.

Fault location Diameter Label Data set A Data set B Data set C Data set D
Motor load — — 0 1 2 3
Health 0 1 120 120 120 120

IF
0.07 2 120 120 120 120
0.014 3 120 120 120 120
0.021 4 120 120 120 120

SF
0.07 5 120 120 120 120
0.014 6 120 120 120 120
0.021 7 120 120 120 120

OF
0.07 8 120 120 120 120
0.014 9 120 120 120 120
0.021 10 120 120 120 120
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distribution discrepancy. However, for SVM and
TCA-SVM, EEMD-SVM and EEMD-TCA-SVM have
more obvious improvement. So, we think that statistical
features extracted by EEMDmay alleviate the impact of the

distribution discrepancy existing in the original signals on
the fault diagnosis. It is very necessary to introduce the
signal processing-based feature extraction into fault di-
agnosis systems.
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Figure 6: Confusion matrix. (a) SVM. (b) TCA-SVM. (c) EEMD-SVM. (d) EEMD-TCA-SVM.

Table 5: Accuracy on the different source-target pairs.

SVM RF TCA-SVM TCA-RF EEMD-SVM EEMD-RF EEMD-TCA-SVM EEMD-TCA-RF
A-B 0.2581 0.1063 0.2709 0.3307 0.6212 0.4765 0.6914 0.5538
A-C 0.1745 0.1021 0.2060 0.2752 0.6595 0.5659 0.6529 0.6009
A-D 0.2340 0.1148 0.2667 0.2051 0.4808 0.5659 0.5316 0.5128
B-A 0.1106 0.1191 0.2342 0.2965 0.5447 0.4936 0.5529 0.5529
B-C 0.1277 0.1148 0.2222 0.2803 0.7446 0.7659 0.8283 0.7687
B-D 0.0809 0.1106 0.2410 0.2189 0.5361 0.3787 0.5923 0.4102
C-A 0.1064 0.0936 0.2897 0.2521 0.5532 0.5148 0.5274 0.5778
C-B 0.2341 0.1021 0.2863 0.2598 0.8851 0.7829 0.8847 0.7821
C-D 0.3362 0.1063 0.3471 0.3265 0.4597 0.3787 0.6521 0.5231
D-A 0.1957 0.1277 0.2623 0.2641 0.5974 0.5106 0.5728 0.4905
D-B 0.1574 0.1234 0.2940 0.2623 0.4978 0.4212 0.7103 0.6102
D-C 0.1914 0.1064 0.2623 0.2923 0.5829 0.5148 0.6128 0.5641
Average 0.1839 0.1106 0.2652 0.2719 0.5969 0.5307 0.6507 0.5789
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4.2.3. ROC and AUC. Although the proportion of the
correct classified samples to the whole testing set can be
illustrated by the classification accuracy and confusion
matrix, it neglects the relationship between false positive rate
(the probability of negative samples wrongly categorized as
positive) and true positive rate (the probability of positive
samples correctly categorized as negative). +erefore, we
further use Receiver Operating Characteristic (ROC) [35]
curve and Area Under Curve (AUC) value [36] to evaluate
the classification performance. ROC is the way to directly
show the relations of FPR (False Positive Rate) and TPR
(True Positive Rate). As shown in Figure 7, FPR and TPR are
horizontal and vertical axis, respectively. AUC denotes the
area under the ROC curve, which provides another way to
evaluate the performance of the method. If the method is
ideal, its AUC value equals 1. +e AUC value of a random
model equals 0.5.

Figure 7 illustrates the ROC curves and AUC values of
SVM, TCA-SVM, EEMD-SVM, and EEMD-TCA-SVM. By
the comparison, we can see that TCA can improve the
unsupervised fault diagnosis performance. +ere are 10
categories in the fault diagnosis problem including healthy
condition. All the ten categories are divided into two parts
which are healthy and fault. As shown in Figure 7, the curves
with different colors correspond to EEMD-TCA-SVM,
EEMD-SVM, TCA-SVM, and SVM, respectively.
EEMD-TCA-SVM obtains the best ROC curve and the
highest AUC value among the four methods while SVM gets
the worst ROC curve and AUC value, which are stochastic
results. EEMD-SVM gets better performance than SVM and
TCA-SVM, which further demonstrates that the feature
quality seriously impacts the classification performance.
Relatively, the impact of TCA is not so obvious from the
comparison between EEMD-TCA-SVM and EEMD-SVM.
+e AUC values of the two methods are almost the same. In
addition, the distributions of the extracted features by
EEMD may have a stronger similarity than the distributions
of the original vibration signals, which may be one of the
reasons for the higher AUC value of EEMD-SVM.

Based on the above results, the feature selection is shown
as a very important function in fault diagnosis. Traditional
machine learning approaches cannot automatically mine the
hidden information from sensor signals. Transfer learning
can facilitate the unsupervised fault diagnosis and get
promising classification results. +e proposed transfer fault
diagnosis system still has a bigger promotion space in the
future. +e ROC curve of the data after data preprocessing is
obviously above the ROC curve without data preprocessing,
and its AUC value is significantly increased compared with
the value without data preprocessing. +is shows that the
performance of the model has been greatly improved after
our data preprocessing; the ROC curve of the data processed
by TCA is always at the upper end of themodel without TCA
processing, and the AUC value is also large. It shows that

TCA can improve the performance of the unsupervised
model.

5. Conclusion

In this paper, we construct a transferable intelligent fault
diagnosis system, which can transfer the statistical fea-
tures across domains. In the proposed system, the original
vibration signals are decomposed by the EEMD algorithm
at first. And then, 81 statistical features are calculated to be
the initial feature set, which are transferred by TCA to
further obtain the sharable features between the different
distributions. By minimizing the marginal distributions of
the source and target domain, TCA does not need any
extra knowledge to assist the transfer. +en, SVM is taken
as the classifier to identify different categories of faults.
+e experiments on the bearing data set of CWRU show
that the proposed system has good accuracy, confusion
matrix, ROC curve, and AUC value among the four
methods. From the specific results, EEMD can extract the
hidden information from the signal, and TCA can cal-
culate the common feature space of different domains for
fault diagnosis.

Data Availability

+e bearing data used to support the findings of this study
have been deposited in the Bearing Data Center of Case
Western Reserve University repository (https://csegroups.
case.edu/bearingdatacenter/home).
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