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Accurate prediction of travellers’ day-to-day departure time and route choice is critical in advanced traffic management systems.
*ere have been several related works about route choice with the assumption that the departure time for individual travellers is
known beforehand. With real-time traffic state information provided by navigation systems and previous historical experience,
travellers will dynamically update their departure time, which is neglected in existing works. In this study, we aim to describe
travellers’ spatial-temporary choice behaviour taking navigation information into account and propose a bounded-rational
day-to-day dynamic learning and adjustment model. *e newmodel contains three steps. First, the real-time navigation guidance
on each discrete day is obtained, and the self-learned experience of travellers’ choices with navigation information is presented;
then, the day-to-day revision process of the choices is derived to maximize departure and route choice prospect; next, by
aggregating each individual’s behaviour and calculating route choice probability, a bounded-rational continuous day-to-day
dynamic model is provided. Numerical experiments suggest that the proposed model converges to a spatial-temporal oscillating
equilibrium not a fixed-point stable status, and the final equilibrium trend is different from classical user equilibrium.*e findings
of the study are helpful to improve the prediction accuracy of traffic state in urban street networks.

1. Introduction

Forecasting the spatial-temporal distribution of traffic flow
during a certain period is crucial in intelligent transportation
systems (ITS). For example, authorities can optimize traffic
organization schemes and signal timing plans based on
forecasting results. *ere has been a large number of related
works about traffic flow forecasting, including short-term
and daily traffic flow forecasting by mining changing regular
patterns from historical data. *ese methods just extract the
representation of these patterns but do not explore the root
causes of changes.

For a given traffic demand, the spatial-temporal distri-
bution of vehicles across the whole network is the result of
traffic flow assignment. However, traditional flow assign-
ment models are static or dynamic network flow equilibria,
which focus on final states while overlooking long oscillation
processes present in the flow. *us, a precise description of

the traffic flow assignment dynamic process is crucial to
determine the spatial-temporal distribution of vehicles.

User equilibria (UE) or stochastic user equilibria (SUE)
are long-term dominant assignment models that formulate a
final static state under the hypothesis that each traveller is
perfectly rational and has access to real-time information
about the whole network [1, 2]. However, it is obvious that
this hypothesis is too idealistic to correspond to reality and
some deficiencies exist. For example, navigation apps, traffic
radio, self-experience, or friends’ shared data are familiar
sources regarding travel time, queue length, or congestion,
but access to each link’s complete real-time information is
not always available. Hence, UE or SUE’s preconditions are
generally not guaranteed. In addition, the overwhelming
majority shows reliance on past experience and refuses to
make changes unless an obvious better choice appears, and
the difference is beyond users’ tolerance. In other words,
users show bounded rationality [3, 4]. *ese issues are
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evident in daily traffic flow assignment models; cyclical or
concussive day-to-day equilibria are possible over relatively
long periods. Furthermore, precise forecasting is extremely
difficult due to individuals’ day-to-day dynamic adjustments
to comprehensive influence factors. For example, users re-
vise their departure time and route day by day based on self-
experience and real-time information. *is indicates that
describing the spatial-temporal daily flow variation and
finding a stable equilibrium is very important. However, the
equilibrium models only focus on the final conditions, ig-
noring the day-to-day adjusting process. *erefore, mod-
elling day-to-day dynamic behaviour incorporating choice
psychology and information from various sources is the
foundation for forecasting spatial-temporal flow distribution
accurately.

Research on day-to-day dynamic assignment models has
a long history, which dates back to the contributions of
[5–9]. *ese works suggest that day-to-day dynamics are a
question of how users adjust their route choice to reach a
stable state and propose mathematical models to describe
the process. *en, this research area has seen some further
development, and some key themes include (1) establishing
equilibrium models similar to daily models: adjustment
process, dynamic user equilibria, or bounded rational user
equilibria; (2) equilibrium and stability analysis: if the day-
to-day model converges or not, how long the oscillations last
and what is the final stable state? *ere are different works
presented in literature which focus on day-to-day traffic
assignment models and solutions’ theoretical properties. A
comprehensive review and presentation of these works is
presented in [10].

A precise description of travellers’ day-to-day adjust-
ment behaviour under realistic network environments is
foremost in constructing day-to-day dynamic models.
However, at the present stage, it is not known which factors
are involved in the adjustment process and how to combine
factors to form a unified framework. Furthermore, criteria
are expected to differ among individuals. Hence, attention
should be paid to the state assumptions on users’ behaviour
and clarify these influence factors. *ree important points of
concerns can be considered:

(1) Information sources, data collection methods, and
users’ information processing modes: users seek
other path options whose utility is better than the
experienced one to revise their choice. Information
about route travel time, flow density, and so on of a
certain alternative should be accessible. *ere are
many devices and sources used for collecting real-
time or forecasted travel information.*emost well-
known source is ATIS, which provides travel cost
and has a great impact on day-to-day flow evolution.
An extensive attention has been paid to establish the
mathematical model to describe the users’ learning
method and flow evolution process with the as-
sumption that users perceive each route’s historical
travel time [11–14]. Furthermore, the forecasted
information is another focus with the assumption
that ATIS provides estimated travel time in the

coming day. *e literature in this field includes the
discussion of how the information accuracy and
ATIS penetration influence the travellers’ learning
process and models’ stability [15–17]. In our work,
instead of investigating the forecast accuracy, we
concentrate on day-to-day and within-day flow
evolution models to explicitly explain the charac-
teristics with bounded rationality. *erefore, the
absolute historical information is assumed as users’
perceived travel time and the learning process.
However, it is notable that the historical information
significantly influences the predeparture choice.
With the popularity of smart phones and 4G/5G
networks, navigation applications can provide
routes’ real-time enroute travel costs and a portion of
travellers abandon the pretrip choice. In these re-
spects, several studies have shown that traffic sensors
and mobile navigation systems will fundamentally
change the mode and type of traffic information
collection, allowing GPS-enabled mobile devices to
be utilized in estimating traffic states [18–20].
Contrary to the historical data, the real-time enroute
information has no impact on the departure time
within-day, users’ self-experience learning, and
perceived information. In general, users choose a
preferred pretrip route and departure time with the
utilization of historical information and switch to the
shorter routes recommended by the navigation
system. For the above discussion, navigation appli-
cation and historical experience is the focus of the
present study, which aims to describe information
collection behaviour and day-to-day adjustment
models.

(2) Users’ risk attitude on uncertainties and alternatives:
in UE- or SUE-based methods, each traveller is as-
sumed to be perfectly rational. In other words, users
always choose the route which has the greatest utility.
In reality, however, for day-to-day behaviour revi-
sion, the majority of users show bounded rationality
and relies on paths which are frequently adopted
unless the time cost or congestion is beyond indi-
viduals’ tolerance, and a distinctly improved alter-
native can obtained. Many related studies have also
suggested that travellers could take any route whose
total travel cost is within an “indifference band” of
the optimal path cost [21, 22]. *erefore, users show
bounded rational behaviour when responding to
reality.

(3) How do travellers coordinate departure time and
route choice? Do the two processes need to satisfy the
same criteria? Do the users make these choices si-
multaneously? Many researchers have dedicated
themselves to these topics, and a majority of note-
worthy studies and important conclusions can be
found in [23–26]. However, in various models, time
choice is just regarded as an element of the routes’
utility, integrated in the route choice model but not
forming an independent adjustment model. In this
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study, departure time is described as an independent
course to maximize different utility.

From the above three points, the purpose of the present
study is to propose a bounded-rational day-to-day dynamic
model which explicitly combines departure time adjustment
and route choice based on the historical and real-time in-
formation. *e formulated model will illustrate the process
of individual information collection, experience utilization,
choice revision, and the spatial-temporal distribution of
vehicles on each day. It also enables us to comprehend how
the travellers’ tolerance, bounded rationality, and infor-
mation reliance affect the convergence and final stability.

*e rest of this study is structured as follows. In Section
2, we explain how individuals collect information and in-
dividuals’ choice propensity in day-to-day behaviour. In
Section 3, we formulate a microscopic model to illustrate
individuals’ information processing modes and day-to-day
revision regulation. In Section 4, the microscopic individual
model is transformed into an aggregated one, which enables
us to observe how the flow is distributed spatially and
temporally. In Section 5, the model’s theoretical properties
are discussed. In Section 6, we propose a numerical example
for comparative experiments to validate the model, explicitly
presenting the flow distribution feature, and examine how
navigation information affects convergence. In Section 7, we
summarize the study and present some directions for future
research.

2. Microscopic Analysis of Day-To-Day
Behaviour Adjustment

In this section, we present an elaborate description for users’
day-to-day behaviour, which incorporates properties of
individuals’ information collection, the method of alterna-
tive routes’ travel time determination, and principles of daily
departure time and route adjustment over the system’s
evolution. *e model proposed in this study aims to rep-
resent a dynamic system which consists of commuters who
choose an alternative from an option set day-by-day. *e
formulation of the model and the details of the system are
determined by the following assumptions:

(1) *e system evolves as the days pass. *e proposed
day-to-day model is coupled with a within-day
model which calculates travel time for each link and
describes users’ adjustment behaviour when they
acquire information. An integer d is adopted to
describe the date of the system. For dynamic features
of the within-day model, the peak hour for com-
muters is divided into identical segments denoted by
k (k � 1, 2, . . . , K). *erefore, the dynamics of real-
time flow are approximated using a quasidynamic
model by minimizing each segment’s duration.

(2) Utility theory is traditionally applied in travel be-
haviour modelling. However, for the consideration
of the network’s uncertainties and users’ risk pro-
pensity, stochastic utility value does not encompass

individuals’ properties and has nonnegligible
shortcomings for describing system randomness.
Cumulative prospect theory [27, 28] is based on the
travel time’s probability density function and dis-
tribution function. *erefore, it has the advantage of
describing the users’ risk propensity when they
encounter the system’s randomness.

(3) Travellers collect information from navigation ap-
plications and past travel memory. To conform to
reality, the first two options that have shorter travel
times are recommended to users who compare each
alternative’s cost and select the one with the greatest
prospective value.

(4) Principles of departure time and route choice: for
users, the departure time and budget planning based
on the need for on-time arrival to their destination.
In fact, travel time is a random variable obeying some
kinds of probability distribution and on-time arrival
is, strictly speaking, impossible. For commuters,
arriving late is not allowed, while arriving too early is
not cost-effective; therefore, arriving within a fixed
time window around the work start time is satis-
factory and tantamount to on-time arrival. Because
of the system’s statistics, the only feasible goal is to
increase the on-time probability in the time window.
Accompanying the first step that determines the
departure time, route choice based on navigation
guidance is followed closely to minimize actual travel
time.

(5) *e explicit process of dynamic day-to-day adjust-
ment is assumed to comply with the following hy-
pothesis; first of all, individuals can measure their
travel time at the end of each day and update the
perceived travel time day by day via limited memory;
second, users choose a path with a preselected budget
time; in other words, users determine their departure
intervals to avoid later penalties, then choose the
route to pursue the largest prospect value. Finally,
with real-time navigation information during their
departure interval, a portion of users will convert to
the recommended paths from their preselected ones.

We focus on the design of the mathematical model and
the theoretical properties. *e contribution and improve-
ments of this work are summarized.

(1) When formulating the dynamic model, the “dy-
namic” includes two aspects, i.e., day-to-day evo-
lution and the discrete departure time fluctuation
within day. In this work, various decision targets and
the interrelationship of the two dynamics, which are
overlooked in previous literature, are discussed
separately.

(2) *e revision flow is proportional to the original flow
and bounded limit, instead of UE or SUE equilib-
rium assignment. *is evolution process generates
some distinctive model and solution characters.
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3. Individuals’ Microscopic Choice Model

3.1. Self-Learning Model. *e road network is denoted as
G(N, A), where N is the set of nodes and A is the set of links.
W represents the set of origin-destination (OD) pairs; Rw is
the routes’ set for OD pair w ∈W, and we denote Nw as the
total number of paths. Free travel time, travel time, link flow,
and the capacity of link aεA is described by the variables t0a,
ta, xa, and ca, respectively. *e route r denotes a set of links
a1, a2, . . ., route travel time tr � ∀aδa,r × ta, if aεr, δa,r � 1;
otherwise, δa,r � 0.

*e perceived travel time Td
k,r of route r selected by users

at the current day d and interval k is stored after finishing the
journey. In correspondence with the Ebbinghaus forgetting
curve, the memory’s influence of experienced travel time is
decreasing as the system evolves [29, 30]. Meanwhile, a
threshold of L days is also set for memory storage. In other
words, only experience within l days, where d − L≤ l< d, is
taken into account for the perceived travel time at the
current day d. A decreasing linear function betweenmemory
impact degree yd−l and the number of elapsed days l is
defined as yd−l � F(l). *erefore, the user’s perceived travel
time Td+1

k,r for route r can be expressed as follows:

T
d+1
k,r �


L−1
l�0 T

d−l
k,r × yd−l 


L−1
l�0 yd−l

, ∀r ∈ Rw. (1)

*erefore, if d − L> l, the past travel memory on day l is
considered to have faded and has no impact on Td+1

k,r .
Some researchers have stated that the route travel time

can be regarded as a stochastic variable and can be ap-
proximated using a normal distribution according to law of
large numbers. *erefore, denoting the route travel time at
day d and interval k as variable td

k,r, this assumption can be
written as

t
d
k,r ∼ N τd

k,r, σ
d
k,r . (2)

In equation (2), τd
k,r, σ

d
k,r are the mean and variance,

respectively. In reality, the user’s experienced time cost on
route r as days pass is regarded as multiple samples of the
random travel time. Combing equation (1) with (2), the
updating of mean τd

k,r and variance σ
d
k,r can be formulated as

τd+1
k,r �

τd
k,r × d + T

d
k,r 

(d + 1)
,

σd+1
k,r 

2
�

σd
k,r 

2
× d + T

d
k,r − τd

k,r 
2

 

(d + 1)
,

(3)

where for the initial value, i.e., when d � 1, the mean and
variance values taken are routes’ free travel time.

In particular, the perceived travel time and not the real
travel time is taken as a sample datum. For each user, the
departure time and route choice simultaneously form a
self-decided course of action that grants users the authority
and responsibility to make their own decisions and im-
plement them. So, a perceived travel time that takes into

account the user’s individual preference and propensity is
more accurate.

3.2. MicroscopicModel. Due to travel time variance, a lower
cost, minimal uncertainty, and a higher probability of on-
time arrival are every user’s fundamental aim for day-to-day
travel behaviour. *e proposed microscopic model consists
of each user’s decision process divided into three stages.

3.2.1. Departure Time Selection. For simplicity, each user’s
work starting time and selected departure time on day d + 1
are denoted as Td+1

A , Td+1
S � k × Δt, respectively, where k is

the corresponding time slot number and Δt is the duration
of each slot. *e reserved travel time for the whole journey is
written as btd+1

k � Td+1
A − Td+1

S (∀r ∈ Rw). Let tea, tla be ac-
ceptable early and late arrival times; in other words, a travel
time td+1

k,r that lies in the closed interval [btd+1
k − tea, bt

d+1
k +

tla] at departure slot k on route r is deemed as arriving
punctually. However, owing to the stochastic processes of
the system, uncertainties also exist in punctual arrival, so the
arrival probability at slot k on day d can be expressed as

Z1(k, d + 1) � P btd+1
k − tea ≤ t

d+1
k,r ≤ bt

d+1
k + tla 

� Φ
btd+1

k + tla − τd+1
k

σd+1
k

⎛⎝ ⎞⎠

−Φ
btd+1

k + tle − τd+1
k

σd+1
k

⎛⎝ ⎞⎠,

(4)

τd+1
k �

∀rτ
d+1
k,r

Nw

,

σd+1
k �

∀rσ
d+1
k,r

Nw

.

(5)

In equation (4), Φ(∗) is the standard normal distribu-
tion function. Equation (4) shows that the mean and vari-
ance of the travel time at departure slot k have an average
value for all paths. When users select the departure time
before route choice, they will evaluate all paths prospects
comprehensively.

Apart from pursuing the highest probability of punctual
arrival, a more significant issue is to avoid “being late,”
which is assigned a high penalty. Due to the stochastic
process, users pursue the smallest probability of being late:

Z2(k, d + 1) � P t
d+1
k,r ≥ bt

d+1
k + tla 

� 1 −Φ
btd+1

k + tla − τd+1
k

σd+1
k

⎛⎝ ⎞⎠.

(6)

Furthermore, equations (4) and (6) assume that punctual
arrival is set within a closed interval, but in reality, if a
smaller delay time tl is strictly disallowed, then the scheduled
time td+1

k,r can be shortened to btd+1
k,r .
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3.2.2. Path Choice Based on Experienced Information.
For the consideration of the network’s uncertainties and the
users’ risk propensity, the cumulative prospect theory is
applied to describe users’ route choice behaviour [28]. *e
three reference points are set as the budget time

btd+1
k � Td+1

A − k × Δt, and the earliest and latest time per-
mitted btd+1

k − tea, bt
d+1
k + tla separately. *e value function

v(Td+1
k,r ) can be written as a piecewise function:

v T
d+1
k,r  �

−λ1 btd+1
k − tea − T

d+1
k,r 

α1
; T

d+1
k,r ∈ 0, btd+1

k − tea ,

−λ2 T
d+1
k,r − btd+1

k − tea  
α2

; T
d+1
k,r ∈ btd+1

k − tea, bt
d+1
k ,

−λ3 btd+1
k + tla − T

d+1
k,r 

α3
; T

d+1
k,r ∈ btd+1

k , btd+1
k + tla ,

−λ4 T
d+1
k,r − btd+1

k + tl  
α4

; T
d+1
k,r ∈ btd+1

k + tla, +∞ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

*e weighting function is

π Pi(  � e
− ln Pi( )

c
[ ]; i � 1, 2, 3, 4. (8)

*e path prospect value is

PSd+1
k,r � 

i�1,...,4
v T

d+1
k,r π Pi( . (9)

In the above equations, αi, λi(i � 1, 2, 3, 4) are the pa-
rameters expressing users’ various preferences; Pi is the
corresponding probability of Td+1

k,r within each interval.
From equation (7), we can see that v(Td+1

k,r ) values are
positive in interval (btd+1

k − tea, bt
d+1
k + tla) but negative in

others.

3.2.3. Influence of Navigation Applications. When users
select their departure slot k∗ through the procedure
explained in (1), simultaneously, the route r∗ with the largest
prospect in assumption (2) is determined in mind. We can
call route “r∗” the “preselected route.” *e choice before
departure is determined by the perceived travel time,
punctual reliability, and risk avoidance, which are the most
important issues considered.*erefore, the departure time is
selected based on experience information, and a “preselected
route” is determined along with it.

However, when users start a journey at time slot k, the
real-time information from navigation will be the actual
time cost in a certain degree ,which is different from the
assumption commonly encountered in the literature, as
navigation information does not cover all the paths. *e
recommended best route will be an important influence for
route changing. *e reliance on the “preselected route,”
namely, experience inertia, and the performance of rec-
ommended alternatives are also been taken into consider-
ation. *e details and decision stages of the process are as
follows:

(1) If the “preselected route” is suffering unexpected
congestion and its travel time exceeds the reserved
time, i.e., td+1

k,r ≥ bt
d+1
k , users will change their initial

plan to avoid being late, and the alternative which
has the highest utility will be chosen.

(2) If the “preselected route” performs normally, but
based on real-time information, a better alternative
r′ exists, or the difference td+1

k,r ≥ bt
d+1
k,r′ is larger than a

fixed tolerance describing the experience inertia, and
users will adjust their decision. Otherwise, users will
maintain their original route.

4. Deriving the Aggregated Model

4.1. Aggregated Model for Preselection. As discussed in 3.2,
on day (d + 1), users will select a route r and a departure
slot k to ensure achievement of the double objective
described by equations (4) and (6). For this biobjective
problem, a simple method is presented, which adds a
weighting coefficient to transform it into a single ob-
jective problem.

Z(k, d) � Z1(k, d) − θZ2(k, d). (10)

Since users have a lower tolerance for lateness, in
equation (10), θ> 1. Certainly, a more accurate and com-
plicated solution is possible to define the relationship be-
tween punctual arrival and lateness avoidance. Some cases
where Z(k, d) could have a negative value have no influence
on the flow revision ratio because the absolute value of
Z(k, d) is the core element.

To derive the aggregated stochastic model, we need to
make an explicit description of how the route flow
Xd+1

k,r (r ∈ Rw) or link flow Xd+1
k,a (a ∈ A) change over con-

secutive days. In Section 3, we explained the individual’s
behaviour, but for a real network, the common phenomenon
is that two or more users can simultaneously revise their
choice on the same day or the same departure slot. In the
aggregated model, the adjustment process discussed in
Section 3 is not a certain result because a personal revision
must take others’ decisions into consideration, which will
result in network flow fluctuation. *erefore, for a group of
users, route and departure time choice revision occur at a
certain probability.

According to the transformation model proposed by
Smith [31], which assumed users are bounded rational and
rely on experience, an aggregate dynamic transformation
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model considering route and departure time revision si-
multaneously is used to describe spatial and temporal flow.

4.1.1. Flow Revision between Departure Slot. First, following
Smith’s approach to define the revised flow before departure
using the alternatives k1, k2 ∈ K/k, the flow Xd+1

k on slot k of
day (d + 1) can be written as

X
d+1
k � X

d
k + 
∀k1∈(K/k)

X
d
k1⟶ k X

d
k1

  − 
∀k2∈(K/k)

X
d
k2⟶ k X

d
k .

(11)

*e aggregate inflow from slot k1 is

X
d
k1⟶ k X

d
k1

  � δ1 ·
max Z(k, d) − Z k1, d(  − η1, 0 

k − k1(  · Δt



· X

d
k1

.

(12)

*e aggregate outflow to slot k2 is

X
d
k2⟶ k X

d
k  � δ1 ·

max Z k2, d(  − Z(k, d) − η1, 0 

k − k2(  · Δt



· X

d
k,

X
d
k � 
∀r∈Rw

X
d
k,r,

(13)

where Xd
k,r represents the flow on path r at interval k on day

d. *e above equations can be explained as follows: the
revision coefficient is denoted as δ1 to describe the proba-
bility of adjustment; max Z(k, d) − Z(k1, d) − η1, 0  defines
that the conversion probability is in positive proportion to

the difference between Z(k, d) − Z(k1, d) and the punctu-
ality threshold η1; otherwise, | − k · Δt| expresses an inverse
relationship because of the users’ resistance to earlier
departure.

4.1.2. Flow Revision between Routes. *e constraints of flow
conservation are

X
d+1
k � 

∀r∈Rw

X
d+1
k,r . (14)

*e flow revision between routes is therefore

X
d+1
k,r � X

d
k,r + 
∀r1∈Rw/r

X
d
k,r1⟶ r − 

∀r2∈Rw/r
X

d
k,r⟶ r2

. (15)

*e aggregate inflow from route r1 now becomes

X
d
k,r1⟶ r X

d
k,r1

  � δ2 × max PSd
k,r1

− PSd
k,r − η2, 0  × X

d
k,r1

,

(16)

while the aggregate outflow to route r2 is

X
d
k,r⟶ r2

X
d
k,r  � δ2 × max PSd

k,r2
− PSd

k,r − η2, 0  × X
d
k,r.

(17)

In the above equations, we denote the route prospect
threshold as η2, and δ2 is the route revision coefficient. To
deduce the vector forms of the above model, equations
(11)∼(17) can be rewritten as follows

Revision flows between departure slots

S1 X
d
time  � 

∀k1 ,k2

δ1 ×
max Z(k, d) − Z k1, d(  − η1, 0 

k − k1(  · Δt



× X

d
time × Ψk1 ,k2

. (18)

Vector form for all departure slots is

X
d+1
time � X

d
time + S1 X

d
time . (19)

Revision flows between routes at slot k

S2 X
d
k,route  � 

∀r1 ,r2

δ2 × max PSd
k,r1

− PSd
k,r2

− η2, 0   × X
d
k,route × Ψr1 ,r2

. (20)

Vector form at all routes is

X
d+1
k,route � X

d
k,route + S2 X

d
k,route , (21)

where, Ψk1 ,k2
is called the indicating vector, in which row k1

equals −1, row k2 values are equal to 1, and other rows are set
zero. Ψr1 ,r2

is defined in a similar manner to Ψk1 ,k2
.

4.2. Rerouting with Navigation Guidance. As in the above
description, users will change their initial choice with
navigation guidance assistance. When they start their

journey at a preselected departure time, users compare their
perceived route with the two recommended alternatives; if
some unexpected enroute congestion is present or a shorter
path is found, some revision is necessary and available.
Noticeably, different from taking the prospect value for
criteria for preselection, rerouting choice will compare real-
time travel cost at departure slot for the preselected and
recommended paths. *is setting can be explained as fol-
lows: for travel plans before departure, choice is based on the
perceived cost and experience, so it is obvious that users
examine their perceived information’s variability and
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randomness. However, when starting their journey, users
show complete trust on the real-time information of pre-
selected and the navigation system-recommended paths.

In the same manner, the route conversion probability
and flow should satisfy the following constraints and
conditions:


∀r∈Rw

X
d+1
k,r � 

∀r∈Rw

X
d+1
k,r , (22)

X
d+1
k,r � X

d+1
k,r + 
∀r1∈Rw/r

X
d+1
k,r1⟶ r − 

∀r2∈Rw/r
X

d+1
k,r⟶ r2

, (23)

X
d+1
k,r′ ⟶ r �

δ3 × max t
d+1
k,r′ − t

d+1
k,r − η3, 0  × X

d+1
k,r′ ; bt

d+1
k > t

d+1
k,r′ ,

δ3 × max t
d+1
k,r′ − t

d+1
k,r , 0  × X

d+1
k,r′ ; bt

d+1
k ≤ t

d+1
k,r′ .

⎧⎪⎪⎨

⎪⎪⎩
(24)

Equation (24) is based on the adjustment rules men-
tioned above. In these equations, Xd+1

k,r is the real-time flow
on route r at slot k, Xd+1

k,r′ ⟶ r
denotes the allowed outflow

revision from route r′ to r, and the real-time travel time is
expressed as td+1

k,r . δ3 and η3 are the parameters used to
describe users’ risk propensity.

5. Theoretical Properties of theProposedModel

In this section, we discuss the theoretical properties of the
equilibrium’s stability. *e existence and the stability of the
equilibrium in the day-to-day and within-day dynamic
processes are also analyzed.

Now, we rewrite (18) and (21) as follows:

X
d+1
k � X

d
k + F1 δ1, η1,Ψk1 ,k2

, T
d
k,r  × X

d
k. (25)

In (4) and (6), the punctual arrival probability is de-
pendent on Td

k,r. *erefore, F1(δ1, η1,Ψk1 ,k2
, Td

k,r) denotes a
function with respect to parameters δ1, η1,Ψk1 ,k2

, Td
k,r.

X
d+1
k,r � X

d
k,r + F2 δ2, η2,Ψr1 ,r2

, PSd
k,r  × X

d
k. (26)

Considering (7)–(9), we notice PSd
k,r w.r.t Td

k,r, Td
k,r w.r.t

Xd+1
k with the flow loading model. So, (26) can be rewritten

as

X
d+1
k,r � X

d
k,r + F2′ δ1, δ2, η1, η2, λj,Ψk1 ,k2

,Ψr1 ,r2
, T

d
k,r  × X

d
k, j � 1, 2, 3, 4. (27)

Theorem 1 (Inexistence). Ae existence of the equilibrium
solution formulated by (25) and (27) is not ensured due to the
theoretical properties.

Proof. *e functions F1 and F2′ forming the fixed-point
equations in (25) and (27) are not ensured to be continuous
due to the piecewise function in (7) and the indication
vectors Ψk1 ,k2

andΨr1 ,r2
. So, the domain set Ω1 is not con-

tinuous and convex. Since the basic conditions of Brouwer’s
theorem cannot be applied [32], the fixed-point solution
does not exist. Similarly, in domain setΩ2 of the models (23)
and (25) with enroute information, the inexistence of fixed
equilibrium is concluded.

Theorem 2 (Oscillation equilibrium). Corresponding to the
inexistence of the fixed-point equilibrium, a periodical os-
cillation state in a limited boundary called oscillation equi-
librium can be found for the dynamic learning model.

Proof. First, the domain setΩ1 of the fixed-point function is
the set of feasible link-departure time-flow vectors, identified
by demand and travel time conservation. Obviously, the

solution is positive, limited, and discrete. Second, for the
dynamic process, if PSd

k,ri
− PSd

k,rj
(j≠ i)> η2 in a solution

Xd
k,r, the next day, Xd+1

k,ri
increases by a certain range con-

strained to other parameters. Conversely, Xd+1
k,ri

decreases.
*ird, due to one-to-one mapping relationship between Xd

k,r

and PSd
k,r, Zd

k,r, if two identical solutions Xd
k,r � Xd′

k,r(∀r, k),
we deduce Xd+1

k,r � Xd′+1
k,r . In other words, the periodic os-

cillation appears at the point of identical solutions. Fur-
thermore, the limited and discrete domain set guarantees the
existence of two equal solutions. *erefore, it verified pe-
riodical oscillation after a disordered learning course from
the initial state.

Corollary 1. For the impact of real-time route navigation,
the solution oscillation range in (23) and (24) is larger than
the case which is considered without enroute information.

Proof. In models (23) and (24), a real-time flow adjustment
is indicated to occur following the route preselection before
departure. We denote solutions X

d1 ,max
k,r εΩ1, X

d2 ,min
k,r εΩ1,

X
d3 ,max
k,r εΩ2, X

d4 ,min
k,r εΩ2 as the maximum and the minimum
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values in the domain sets Ω1 and Ω2. According to the
models (16) and (17), ∃PSd1′

k,ri
< PSd1

k,r(ri ≠ r) at point Xmax
k,r ;

then, on the basis of (7), we conclude ∃td1′
k,rj
> t

d1
k,r. In model

(23), it means a portion of travels will choose route r with the

real-time information and results in X
d1 ,max
k,r ≤X

d3 ,max
k,r .

Similarly, at point X
d2 ,min
k,r , ∃PSd2′

k,ri
> PSd2

k,r, ∃t
d2′
k,rj
< t

d2
k,r leads to

X
d1 ,min
k,r ≥X

d4 ,min
k,r .

Corollary 2. Ae solution oscillation range is positive related
to the parameters η1, η2, δ1, δ2.

Proof. Because larger η1 and η2 correspond to bigger gap of
path prospect and punctual probability, we conclude that
(Xmax

k,r − Xmin
k,r )∝ (PSmax

k,r − PSmin
k,r )∝ (Zmax

k,r − Zmin
k,r )∝ η1, η2.

*e oscillation range positively correlates to η1 and η2. For a
solution Xd

k,r, we denote Xd+1
k,r (δ1, δ2) as flow on day d + 1

with parameters δ1, δ2. If Xd+1
k,r >Xd

k,r, larger δ1, δ2 guarantees
more revision flow. Conversely, if Xd+1

k,r <Xd
k,r, larger δ1, δ2

leads to less revision flow. In other words, larger Xmax
k,r and

smaller Xmin
k,r could be ensured by larger δ1, δ2.*erefore, the

solution oscillation range positively correlates to δ1, δ2.

6. Experimental Results and Discussion

*e proposed model presents a few innovative points which
differentiate our approach from previous studies. *is
problem has two-time axes: the axis of within-day time
(denoted by interval k) and the axis of day-to-day time
(denoted by d). In the within-day model, the time horizon is
initially discretized into a set of equal-length time intervals
denoted as k � 1, 2, . . . , K. For each time step, the rerouting
model calculates the final flow on each route, and the BPR
function ta � t0a × [1 + 0.15 × (xa/ca)4] as a flow-loading
model is used to evaluate real-time travel time.*e day-to-day
model presented above is a flow assignment course along
days, which outputs spatial-temporary flow assignment be-
fore departure. *erefore, there is a cyclic iteration rela-
tionship between the within-day and day-to-day models.

6.1. Numerical Example. In this section, some experiments
are conducted to validate the model on a road network
consisting of three paths between a unique origin and a
destination. *e departure time zone is set as (7 : 30–9 : 00)
and discretized into 9 intervals of equal duration, where each
interval is 10min due to precision deficiency of travellers’
habit on time choice and to avoid excessively long com-
putational times. A total of 1000 vehicles in each departure
slot are travelling between this origin-destination pair ev-
eryday during the morning peak hours. Drivers select their
departure time and route at the origin so as to maximize
their utility. On the first day, for the initial flow of this model,
we simply set the free travel time a∈rt

0
a as t1k,r and τ

1
k,r, while

σ1k,r � φ · t1k,r, and coefficient φ � 0.2 can be estimated as the
real travel time’s variance range, acquired from statistical
information of paths in the same region. *e stochastic
choice parameters for departure time and route choice are

denoted as θP � θT � 0.3 for the first day. Unless otherwise
specified, the values of key parameters are those reported in
Table 1.

6.2. Spatial-TemporaryFlow. *epurpose of this experiment
was to validate the dynamic route choice model and in-
vestigate the effects of navigation on spatial-temporary flow
through a comparison of navigation-considering and non-
considering models which involve only decisions before
departure and eliminates real-time rerouting options. *e
time horizon was set as 200 days, and the routes’ spatial-
temporary flow at each slot in within-day along the 200 days
demonstrates the day-to-day dynamic evolution and the
final equilibrium states.

Figure 1 is composed of 6 plots which show the three
paths’ flows produced in this instance. Two plots in the same
row show the spatial-temporary flow difference on two same
routes and navigation performance obtained through dif-
ferent model settings. Meanwhile, plots in the same column
represent results of all three paths for a certain mode. For
convenience, we call the model without navigation as cir-
cumstance I and the other as circumstance II.

*e six plots suggest some common and specific phe-
nomena for the two models: (1) all flow curves converge to
an equilibrium state after a period of oscillation. Unfortu-
nately, due to the three-dimensional complexity, the path
flow datum at each interval cannot be checked clearly.
However, the oscillation process and final stability which are
more important can be observed. However, it is worth
noting that the equilibrium is somewhat different in each
case. In circumstance I, the curve reaches an approximate
fixed state at d� 150, route flow at each departure time slot
approaches to static, and oscillation range is smaller than 20
vehicles. In contrast, in circumstance II, we observe an
obvious oscillation equilibrium with a cycle period of 5 days
after d� 27. *e phenomenon implies that travellers show
more utility sensitivity and are more dependent on and
confident of their navigation system than experience. *e
conclusion coincides with Corollary 1. (2) In two circum-
stances, all the plots suggest that the flow between departure
time (8 : 00, 8 : 30) (k� 4, 5, 6, 7) is apparently larger and that
although the travel time is longer, the prospect is larger. *is
finding suggests that departing at an appropriate time which
affords a high on-time probability is more important and
attractive than suffering an increased travel duration cost.

Figures 2 and 3 also illustrate the above conclusions.
*ese two plots present the value of ∀k∈KXd+1

k,r and
∀r∈Rw

Xd+1
k,r , respectively, in the two circumstances along the

time horizon in order to determine the features of route and
departure time flows. *e curves also indicate an approxi-
mate fixed state and oscillation equilibrium for different
model circumstances, similar to Figure 1. *is suggests that
the status of stability or instability is highly dependent on
information and user reliance.

Specifically, from the proposed model, we see that any
state that satisfied Z(k1) − Z(k2)≤ η1(∀k1, k2 ∈ K) and
PSd

k,r1
− PSd

k,r2
≤ η2(∀r1, r2 ∈ Rw), i.e., utility difference is

within tolerance, flow revision did not occur and the
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Table 1: Default parameter values.

Notation Description Value
TA Work started time 9 : 00
t0a Free travel time (30, 25, 35) min
K Intervals number 9
ca Link capacity (250, 200, 300) veh/min
tea Permitted earlier time 0.1btd+1

k

tla Permitted later time 0.05btd+1
k

L *e reserve memory days 4
θP � θT Validation parameters 0.3
η1 Punctual arrival tolerance 0.4
η2 Path prospect tolerance 0.4
η3 Real-time difference tolerance 0.4
δi Revision ratio 0.5
d Total demand at each slot 1000 veh/m

αi, λi, c Parameters in prospect function
αi � 0.88(i � 1, 2, 3, 4)

λi � [0.2, 0.3, 0.3, 0.5]

c � 0.74
yd−l Weight of memories (0.3370, 0.2780, 0.2185, 0.1923)
θ Weight coefficient for double objects 1.2
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Figure 1: Flows on each path at each time interval. (a) Circumstance I: without navigation. (b) Circumstance II: without navigation.
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network eventually reached stability. *is implies that the
day-to-day traffic system’s final state is not unique and
diversified due to the variability of the initial states.

Obviously, the initial setting above is reasonable for a
newly built network. However, for a network in service, in
order to analyze the process of stability-oscillation, stability
due to unpredictable disruptions, for instance a capacity
drop or rise from day d, real experience before day d is a
reasonable choice of initial conditions.

6.3. ComparisonwithUE. In the proposed model, due to the
travellers’ bounded rationality when considering day-to-day
route and navigation information, the final states (after some
oscillations) were not consistent with UE in most instances.
When the system reached stability, the prospect value on the
chosen paths at each time slot will be identical and the
constraints in the following UE model will be satisfied.
However, from the results illustrated in Figures 1–3, we see
that PS200k,r ≠PS

200
k′ ,r′(∀k, k′ ∈ K,∀r, r′ ∈ Rw). Obviously, user
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Figure 2: Total route flow in two circumstances.
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Figure 3: *e total departure time flow in two circumstances.
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equilibrium did not agree with these results. *erefore, in
this section, we construct a route-time cross-iteration al-
gorithm (RTCIA) to solve the UE model with route and
departure time choice simultaneously, and a comparison is
performed to search differences between the proposed
model and the UE model.

*e UE model can be formulated as

Xk,r · PSk,r − PS∗k,r  � 0,

PSk,r − PS∗k,r ≥ 0,

Xk � 
∀r∈Rw

Xk,r, Xr � 
∀k∈K

Xk,r, D � 
∀k∈K


∀r∈Rw

Xk,r.

(28)

(1) Input: all the variables in Table 1; total path number R;
(2) Output: flow variables Xk,r, Xk.
(3) Initialization: for each departure interval k, divide demand D into K segments, set X0

k � D/K, (1≤ k≤K). Denote m as outer
iteration index and initial value m � 0. Denote n as the inner iteration index and initial value n � 0.

(4) Main loop.
(5) Inner iteration: path flow assignment.
(6) xFor 1≤ k≤K, denote PS0k,r as the initial prospect, calculated using equations (7)–(9).
(7) When n � 1, 2, Pn

k,r � (exp(−θP × PSn−1
k,r )/∀r∈Rw

exp(−θP × PSn−1
k,r )), Xn

k,r � Xm
k × Pn

k,r; then update PSn
k,r, using equations (7)–(9);

the θP is stochastic parameter for route choice;
(8) If |Xn

k,r − Xn−1
k,r |/Xn−1

k,r > ε1, do: n � n + 1, method of successive averages (MSA) to update flow
Pn

k,r � (exp(−θP × PSn−1
k,r )/∀r∈Rw

exp(−θP × PSn−1
k,r )) Fn

k,r � Xm
k × Pn

k,r, Xn+1
k,r � Xn

k,r + (Fn
k,r − Xn

k,r)/n;
(9) If |Xn

k,r − Xn−1
k,r |/Xn−1

k,r ≤ ε1(n≥ 3), exit the inner iteration.
(10) Outer iteration: departure time assignment.
(11) m � m + 1. For 1≤ k≤K, set PSm

k � ∀r∈Rw
PSn

k,r/R, Pn
k,r � (exp(−θP × PSn−1

k,r )/∀r∈Rw
exp(−θP × PSn−1

k,r )). Fm
k � D × Pm

k , θT is the
stochastic parameter for time choice.

(12) When m � 1, Xm
k � Fm

k .
(13) When m≥ 2, if |Xn

k,r − Xn−1
k,r |/Xn−1

k,r > ε1, do: MSA to update flow: Xm
k � Xm−1

k + (Xm−1
k − Fm

k )/m. Output: Xm
k , enter into the inner

iteration.
(14) If |Xn

k,r − Xn−1
k,r |/Xn−1

k,r ≤ ε1, end.

ALGORITHM 1: RTCIA for the UE model.
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Figure 4: Comparison of two kinds of equilibria. (a) UE equilibrium. (b) Day-to-day equilibrium.

Mathematical Problems in Engineering 11



If PSk,r > PS∗k,r, Xk,r � 0, it is identical with Wardrop’s
equilibrium definition. Xk and Xr represent the sum values
of all paths and all routes, respectively.

*e route-time cross-iteration algorithm (RTCIA) is
constituted by two crossed flow assignment processes. One
iteration is the path flow (Xr) equilibrium assignment with
the total flow Xk at time interval k � t/Δt, while the other is
to calculate each slot flow Xr to reach the departure time
equilibrium.

*e RTCIA for the UE model is described as the
pseudocode for Algorithm 1.

In order to compare the results of the day-to-day model
with the UE model appropriately, RTCIA was applied on the
example in Section 6.3. All the parameters in RTCIA were

given the same value as the day-to-day model aiming to
ensure a fair comparison. Figure 4 illustrates the three paths’
flow at the steady state (considering the oscillation equilibria
and taking the sum route flow 

200
k�160X

n+1
k,r /40 as the stable

flow in the day-to-day model). In the left plot, PS200k,r ≈ PS
200
k′ ,r′

(∀k, k′ ∈ K,∀r, r′ ∈ Rw), which suggests a user equilibrium
within accepted errors. It is clear that the two plots have
considerable differences. For UE, the flow at each interval
varies more gently (5∼83 veh) than in the day-to-day model
(0∼220 veh). However, the results are all reasonable. First,
with the impact of tolerance parameters η1, η2, the bounded-
rational model is unable to reach a UE equilibrium. Second,
the travels are concentrated mainly in the peak time to
guarantee a higher punctual probability. *is indicates that
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Figure 5: Results of path flows for different values of ηi.
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the degree of difference among users’ travel cost in the
various models is highly dependent on travellers’ decision
psychology and acceptance of the utility gap.

6.4. Parameter Analysis. In the proposed model and ex-
ample, many of the parameters listed in Table 1 are needed to
calibrate the model and to be set as reasonable values. *e
number of intervals K was set to 9, i.e., each interval lasted
10min, in order to reduce computational complexity. In
reality, a minute-level comparison for departure time choice
is not necessary, as users make their choices every 5 or 10
minutes. *e two parameters of memory function (yd−l and
L) were calibrated and explained in [29], while the pa-
rameters (αi, λi, and c) adopted in the prospect function
were determined in [28]. *e reference points (tea and tla)
were set according to the practical experience that users have
little tolerance of arriving later and much more of being
early.

*e other parameters of the derived aggregate model
(i.e., η1, η2, η3, δ1, δ2, and δ3) have vital influence to the
stable state and oscillation duration before equilibrium.
Meanwhile, the value could be significantly different due to
users’ heterogeneity. In practical applications, these pa-
rameters needed to be calibrated using travel data from the
specific region surveyed. In Table 1, ηi is the tolerance
boundary of delay, set as a multiple of the current travel
time. However, aiming to reveal the impact of ηi and δi, the
results of different values are presented for a simple sensi-
tivity analysis. *e results are shown in Figures 5–8.

*e above four figures show results for different pa-
rameter values. In order to simplify the discussion, we
considered only one path and one departure slot for analysis.
In Figures 5 and 6, we focus on parameter ηi and set δi � 0.5,
while in Figures 7 and 8, ηi � 0.3 and δi � 0.2, 0.4, 0.6.

It is obvious that a general rule cannot be readily extracted
from the above figures. We can only conclude that larger
tolerance and revision ratio corresponds to more consuming
time and vigorous oscillation before reaching stability. *is
conclusion coincides with Corollary 2. However, if the two
parameters ηi, δi are changed simultaneously, the impact of
one will be offset by the other and this would invalidate the
above law.

*e results and analysis show that the equilibrium is
not guaranteed in the proposed model for the expres-
sions’ discontinuity and undifferentiability, which is
different from the fixed-point equilibrium or local sta-
bility for special parameters. *e bounded rationality
and experience reliance result in the solutions’ multi-
plicity and final states’ diversity.

7. Conclusions

In this study, we proposed a bounded-rational day-to-day
dynamic learning and adjusting model that incorporates
explicit expressions of individuals’ spatial-temporary choice
behaviours with navigation information. *e establishment
of the dynamical model started with individuals’ informa-
tion collection and self-learning along the time horizon, i.e.,
the travel time experienced and real-time navigation in-
formation collected on each discrete day. *en, a micro-
scopic model was derived to determine the updating process
of perceived travel time, the self-learning model, and the
objective of maximizing utility in the system for each in-
dividual. Subsequently, the microscopic model was trans-
formed to a macroscopic model to obtain a
bounded-rational continuous day-to-day dynamical model
by aggregating each individual’s behaviour and calculating
route choice probability. A numerical example indicates that
the day-to-day model converges to a special stable state, but
navigation reliance, risk preferences, the tolerance gap, and
the initial state can all cause instabilities.

From the example results, it is obvious that navigation
has a significant influence on traffic flow and the final
equilibrium attained. Under this model, travellers showed
more reliance on real-time information so that spatial-
temporary flow manifested more drastic oscillations and a
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Figure 7: Results of path flows for different values of δi.
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Figure 8: Results of time flow for different values of δi .

Mathematical Problems in Engineering 13



more concentrated departure time zone. *e other most
important elements were the tolerance gap (ηi) and the
adjustment probability (δi). *ese parameters will influence
the model’s oscillation, the oscillation’s duration, and final
convergence to stability. Furthermore, the numerical ex-
amples illustrated some important properties and indicated
a compatible but different stable convergence from UE. *e
information collection pattern and users’ past experience
reliance will certainly affect day-to-day adjustment behav-
iour and changes in the final state. However, these differ-
ences are foreseeable, as the proposed dynamic model
attached more importance to self-learning and reliance on
experience, while UE paysmore emphasis on the same utility
on every option. *e two models are suitable for various
situations separately.

*is study can be extended to deal with some unsolved
issues. First, the dynamic model is based on the hypothesis
that travellers can recollect their past travel time, the de-
parture-time traffic state, and revise their day-to-day choices
to a certain degree. When these assumptions change, for
example, when users perceive only their own cost, naviga-
tion information is not precise enough or the revision rate
varies among the users, and the model and result of the
day-to-day stochastic fluctuations and final stability will
change distinctly. Second, an initial normal distribution of
flow is taken as first day choice data, which is appropriate for
new road networks. However, if an unpredictable incident
occurs on a network in use, the initial flow will be affected by
various conditions and result in different final states. *ird,
the prospect computation algorithm in the proposed model
emphasizes the choice result, where being late or early
corresponds to disparate utility, but travel cost along the way
is neglected. In fact, a large number of users will select their
exact departure interval to avoid being too early or late, but
for several participants, a too-early departure to enjoy a
shorter travel time, less congestion, and lower fuel con-
sumption could be a more appealing choice.
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