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In order to diagnose the faults of rolling bearings in motors via time-frequency analysis of bearing vibration signals quickly, this
paper puts forward a method of extracting the main components from time-frequency images. A threshold is adaptively de-
termined based on the gray histogram feature of the time-frequency images obtained from the vibration signals of the motor
rolling bearings. ,en, a mask template is generated by the threshold and a binarization processing. Based on a multiplication
operation between the mask template and the original time-frequency image, the signal component with low energy in the time-
frequency image is filtered out, and only the main components with high energy is remained for fault diagnosis, which is
convenient for the subsequent identification of the faults for motor rolling bearings. ,e main components in the time-frequency
images can be retained adaptively with the thresholds determined by the time-frequency images themselves.

1. Introduction

Conditionmonitoring and fault diagnosis for equipment can
monitor the health status of equipment in real time and
determine the fault location and severity by the changes of
some signals, which can not only avoid the occurrence of
major accidents but also greatly save maintenance costs.
While a motor is working, factors such as overload impact,
assembly error, poor lubrication, or impurity doping will
lead to the failure of the bearing. ,e vibration signals of a
motor will show the unsteady characteristic, and then, the
nonstationary signals have the characteristics of limited
duration and timely variation. ,e traditional signal pro-
cessing methods are mostly based on the assumption of a
stable state, which can only analyze the statistical charac-
teristics of the signal in the time domain or frequency
domain, but are unable to reveal the instantaneous char-
acteristics in the joint time-frequency domain. ,e time-
frequency representation of a signal can describe the energy
distribution and time-varying characteristics in the time-
frequency domain, which is the most complete expression

method for unstable signals. Along with the development of
image recognition, some mechanical fault identification
methods are put forward based on the time-frequency image
texture, shape, and other visual feature extraction. ,ese
methods can not only help us to understand the images but
also are good to improve the recognition accuracy.

Many scholars have studied this problem. Hongkun et al.
[1] make an investigation of the rolling bearing faults’ di-
agnosis by a time-frequency image processing technology,
and the experiment results showed that the Hough trans-
form of time-frequency images can effectively classify the
faults of rolling bearings. Isobe et al. [2] combined the local
wave time-frequency spectrum with image processing to
extract the features from vibration signals of reciprocating
machines. Cai et al. [3] calculated the Wigner–Ville dis-
tributions of acceleration signals by time-frequency analysis,
obtained a series of time-frequency gray images from the
above distributions by image processing, and then obtained
a group of fractal texture characteristic parameters from
these gray images to identify the abnormal status of a diesel
engine valve gap. Wei and Zhan-Sheng [4] studied a
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diagnosis method that is based on gray level-gradient co-
occurrence matrix, by extracting the information of image
texture characteristic to conduct the fault diagnosis of a
rotating machine. Cai et al. [5] proposed a new fault di-
agnosis method based on the time-frequency image rec-
ognition of EMD-WVD vibration spectrums by SVM.
,rough extracting the moment invariant feature of the
images, the diagnosis eigenvectors were achieved, and their
modes were recognized by an improved binary tree classifier.
Verstraete at al. [6] proposed a deep learning enabled fea-
tureless method, where the images generated by time-fre-
quency representations of the raw data were fed into a deep
convolutional neural network (CNN) architecture for
classification and fault diagnosis, and the results are good.

In time-frequency images, important information is
expressed through time-frequency components with high
energy. ,erefore, when the distribution law of frequency
components in time-frequency images is studied, the time-
frequency components with low energy can be regarded as
noise and be filtered out, which will help us to pay attention
to the time-frequency components with high energy. n is the
time-frequency images, and the energy of the time-fre-
quency component is reflected with the gray value of image,
so the classification of images can be achieved based on the
important components. A noise removal method for time-
frequency images is studied in this paper. A binarization
processing is applied to the time-frequency images to get a
mask template with which the original images are over-
lapped to highlight the components with concentrated en-
ergy. ,en, the fault diagnosis can be carried out according
to the remained signal components.

,e remaining sections of this paper are arranged as
follows. Firstly, the method of extracting the main com-
ponents of time-frequency images is introduced in Section 2.
,en, the OTSU method, the KSW-Entropy method, and
our improved method based on OTSU and KSW-entropy
methods are introduced in Section 3. ,e comparison of the
results and the analysis of the experimental data are de-
scribed in Section 4. ,e summary of our results is given in
Section 5.

2. The Method of Extracting the Main
Components from Time-Frequency Images

In fault diagnosis for mechanical equipment, especially in
the treatment of nonstationary signals, we mainly focus on
the changes of the main signal components which will
greatly affect or even determine the characteristic of the
whole signal. We often want to know how the frequency of a
signal component is changed with time and how the energy
of a signal component is changed with time. By the methods
of time-frequency analysis, we can see the changes of signal
components. ,ere are many methods of time-frequency
analysis, such as Wigner–Ville distributions (WVD) [7–9],
short-time Fourier transform (STFT) [10–12], wavelet
transform [13–15], and Hilbert–Huang transform [16–18].
Among these methods, the short-time Fourier transform is
simple and can be worked out quickly, while giving the main
information of how the signal component is changing with

time. Although the time-frequency resolution of STFT is not
as high as that of WVD, STFT is widely used because of its
free of crossterms, which limits the application of WVD
largely. In order to show the results of time-frequency
analysis visually, images are usually used, where the time is
expressed in horizontal coordinate and the frequency is
expressed in a vertical coordinate. In this paper, STFT is used
to get the time-frequency images of motor bearings.

2.1. Short-Time Fourier Transform (STFT) and Time-Fre-
quency Images. ,e STFT is a popular method for analyzing
nonstationary signals, which is a transform of traditional
Fourier transform [19]. ,e basic idea of STFT is as follows.

When a short-time window function is applied to an
original signal, the original nonstationary signal can be
viewed as a stationary signal during the very short interval of
the window. ,e window function ω(t) is then moved so
that x(τ)ωt,f(τ − t) can be always considered as a stationary
signal for a continuous finite time length. ,en, the power
spectrum of the signal at different time periods can be
calculated. ,e STFT of the signal x(t) is defined as

F
w
x (t, f) � 􏽚 x(τ)ωt,f(τ − t)e

−j2πfτdτ, (1)

where x(τ) is the signal to be analyzed, ω(τ) is the sliding
window function, and Fw

x (t, f) is the spectral distribution of
signal x at time t.

,e discrete STFT is defined as

F
ω
x (m, n) � 􏽘

ms+N−1

k�ms

x(k)ω(k − ms)e
−j2πkn/N

,

(m � 0, 1, 2 . . . M − 1; n � 0, 1, 2 . . . N − 1),

(2)

where ω(k) is the window function with the length of N, the
sliding step of the window function is s sampling time in-
terval, m is the location of the window, corresponding to the
time parameter of STFT, and n is the frequency parameter.
Suppose the sampling frequency of the original signal x(k) is
fs; then, the sampling time interval is Ts � 1/fs. Fω

x(m, n) is
the spectrum of the signal at the time of msTs, where the
frequency parameter of n corresponds to nfs/N.

By using STFT, we can get the power spectrum of the
signal at different time.,en, we show the results of STFT in
time-frequency images with the horizontal axis as time and
the vertical axis as frequency and the amplitude of the STFT
as the gray value. In order to observe the energy distribution
in time-frequency images, this paper inverts the gray scale of
time-frequency images, that is, at a certain moment and a
certain frequency, the larger the energy is, the smaller the
gray value will be.

2.2. Extraction of theMainComponents fromTime-Frequency
Images. A time-frequency image can be regarded as an
ordinary two-dimensional image, where the time is
expressed in horizontal coordinate and the frequency is
expressed in vertical coordinate. And, the energy of every
time-frequency component is reflected with the gray value.
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In the process of bearing faults’ diagnosis, the classification
of important feature components can be achieved based on
the classification of the gray value of the image.,at is to say,
the features of faults are largely contained in the main
components whose energy is expressed with large gray
values in the time-frequency image. So, our attention can
only focus on the parts with large gray values in the time-
frequency image.

In this paper, an adaptive method of extracting the main
components of time-frequency images is presented. Firstly,
STFT is used to get the time-frequency image of vibration
signals. ,en, a suitable threshold is calculated according to
the time-frequency image based on themethods of OTSU and
KSW-entropy. ,en, a mask template is generated according
to the threshold with the same size as the original image. ,e
value of each pixel is 0 or 1, where 1 means the pixels will be
kept and 0 means the pixels will be removed. ,en, the time-
frequency image which only retains the main components is
obtained by a multiplication between the mask template and
the original time-frequency image. Finally, the fault diagnosis
is carried out based on the time-frequency image with only
main components. ,e recognition computation of the time-
frequency image with only the important fault feature in-
formation retained will be much smaller than that of the
original time-frequency image.

,e process of the main components extraction method
is shown in Figure 1.

3. TheAdaptiveMethods of Threshold Selection

,e key of our method is the threshold selection of image
binarization, which also means the selection of the energy
threshold. An appropriate energy threshold can extract the
main characteristics components of a time-frequency image
and filter out other weak signals or irrelevant features.
,erefore, an improved adaptive threshold selection method
is proposed based on the KSW-entropy algorithm and
OTSU threshold segmentation algorithm.

3.1. /reshold Based on OTSU. Among all the algorithms
related to image threshold, OTSU algorithm [20], proposed
by OTSU, a Japanese scholar, is considered as the best al-
gorithm for threshold selection in image segmentation. It
divides the image into background and foreground
according to its gray scale. As variance is a measure of gray
distribution uniformity, the greater the interclass variance
between the background and foreground, the greater the
difference between the two parts of the image. If part of the
foreground is misclassified into background or part of the
background is misclassified into foreground, the difference
between the two parts will decrease. ,erefore, the seg-
mentation that maximizes the variance between classes
means that the probability of misclassification is minimized.

,e principle of OTSU is as follows.
If a threshold value is set as t, then the image pixel can be

divided into two categories of C1 (whose gray value lesser
than t) and C2 (whose gray value greater than t). Assuming
that the mean gray values of the two classes of pixel grayscale

are μ1 and the average gray value of the whole image is μ, the
percentage of C1 to total pixels is ω1, the percentage of C2 to
total pixels is ω2, the total number of pixels is N × M, and
the interclass variance is σ2. ,en, the formulas can be
expressed as follows:

ω1 �
C1

M × N
, (3)

ω2 �
C2

M × N
, (4)

ω1 + ω2 � 1, (5)

μ � ω1 × μ1 + ω2 × μ2, (6)

σ2 � ω1 × μ1 − μ( 􏼁
2

+ ω2 × μ2 − μ( 􏼁
2
. (7)

According to formulas (6) and (7), the final expression of
interclass variance is

σ2 � ω1 × ω2 × μ1 − μ2( 􏼁
2
. (8)

If the maximal image gray is L, by trying every gray value
and calculating the interclass variance of C1 and C2 pixels of
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analysis in gray-scale image

Binary processing 
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End

Obtain interclass 
variance set σ2 

and calculate the 
threshold T1

Obtain entropy set E(t)
and calculate the 
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Calculate the final 
threshold T

Time-frequency 
analysis of data

Figure 1: Algorithm flowchart of this paper.
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the image, the best threshold T can be found with the biggest
interclass variance:

σ2(T) � max σ2(t)|0≤ t≤ L − 1􏽮 􏽯. (9)

3.2. /reshold Based on KSW-Entropy. In 1985, Kapur,
Shaoo, and Wong proposed a method to select threshold
automatically based on optimal entropy, which was ab-
breviated as KSW-entropy algorithm [21]. ,e method
applies the entropy of image information to image seg-
mentation. For an image, a threshold value is found to divide
the histogram into two categories, and the information
entropy of the two categories is calculated, respectively.
Based on the threshold, the entropy is maximum. Entropy is
used in information theory to describe uncertain factors.,e
more ordered a system is, the lower its entropy is. In the
image, the boundary distribution of the target is the most
uncertain, so the boundary between the image target and the
background has the maximum entropy. ,e KSW-entropy
algorithm is good for image segmentation with fuzzy
boundaries between the target and background.

For an image with a gray scale of L, assuming that
p0, p1, p2, . . . , pL−1 are the probability distribution of each
gray level in the image. Image pixels are divided into two
categories by the threshold t. ,e pixels whose gray values
are in the range of [0, t] are divided into C1 category and the
pixels whose gray values are in the range of [t + 1, L − 1] are
divided into C2 category. Let PC1 � 􏽐

t
i�0 pi be the sum of the

probability of pixels in C1 and PC2 � 􏽐
L−1
i�t+1pi be the sum of

the probability of pixels in C2, and PC1 � 1 − PC2. ,e
probability distribution of each pixel in C1 is p0/PC1,

p1/PC1, p2/PC1, . . . , pt/PC1, and the probability distribution
of each pixel in C2 is pt+1/PC2, pt+2/PC2, pt+3/PC2, . . . ,

pL−1/PC2. ,en, the information entropy E(C1) of C1 and
entropy E(C2) of C2 are calculated as follows:

E(C1) � − 􏽘
t

i�0

pi

PC1
ln

pi

PC1
, (10)

E(C2) � − 􏽘
L−1

i�t+1

pi

PC2
ln

pi

PC2
. (11)

,e total information entropy is

E(t) � E(C1) + E(C2). (12)

After traversing the whole gray levels of L, the threshold
T that maximizes entropy E is the optimal segmentation
threshold:

E(T) � max E(t)|0≤ t≤ L − 1{ }. (13)

3.3. /reshold Based on Combined OTSU and KSW-Entropy.
,e segmentation result of OTSU is not good for the image
with blurred edges, which is mainly reflected in the mis-
classification of image edges and the sensitivity to noise.
However, the edge part of images is processed better with

KSW-entropy than with OTSU, but in the background part,
where a wrong segmentation may be classified. So, we
combine the methods of OTSU and KSW-entropy to pro-
pose an adaptive threshold segmentation method.

In order to satisfy formulas (9) and (13) simulta-
neously as far as possible, considering the theory of
multiobjective programming, the linear weighting
method in the evaluation function is used to reconstruct a
function of threshold selection. Suppose the weight of
interclass variance is S, Emin is the minimum entropy in
the calculation process of the calculating, Emax is the
maximum entropy, and norm(σ2) is to normalize the
interclass variance of all calculated thresholds into
[Emin, Emax]. ,en, the mathematical model of our method
can be expressed as follows:

E(T) � max S × norm σ2(t)􏼐 􏼑 +(1 − S) × E(t)|0≤ t≤ L − 1􏽮 􏽯.

(14)

,e weight S is calculated by the threshold T1 and the
threshold T2 which are determined by OTSU and KSW-
entropy. Considering OTSU’s missing edge and KSW’s
excessive background, the best threshold should be posi-
tioned between the thresholds determined by the two
methods. So, when the threshold value of image is decided,
both the variance and entropy should be taken into con-
sideration. At the same time, due to the effect of both
methods, the value of the variance should be moved towards
the direction of the maximum entropy, and the entropy
value should be moved towards the direction of maximum
variance, to achieve a balance of the effect of two methods.
,erefore, the definition of S can be expressed as the fol-
lowing formula:

S �
T2

T1 + T2
, (15)

with the weight S, the threshold of an image can be selected
dynamically and adjustable. ,e classification between the
edge and the background of a time-frequency image can be
achieved by taking the maximum intercategory variance
and the maximum entropy into consideration as far as
possible.

4. Experimental Results and Analysis

4.1. Introduction to the Bearing Data. ,e experimental data
we used were obtained from the Bearing Datasets of Case
Western Reserve University (CWRU) [22–24]. ,e test rig
consisted of a 2 horsepower (hp) motor driving a shaft
mounted with a torque transducer and encoder. ,e torque
is applied to the shaft by a dynamometer and a control
system. ,e acceleration data of vibration was measured
near to the motor bearings. ,e faults of the motor bearings
were artificially seeded using electro-discharge machining
(EDM). Faults ranging from 0.007 inches (or 7mil) to 0.040
inches in diameter were introduced separately at the inner
raceway, rolling element (i.e., ball), and outer raceway.
Faulted bearings were reinstalled into the test motor and the
vibration data was recorded for motor loads of 0 to 3
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horsepower (the motor speeds ranged from 1720 rpm to
1779 rpm).

A vibration data of a faulty bearing we analyzed came
from the dataset, where the fault size is 7 mil with zero
loading, and the shaft rotation speed is 1797 rpm, and the
sampling frequency is 12 KHz. In the process of STFT, a
hamming window with the length of 63 is used, and the
sliding step of the window is 1. Firstly, the results of
normal bearing in the same situation are shown in Fig-
ures 2 and 3. Figure 2 is the time domain and frequency
domain waveforms, and Figure 3 is the joint time-fre-
quency distribution image. ,e waveforms of time and
frequency are also shown in Figure 3, where the upper
waveform is for time domain and the left waveform is for
frequency domain. ,e joint time-frequency distribution
image of STFT is shown in the right-bottom corner in
Figure 3. Figure 4 shows the waveforms of a faulty bearing,
respectively, in time and frequency domains where the
inner ring is faulty in size of 7mil. ,e joint time-fre-
quency distribution image of the faulty bearing is shown
in Figure 5 as the same manner in Figure 4. In the fol-
lowing parts, we only show the time-frequency images of
STFT.

By comparing the time domain waveforms, the fre-
quency domain waveforms, and time-frequency images of
the normal bearing and the fault bearing, it can be seen that
the waveforms are quite different if a bearing has fault or not.
From Figure 2, we can see that the frequency of vibration
signals of normal bearings is mainly concentrated near
160Hz, 360Hz, 1050Hz, and 2100Hz, among which the
component near 1050Hz has the largest energy. ,e signal
component at 160Hz has the second largest energy. We can
only obtain this information from the spectrum diagram.
However, it can be seen from the time-frequency image that
the components near 1050Hz do not always exist; these
components appear at about 0.009 s, 0.046 s, and 0.079 s,
respectively, and the duration is less than 0.01 s, as shown in
Figure 3.

In the vibration signal of the faulty bearing, as shown
in Figure 4, the signal components are particularly rich,
mainly concentrating in the frequency band range be-
tween 2600 Hz and 2900 Hz and around 3900 Hz. From
the time-frequency image as shown in Figure 5, we can see
that even within these two frequency bands. ,e signal
components appear intermittently and the durations of
each component are slightly different. At the same time,
we can also see that, in addition to these main compo-
nents, there are also many components of weak energy
distributed randomly in the time-frequency domain,
which tend to disturb our attention due to their weak
energy and random distribution. We hope to filter out
these disturbances and then we can concentrate on finding
the components that reflect the characteristics of the
bearing failure.

4.2. Comparison of the Extraction Effects. ,e original time-
frequency image of the faulty bearing data is shown in
Figure 6. ,e mask template and the extracted main com-
ponents by the threshold of OTSU are shown in Figures 7
and 8. ,e mask template and the extracted main compo-
nents using KSW-entropy are also shown in Figures 9 and
10. ,e mask template and main components extracted by
our method are shown in Figures 11 and 12. And the main
components of the normal bearing extracted by our method
are shown in Figure 13.

,e threshold selected by our method is 192, which is
between the threshold of 205 and 157, respectively, obtained
by the methods of OTSU and KSW-entropy. Comparing the
Figures 6, 8, 10, and 12, we can see that when the threshold
value is different, the extracted main components are not
exactly the same. ,e larger the threshold is, the less the
time-frequency components are filtered out. ,e threshold
calculated by the method of KSW-entropy is smaller than
that of OTSU, so the main components extracted by the
method of KSW-entropy are less than the main components
extracted by the method of OTSU. ,e amount of the main
components extracted will affect our judgment and ability to
grasp the principal information of faulty bearings.

By comparing Figures 12 and 13, it can be seen that the
main time-frequency components extracted from the time-
frequency images of the faulty bearing and the normal
bearing are greatly different. ,e fault of the bearing can be
judged by observing the distribution of these major
components. From the main time-frequency components
extracted by our method, it can be easily seen that the signal
components are mainly concentrated in the frequency
bands around 1300Hz, 2800Hz, and 3600Hz, as shown in
Figure 12. ,ese signal components do not appear con-
tinuously, but occur at regular intervals with slight changes
in energy each time. For example, there are some obviously
signal components occur at 0.0085 s, 0.0272 s, 0.0455 s, and
0.0642 s, as shown in Figure 12 with red dotted lines, and
the time interval between these signal components is about
0.0185 s. Between each two components with obviously
high energy, there are also two signal components with
slightly lower energy. ,at is to say, a signal component is
occurred at almost every 0.0066 s or so. From this time
period we can see that the frequency of the components is
about 152Hz which is close to the characteristic frequency
of inner bearing ring fault. Based on the analysis of the
main components of the time-frequency image, we can
roughly infer that there may be a fault in the inner bearing
ring.

In order to make the results more convincing, another
data is analyzed to verify our method. ,e data is recorded
on the fault size of 21mil, and the motor load is 2 horse-
power with 1750 rpm, and the sampling frequency is also
12 kHz.,e waveforms of time and frequency domain are as
shown in Figure 14, where 4096 samples are analyzed. ,e
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time-frequency image of STFT and the extracted main
components are shown in Figures 15 and 16.

,e threshold we calculated with our method is 202.
As shown in Figure 16, where the bearing failure is more
serious, the signal components are still mainly

concentrated in frequency band of 2400 Hz∼3400 Hz. ,e
signal components in this frequency band are very
abundant and occur discontinuous. ,e time intervals are
not constant and the intensity of the signal components
are also various.
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Figure 13: ,e main components’ image of the normal bearing extracted with the mask template obtained from our method.
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Figure 14: ,e waveforms of the IR021_2_X211_DE data in time and frequency domain: (a) time domain of data
IR021_2_X211_DE_time_0000001_0004096 and (b) spectrum of data IR021_2_X211_DE_time_0000001_0004096.
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5. Conclusions

,is paper presents an adaptive method of extracting the
main components from time-frequency images, which is
based on the gray histogram features of time-frequency
images. In order to get a mask template, with which the
main components of time-frequency images can be
extracted, a threshold is firstly calculated adaptively by a
method combined of OTSU and KSW-Entropy. ,en, by
the idea of binarization processing, the mask template and
the original time-frequency image is operated with
multiplication; thus, the signal components with little

energy in time-frequency image can be filtered out. By this
method, the main components of time-frequency images
can be retained adaptively while some little details or
noisy components can be filtered out, which will help us to
focus on or find the characteristics of the time-frequency
images obtained from the vibration signals of motor
bearings. With this method, the effective pixel points of
time-frequency images can be effectively reduced, and the
amount of data to be processed during the later recog-
nition processing will also be reduced, which will help us
to use computers to automatically recognize or classify
time-frequency images for bearing faults’ diagnosis.
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Figure 15: ,e joint time-frequency distribution image.

0

1000

2000

3000

4000

5000

6000

f (
H

z)

0.20.15 0.25 0.30.05 0.10
t (s)

Figure 16: Main time-frequency components extracted by our method.
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