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Traditional 4D trajectory prediction based on aircraft performance models and flight procedures does not consider control
handover rules. Meanwhile, method based on historical data mining cannot accurately couple with real-time conditions such as
weather and also cause computational efficiency problems. /is project collected a large amount of historical data to form a
control experience database andmined the historical database to obtain control experience and flight intention. On the basis of the
traditional aircraft performance model, this paper puts forward the aircraft maneuver mode using strategy and introduces the
high-altitude wind information from the weather information into the aircraft 4D model to optimize the aircraft 4D trajectory
calculation model. By comparing the flight forecast time with the real crossing time, it is found that the average error of the
improved 4D forecast crossing time is less than 5% of the flight time, which is obviously better than that before optimization. It is
proved that the optimized method based on historical track data is effective and reliable, and the accuracy of 4D track prediction is
improved greatly.

1. Introduction

With the development of civil aviation industry, there are more
andmore aircraft on the flight path, the flight spacing is smaller
and smaller, and the air traffic safety situation ismore andmore
serious. Flight delays not only bring direct economic losses to
passengers and airlines but also affect the development of the
national economy. In recent years, automatic and intelligent
methods of air traffic control [1], such as aircraft conflict
detection and resolution [2], sequence of approach and de-
parture [3], and trajectory-based operation [4], have become
increasingly popular. /e purpose of these methods is to
improve air traffic efficiency and ensure air traffic safety [5].
/e rapid and accurate aircraft trajectory prediction is the basis
and guarantee for the realization of the above methods [6].

/e 4D (4-dimensional) track prediction is to predict and
calculate the 4D track points that will be generated by a flight
according to the experience information and initial plan

information when a flight does not occur. At present, there
are two main methods for aircraft 4D track prediction [7–10].
One is to synthesize all kinds of information, such as type,
position, altitude, speed of the departure airport, landing
airport, and reporting point in the plan information, the
aircraft standard flight procedures, the aircraft cruising alti-
tude and speed, and the conversion altitude, to form a
horizontal trajectory, an altitude trajectory, and a velocity
trajectory by using the aircraft performance model. In this
process, taking into account the influence of the high-altitude
wind on the ground speed of the aircraft, the three profiles are
processed independently and coupled to calculate the 4D
trajectory of the aircraft. /e position, speed, height, and
control sector of the flight passing through each reporting
point can be obtained. For example, in [11], a method of
predicting 4D taxiing trajectory for aircraft on airport surface
based on fitting velocity profile is proposed. In [12], Schuster
builds on an existing en route trajectory prediction (TP)
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model and develops novel techniques to predict aircraft
trajectories for the transitions between the ground and en
route phases of operation and the ground phase. /e
remaining parameters were taken from the BADA (Base of
Aircraft Date) 3.7 model. Du et al. [13] put forward 7 kinds of
track segment models based on the route object method and
built the horizontal track according to the geographical
distribution of flight plan, control instruction, and navigation
equipment, and the important parameters (climb rate, drop
rate, thrust, cruise Mach number, etc.) needed for vertical
profile modeling are simply calculated and optimized. Mi-
chael Kaiser et al. present an analytical model of the aircraft
performance and apply the findings to precisely predict fuel
flow characteristics as fundamental parameter for trajectory
planning [14]. And the presented enhanced jet performance
model provides a significant improvement over the currently
applied trajectory prediction method. An aircraft perfor-
mance model has been constructed based on BADA 4 so as to
generate trajectories in [15], and the multimodal approach for
the aircraft model is utilized to overcome the problem of the
complex optimal trajectory generation via reducing the
dimension.

/e other track prediction method is based on track data
mining with the rise of big data technology. Historical track
data are a reliable record of past flight conditions, which
include all possible factors affecting the operation of an
aircraft, such as changes in flight plans, control rules and
experience, and weather conditions. /is information can be
mined to analyze track patterns and used in track prediction
to improve prediction accuracy. For example, Zhao et al.
proposed a deep long short-term memory (D-LSTM) neural
network for aircraft trajectory prediction, which improves
the prediction accuracy of aircraft in complex flight envi-
ronments [16]. Zeng et al. [17] formulated the 4D trajectory
prediction problem as a sequence-to-sequence learning
problem and proposed a sequence-to-sequence deep long
short-term memory network (SS-DLSTM) for trajectory
prediction. Gabriel et al. take turning points as clustering
objects and use the clustering method to sort out the track
data and exclude the departure track to extract the typical
track, which is used for aircraft surveillance and prediction,
but the track information loss is more, and there is a lack of
altitude and time information [18]. Zhao et al. [19] proposed
a density-based improved track clustering method for track
prediction by combining weighted Manhattan distance with
penalty coefficient. Qian et al. [20] put forward an air target
track prediction model based on reverse propagation neural
network, which can cluster the target track data adaptively
and extract the rule of specific target’s moving area.

/e first 4D trajectory prediction method based on the
aircraft performance model is difficult to guarantee the
accuracy of trajectory prediction without considering the
weather model or judging the actual intention of aircraft.
For example, the transfer of aircraft between different
control areas is subject to the relevant protocol constraints
of the control transfer provisions, and it is difficult to take
into account such control transfer rules and altitude var-
iation characteristics in standard flight procedures. /is
will cause more obvious forecast error. /e second track

prediction algorithm based on big data technology fully
exploits flight history characteristics, but it is not easy to
integrate other factors that affect flight, such as real-time
weather and temporary change of flight path. On the other
hand, the large amount of air transportation data, multi-
data types, and various data distribution characteristics will
lead to low efficiency in the actual track prediction process
and cannot meet the real-time requirements. In addition,
the abnormal track has a great influence on the generation
of the representative track, and it also has an impact on the
prediction.

In order to solve this problem, this paper will make full
use of the advantages of aircraft performance models and
consider obtaining empirical parameters from historical
track data (for example, reporting point-to-point altitude) to
reflect the actual control intention, and the coupling cal-
culation method of the two is designed. At the same time,
taking into account the influence of high-altitude wind, the
4D track prediction accuracy can be improved, and the
prediction results are compared with the actual radar track
data to verify the effectiveness of the method.

2. Historical Data Analysis

In this paper, the historical track data are collected for a
period of time, and the acquired track data are fused, the
cleaned data are matched with the corresponding flight plan
data, and the flight record table of the aircraft is established.
Each flight record is composed of aircraft type, flight
number, route, planned takeoff time, planned landing time,
actual takeoff time, actual landing time, departure airport,
destination airport, track point, latitude and longitude,
transit time, transit speed, transit altitude, and other attri-
butes. Delete the invalid record that the flight number is
empty, add the field of the serial number, and sort by the
transit time from the departure time to the landing time of a
flight. /e flight number, aircraft type, serial number, actual
departure time, departure airport, destination airport, track
point, latitude and longitude, transit time, transit velocity,
and transit altitude are migrated to the distributed database
HBase of the Hadoop cluster. /e GRIB (Gridded Binary)
meteorological forecast data of the same period are analyzed
and put into the database to provide the necessary meteo-
rological forecast information for data mining.

/en, the first step is to get the actual cross-point infor-
mation of the reporting point. According to the route start-up
time, the national route model database is established, which
mainly contains 5 attributes, namely, route number, start-up
time, end-up time, route reporting point, and latitude and
longitude. /e mapping model of data file is constructed by
using flight record (associated field route) and national route
model database (associated field route number). Map raw data
are stored in HBase to intermediate data containing only route
reporting points and track points. By using the distance formula
between the two points, the report points and the track points
which are less than a certain threshold (20km) are temporarily
stored. Take the minimum distance of the track point to replace
the reporting point, and the track point crossing point height is
the reporting point crossing point height.
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/e second step is to get the altitude levels of the
reporting point and the track point. According to the
standard of RVSM airspace in China, a parameter database
of altitude levels is established, which mainly contains three
attributes: altitude level sequence number, low-altitude level,
and high-altitude level. /e mapping model of the data file is
constructed by using the national route model database
(association fields are the low-altitude level and high-altitude
level), and the original altitude data of the reporting point
and the track point are mapped to the altitude levels.

Using the altitude levels obtained by the above steps, the
experience altitude level of each reporting point under the
condition of the same airport, the same aircraft type, and the
same route is obtained by using k-means hard clustering
algorithm and then mapped to the height of the altitude
layer.

K-means clustering is also known as fast clustering or
dynamic clustering. Before clustering, it is necessary to
determine the classification number k according to the
specific problem and divide the data into k clusters
according to the distance function through the iterative
process, so as to optimize the criterion function for evalu-
ating the clustering performance [21].

Suppose that the observation sample X contains n
sample points, X� {x1, x2, . . ., xn}. In this paper, Euclidean
distance (4) is used to evaluate the similarity:

d xi, xj  � 
w

k�1
xik − xjk 

2⎡⎣ ⎤⎦
(1/2)

. (1)

/e k-means algorithm uses the sum of square error
criterion function to evaluate the clustering performance.
Suppose that X contains k clustering subsets X1, X2, . . ., Xk,
and the number of sample points of each subset is n1, n2, . . .,
nk, the mean value of each subset ism1,m2, . . .,mk, and then
the formula of the criterion function of the sum of squares of
errors is as follows:

E � 
k

i�1


p∈Xi

‖p − m‖
2
. (2)

On the other hand, using the altitude level information
of the track points and the passing time of the track points in
the flight record as the basic information to calculate the
cruise altitude, the information of the flight time lasting
below a certain range (10 minutes) is deleted. /e altitude
level of each flight with the longest duration is then obtained
as the cruising altitude. By coupling the track point ground
velocity of the longest time with the historical high-altitude
wind velocity at the position of the track point, the vacuum
velocity of each track point is obtained. /en, the cruise
phase vacuum velocity is obtained using the mean method.

Data information obtained from the above calculation
process is recorded, and the route experience data infor-
mation table is established. /e specific record information
includes aircraft type, flight number, departure airport,
destination airport, name of reporting point, altitude level of
reporting point, cruising altitude, and route.

3. Flight Profile Modeling Based on
Aircraft Performance

For the received, created, modified, or extracted flight plan
processing information, the experienced information of the
reporting point in the route experience information table
obtained in Section 2 is used to replace the report point
height and cruise altitude in the flight plan. Combined with
the meteorological forecast information of the received
period, a 4D track prediction model based on the control
intent and aircraft performance model is constructed.

According to the characteristics of flight phase, 4D pre-
dicted track is divided into three sections: horizontal profile,
altitude profile, and velocity profile, as shown in Figure 1.
Modeling idea: firstly, synthesize the two-dimensional hori-
zontal flight path from the starting point to the end point, and
then study the velocity profile and altitude profile along the
known horizontal trajectory, so as to realize the 4D track
simulation calculation.

3.1. Horizontal Flight Profile. From the horizontal track of a
typical flight trajectory, an aircraft usually flies in a straight
line from one point to another, then turns around this point
or near it and enters a new course, and then flies in a straight
line again. /erefore, the horizontal motion of aircraft
mainly includes linear motion model and turning motion
model [22]. Aiming at the turning motion, this paper adopts
the internal shear turning model. As shown in Figure 2, the
turning radius is R � VGs/(gsinφ) and the turning incli-
nation angle is φ. For the takeoff stage, the general value is
about 15°. /e aircraft flies directly from point P1 to point
P2, turns at point P with turning radius R2, and intercepts
the new course at point Q. /e longitude and latitude co-
ordinates of P1, P2, and P3 points were known. Cartesian
coordinates (xPi, yPi) (i� 1, 2, . . .) were obtained by co-
ordinate transformation.

/e course is

ψ2 � tan− 1 yP2 − yP1

xP2 − xP1
 , −π ≤ψ2 ≤ π,

ψ3 � tan− 1 yP3 − yP2

xP3 − xP2
 , −π ≤ψ3 ≤ π.

(3)

According to the course of the two direct sections, the
turning angle of the aircraft can be obtained:

Δψ �

ψ3 − ψ2 + 2π, SIGN> 0 andψ3 <ψ2,

ψ3 − ψ2 − 2π, SIGN< 0 andψ3 >ψ2,

ψ3 − ψ2, others.

⎧⎪⎪⎨

⎪⎪⎩
(4)

SGN(Δ) function value is as follows: when Δ> 0 and
SGN(Δ)� 1, turn right; when Δ � 0 and SGN(Δ)� 0, go
straight; when Δ< 0 and SGN(Δ) � −1, turn left.

According to turning angles Δψ and turning radius R, we
can get C2, the flight distance, turning distance, and the
coordinate position of turning starting point and ending
point.
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3.2.Height andVelocity Profile. In the process of building an
aircraft flight model, under no special conditions, the default
flight path is to climb to the cruising altitude first and then
fly a distance at the cruising altitude in accordance with the
standard flight procedures, and finally, follow the standard
descent procedure to land at the airport. For example, the
ascent phase can be modeled as shown in Figure 3. And the
descent phase can be modeled as shown in Figure 4.

3.2.1. Aircraft Performance Model. For each stage, the laws
of speed and altitude are solved based on the aircraft per-
formance model. BADA is an aircraft performance database
developed by the French EC (EuroControl) Center, which
contains different types of aircraft performance parameters
and operating program parameters [12, 15]. BADA is based
on the TEM (Total Energy Model) model of the aircraft, and
the aircraft is modeled as a particle. /e force acting on the
aircraft is shown in Figure 5. /e work done by the resultant
force acting on the aircraft is equal to the kinetic energy and
potential energy increment of the aircraft:

m
dVTas

dt
� (T − D) + mg sin c, (5)

where m is the aircraft mass; VTas is the vacuum speed; T is
the thrust; D is the resistance; g is the gravitational accel-
eration; and c is the aircraft climb/descent angle.

/e rate of increase and decrease is as follows:

dh

dt
� −VTas sin c �

(T − D)VTas

mg
1 +

VTas

g

dVTas

dh
 

− 1

,

(6)

where h is the height. (1 + (VTas/g)(dVTas/dh))− 1 is the en-
ergy distribution coefficient. It can be transformed into a
function of Mach number f(M), representing the ratio of the
thrust used for climbing to the thrust used for acceleration when
climbing at a selected speed./e method is as described in [22].

3.2.2. Processing of Meteorological Conditions. /e influence
of meteorological factors on flight path prediction was
studied by using the high-altitude wind information of the
GRIB meteorological report [15]. /e GRIB weather report
is published by WAFS (World Area Forecast System).
According to the need of calculation, the high-altitude wind/
temperature data in GRIB were analyzed and interpolated,
and the high-altitude wind speed, wind direction, and
temperature of different latitude and longitude and altitude
layer grids were given. According to the position and altitude
information of the predicted route, the corresponding high-
altitude wind (V

→
wind) was invoked and the corresponding

ground velocity (V
→

GS) was obtained by vector calculation
with the calculated vacuum velocity (V

→
TAS), as shown in

Figure 6, and thus, the track prediction results were cor-
rected. Similarly, for the cruise velocity obtained in Sec-
tion 2, the vacuum velocity is obtained by calculating the
track point ground velocity and the wind velocity vector.

3.3. Profile Coupling. Based on the information of the
planned distance and the location of the initial reporting
points, the geographic coordinates of the predicted trajec-
tory points are calculated, and the corresponding velocity
and altitude results in the velocity and altitude profiles are

Horizontal 
profile

Altitude 
profile

Velocity 
profile

Figure 1: Schematic diagram of aircraft trajectory profile.
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Figure 2: Schematic diagram of internal shear turning model.
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obtained by considering the distance. Finally, the predicted
passing time, passing height, and location coordinates of all
the trajectory points and the reporting points are obtained.

4. Correction Method with Historical
Empirical Parameters

In the actual flight process, the aircraft needs to accept
different control commands when passing through different
control areas. On the basis of sector handover protocol, it is
necessary to command the aircraft to enter the designated
flight level and hand over to the next control sector through
altitude adjustment. /e height restriction requirements
between different sectors will affect the height of aircraft
arriving at each reporting point. In the calculation of track
prediction, the experienced point height of each report point
obtained from the historical track mining is taken as the
target altitude, and aircraft are required to follow each
specified altitude when passing through each report point.
Based on the standard flight procedure, we propose to divide

the flight process from one reporting point 1 to another
reporting point 2 into three modes for calculation, as shown
in Figure 7.

Mode 1: the aircraft climbs/descends from the altitude of
report point P1 to the altitude of report point P2, and the
climbing/descending attitude matches the aircraft perfor-
mance model. After reaching the altitude of reporting point
P2, it flies horizontally to report point P2; Mode 2: the
aircraft flies horizontally for a distance at the altitude of
reporting point P1 and then climbs/descends from the al-
titude of reporting point P1 to the altitude of reporting point
P2. /e climbing/descending attitude matches the aircraft
performance model; Mode 3: the aircraft climbs from the
altitude of report point P1 to cruise altitude and then climbs/
descends from cruise altitude to report point P2. /e climb/
descent attitude matches the aircraft performance model.

According to the position of the current computing
point and the next computing point in the total route and the
position between the two points, the three predictive flight
modes are chosen.We designed the followingmethod of use:

Transition 
altitude

Height (�)

Accelerate climb

Constant ground speed climb

Accelerate climb

Constant CAS climb

Cruise

Constant CAS climbHorizontal 
acceleration

Cruise 
altitude

Constant mach climb

10000�

2500�

Climb apex

Voyage (m)

Figure 3: Schematic diagram of aircraft standard ascent phase.
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Constant CAS descend

Slow down
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Voyage (m)

Horizontal deceleration

Figure 4: Schematic diagram of aircraft standard descent phase.
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Step 1: first, assume that the current compute point
distance is S0. Based on aircraft performance models
and standard flight procedures, the distance required to
climb/descend to the next altitude at the current
compute point is estimated to be S1. /e total track
target distance is Stotal. /e distance required for de-
parture airport to climb to cruising altitude is Sclimb and
the distance required for cruising altitude to descend to
destination airport is Sdescend.
Step 2: when the current calculated point height is less
than the cruising altitude, the flight range over a certain
threshold Sm, there is still the possibility of entering the
cruising altitude. Our design is as follows: when the
next computing point with the target height is the
destination airport, choose Mode 3; when the next
computing point with the target height is not the
destination airport, and the distance to the next point is
far, while leaving enough range for descent, selectMode
1; otherwise, select Mode 3. For example, when
Stotal > � n1

∗Sclimb + n2
∗Sdescend, take Sm � n1

∗Sclimb,
when Stotal > � n1

∗Sclimb + n2
∗Sdescend, take

Sm � 0.5∗S0, and n1, n2 are adjustable coefficients, take
n1> 1 and n2> 1. If n2

∗Sdescend > S0 + S1 > n1
∗Sclimb,

then choose Mode 1; otherwise, select Mode 3.
Step 3: if the condition of Step 2 is not met and the
current point is higher than the cruising altitude or has

already flown a longer distance, the possibility of
climbing to the cruising altitude is no longer consid-
ered. When the next computing point with the target
height is the destination airport, select Mode 2. When
the distance from the current computing point to the
next computing point is less than n3∗s1, select Mode
1.When the distance from the current computing point
to the next computing point is more than n4∗s1, select
Mode 2; n3 and n4 are adjustable coefficients.

5. Numerical Simulation and Verification

In accordance with the above steps, the historical track and
flight plan data of North China over a period are collected,
and the statistics are made according to city pairs and
aircraft types. /e experienced altitude, the experienced
cruise altitude, and the experienced cruise velocity data of
the flight reporting points under the constraints of urban
pair and aircraft type are obtained and provided to the track
prediction module as configuration parameters.

/e track prediction module first synthesizes the in-
formation such as the departure airport, landing airport, and
waypoint in the real flight plan information to form a
horizontal trajectory. /en, according to the standard flight
procedure of the aircraft, the planned or experienced cruise
altitude and cruise speed of the aircraft, the converted

T
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mg

D

γ

Figure 5: Schematic diagram of aircraft stress status.

θ
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VTAS

V
wind

Figure 6: Schematic diagram of velocity calculation.
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altitude, and the altitude or experienced altitude of the
reporting point, it generates an altitude profile and a velocity
profile which can be divided into several sections. Together
with the horizontal profile, the 4D trajectory of the aircraft is
synthesized.

Taking a B77w flight from Shenyang (ZJSY) to Beijing
(ZBAA) airport as an example, through historical data
mining and analysis, the empirical information is obtained
as shown in Table 1. It should be noted that since the data are
collected in North China, there is no effective historical track
data collected in a period before entering the North China
intelligence region. /erefore, the empirical value obtained
by data mining mainly focuses on the report points after
entering the North China intelligence region. In addition,
some waypoints do not obtain effective experience infor-
mation due to data divergence or small amount of data. In
this paper, only empirical information with high degree of
data aggregation is used as prediction parameters.

/e experiential altitude of each report point is used as
the target altitude, and the experiential cruise altitude and
cruise speed are used to replace the cruise altitude and speed
information in the plan for the 4D trajectory prediction.
Figures 8–10 show the comparison between the predicted
trajectory and the actual trajectory of an A320 flight from
Shenyang to Beijing airport on October 26, 2019. Among
them, the prediction result obtained when the control ex-
perience altitude obtained by big data analysis is not in-
troduced is represented by gray, the prediction curve
obtained by introducing big data analysis result is shown in
blue, and the actual flight trajectory received by radar is
represented by orange. It can be seen from the three graphs
that the accuracy of the prediction track and the real track is
greatly improved after adding the empirical altitude and
speed information obtained from historical track analysis,
which shows that the modeling and calculation process in
this paper is accurate. /e track prediction algorithm based
on the combination of control intention and aircraft per-
formance can greatly improve the accuracy of track pre-
diction. In addition, the sector prediction result of each
waypoint is listed in Table 2. Based on improving the ac-
curacy of altitude prediction, the accuracy of sector pre-
diction is also significantly improved. For air traffic control
systems such as flow management system, traffic capacity
assessment, route planning, and conflict resolution strategies
can only be carried out by controllers based on knowing the
expected overflight situation of sectors and information
regions. /erefore, the method of optimizing track pre-
diction model based on historical track data is of great
significance for practical engineering application.

In order to further verify the effectiveness of historical
data correction track prediction, this paper also counts the
forecast and actual flight time of 100 flights from Beijing
Airport to DPX route point. /e waypoints from ZBAA to
DPX are shown below.

(i) ZBAA
(ii) LADIX
(iii) IDKUP
(iv) P149
(v) PANKI
(vi) YQG
(vii) DALIM
(viii) ABTUB
(ix) P86
(x) P60
(xi) P58
(xii) UDINO
(xiii) DPX

Statistically, ZBAA-DPX has a flight time of about 3120 s
based on the projected route before the analysis of historical
data is used. Using the historical data analysis, obtaining the
effective control experience altitude of the reporting point,
and so on, the recalculated average predicted flight time is
3323 s. /e corresponding real flight time obtained by radar
detection is 3423 s. It can be seen that by using the method
described in this paper, the prediction accuracy is improved
obviously, and the prediction error is raised to less than 5%
of the total flight time.

In terms of computational efficiency, the traditional
track prediction method based on data mining is too time-
consuming to meet the requirements of real-time calcu-
lation. For example, in [23], a total of 12080 tracks in 25
days are selected as the training set. After off-line learning,
the actual radar data of different lengths are used as the
prediction input, and the time consumption of a predicted
track output by the four-dimensional track prediction
algorithm based on FPR-Tree (Frequent Path-tree com-
bined R-tree) is tested, and the results are shown in
Figure 11. It can be seen that, with the increase of the
number of input radar points, the time-consuming of the
algorithm is also increasing; especially, when the input
radar points exceed 100 points, the time-consuming in-
creases by leaps and bounds. On the other hand, the
method used in this paper obtains the experience data of
control intention off-line based on the historical track

Mathematical Problems in Engineering 7
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Figure 7: Schematic diagram of maneuver modes.
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Table 1: Experience parameters by historical data mining.

Point name Longitude Latitude Height (m)
BISAL 112.2269 37.1006 9500
P130 112.4925 37.5442 9500
XIVEP 112.6578 37.6322 9500
UBLAT 113.4436 38.0503 9500
ISGOD 114.0897 38.285 8100
AKLOL 114.3994 38.3969 8100
OC 114.5558 38.4539 8100
AVNIX 116.075 38.7167 4500
BOBAK 116.4047 39.1264 4500
Cruising altitude 10100m Cruising velocity 900m/s
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Figure 9: Curves of distance-velocity with this method.
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Figure 10: Curves of distance-time with this method.
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data and only inputs the experience values as the calcu-
lation parameters of the dynamic model. /e calculation
time level is just millisecond level, which can be ignored.
/erefore, it can meet the requirements of real-time track
prediction and correction and has obvious advantages.

6. Conclusion

/e method in this paper is to use historical data to extract
the experienced altitude and cruise altitude of the aircraft
and combine them with the aircraft performance model and
weather data to realize 4D track prediction. /is method has
the following advantages in the application of air traffic
management systems such as traffic flow management and
regional cooperative decision-making.

First of all, based on the method of extracting control
intention from historical track data, the intention infor-
mation data files, such as the altitude, cruise altitude, and
vacuum speed, were generated for each reporting point

under the condition of city pair and aircraft type field, and
the control intention can be extracted quickly and
procedurally.

Second, the 4D flight path prediction mathematical-
physical model is established, which is coupled with the
aircraft performance model and control intention model.
/e prediction model takes into account many kinds of
information, such as weather, control intention, and aircraft
performance, which can quickly and accurately predict the
4D flight path of aircraft and improve the control efficiency.

/ird, the strategy of using aircraft maneuvering mode is
proposed. According to the relation between target point
and current calculating report point, the trigger time of
control command is simulated, and the optimization of the
track prediction model based on the result of historical track
data mining is realized.

Forth, the proposed method is verified by comparing the
predicted flight time with the real transit time. /e results
show that compared with the real transit time, the average
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Figure 11: Time-consuming of track prediction based on the traditional data-mining method.

Table 2: Sheet of section prediction results with this method.

Point
name

Without
experience data

Considering
experience data Real track Point

name
Without

experience data
Considering

experience data Real track

ZJSY ZJSYAR04 ZJSYAR04 ZJSYAR04 P61 — — —
WL ZJSYAR04 ZJSYAR04 ZJSYAR04 ENH ZGGGAR17 ZGGGAR17 ZGGGAR17
P472 ZJSYAR04 ZJSYAR04 ZJSYAR04 P23 ZGGGAR17 ZGGGAR17 ZGGGAR17
GIVIL ZJSYAR04 ZJSYAR04 ZJSYAR04 P53 ZGGGAR17 ZGGGAR17 ZGGGAR17
P473 ZJSYAR04 ZJSYAR04 ZJSYAR04 SHX ZLXYAR02 ZLXYAR07 ZLXYAR07
NYB ZJSYAR04 ZJSYAR01 ZJSYAR01 P24 ZLXYAR02 ZLXYAR07 ZLXYAR07
AGPOR ZJSYAR04 ZJSYAR01 ZJSYAR01 P134 ZBAAAR27 ZBAAAR18 ZBAAAR18
AGTEL ZJSYAR11 ZJSYAR11 ZJSYAR11 P354 ZBAAAR27 ZBAAAR18 ZBAAAR18
LH ZJSYAR11 ZJSYAR11 ZJSYAR11 YCE ZBAAAR08 ZBAAAR08 ZBAAAR08
BHY ZGZJAR02 ZJSYAR12 ZJSYAR12 BISAL ZBAAAR08 ZBAAAR08 ZBAAAR08
P125 ZGZJAR02 ZJSYAR12 ZJSYAR12 P130 ZBAAAR08 ZBAAAR08 ZBAAAR08
P20 ZGNNAR01 ZGNNAR04 ZGNNAR01 XIVEP ZBAAAR07 ZBAAAR07 ZBAAAR07
LBN ZGNNAR01 ZGNNAR04 ZGNNAR04 UBLAT ZBAAAR07 ZBAAAR07 ZBYNAR04
ENKUS ZGNNAR01 ZGNNAR04 ZGNNAR01 ISGOD ZBAAAR07 ZBAAAR07 ZBYNAR04
JW ZGGGAR22 ZGGGAR11 ZGGGAR11 AKLOL ZBAAAR05 ZBAAAR05 ZBAAAR05
PA ZGGGAR22 ZGGGAR11 ZGGGAR11 OC ZBAAAR05 ZBAAAR05 ZBAAAR05
SJG ZGGGAR22 ZGGGAR11 ZGGGAR11 NIPES ZBAAAR05 ZBAAAR05 ZBAAAR05
P59 ZGGGAR22 ZGGGAR11 ZGGGAR11 IBUNO ZBAAAR05 ZBAAAR05 ZBAAAR05
ZHJ ZGGGAR32 ZGGGAR32 ZGGGAR32 AVNIX ZBAAAR04 ZBAAAR06 ZBAAAR06
MAKLA — — — BOBAK ZBAAAP06 ZBAAAP06 ZBAAAP06
P281 — — — ZBAA ZBAAAP03 ZBAAAP03 ZBAAAP03
P448 — — — — — — —

10 Mathematical Problems in Engineering



error of the 4D prediction method is less than 5% of the
flight time. /e optimization method of the track prediction
model proposed in this paper is effective and reliable.

Fifth, the follow-up work can be based on the historical
track data to mine the experience range andmaneuver law of
the flight segment to form a more perfect control intention
sequence and explore the coupling method with the aircraft
performance model to further improve the accuracy of the
four-dimensional track prediction.
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