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Two-dimensional pulse-to-pulse canceller (TDPC) of ground clutter can effectively suppress the clutter along the clutter trace, and
therefore the moving target detectability of the following space-time adaptive processing (STAP) algorithm can be improved after
TDPC as the clutter prefilter. However, TDPC may greatly impair the energy of moving target when inaccurate knowledge is
exploited, which is detrimental to target detection. Aiming at this problem, a robust two-dimensional pulse-to-pulse canceller
(RTDPC) of ground clutter is proposed. In order to enhance the TDPC’s robustness with inaccurate radar system parameters,
which are mainly the platform velocity and crab angle, the errors of estimated platform velocity and crab angle are taken as the
prior knowledge and added into the design of the clutter filter coefficient matrix. By exploiting RTDPC as the clutter prefilter, the
moving target detectability of the following nonadaptive detection algorithm or STAP algorithm can also be enhanced. *e
simulated and MCARM data are utilized to verify the clutter suppression performance of RTDPC with inaccurate platform
velocity and crab angle.

1. Introduction

For the fast moving platform, the clutter received by the
airborne radar needs to be suppressed from the joint spatial-
temporal domain, in which the clutter and moving target are
separated. Space-time adaptive processing (STAP) has long
been viewed as an effective tool for clutter suppression and
target detection in airborne radar since it was first proposed
by Brennan and Reed [1]. Two main limitations including
computational cost and training sample demanding prevent
it from being extensively applied and motivate the devel-
opment of suboptimal dimension/rank-reduced STAP al-
gorithms. By far, many literatures have studied various
STAP methods to reduce the computational cost and
training sample demanding in adaptive processing and
enhance its practicability [2–4].

*e dimension-reduced STAP methods [5–12], such as
auxiliary channel processing (ACP) [5], joint domain lo-
calized (JDL) [6], and post-Doppler processing algorithms

[7, 8], can reduce the adaptive dimension and hence reduce
the computational cost and the number of required training
samples. On the other hand, the rank-reduced STAP
methods [13–20], such as principle components (PC) [13],
cross spectrum method (CSM) [16], and diagonal loading
(DL) [17], make the eigendecomposition to the clutter plus
noise covariance matrix (CPNCM) and try to estimate the
clutter subspace. Although the rank-reduced STAP methods
exploit the low rank property of clutter and reduce the
number of training samples to twice of the clutter rank, they
are computational intensive due to the CPNCM eigende-
composition. Besides, the eigenvectors of CPNCM cannot be
accurately estimated when the number of training samples is
small. Some target detection algorithms in airborne radar
based on the reduced-rank STAP are soon proposed [21, 22].
Nowadays, the knowledge-aided (KA) radar, which can use
the prior knowledge such as the digital elevationmap (DEM)
and geospatial databases to enhance STAP performance with
small training sample support, has been attracting increasing

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6690674, 13 pages
https://doi.org/10.1155/2021/6690674

mailto:spainraul123@126.com
https://orcid.org/0000-0002-9258-0764
https://orcid.org/0000-0002-5534-7955
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6690674


attentions of researchers and practitioners [21–33]. In KA
radar, various kinds of information are fused for predicting
the clutter distribution. For example, the distribution of the
ground clutter in the azimuth-Doppler domain can be de-
termined in advance when the platform velocity and the crab
angle, which can be obtained by the inertial navigation
system (INS) and global positioning system (GPS), com-
bined with radar operating parameters are known. Refer-
ences [34, 35] brought forward the method of two-
dimension pulse-pulse canceller (TDPC) of ground clutter
based on this kind of prior knowledge, which is verified to be
an effective clutter suppression method for airborne radar.

TDPC is in fact a nonadaptive clutter filter that takes the
knowledge of radar operating parameters and platform
velocity. However, due to the complex flight environment,
the platform velocity and crab angle cannot be always
correctly estimated. *e inaccurate airborne platform ve-
locity and crab angle used in the design of TDPC lead to the
impairment to moving target and degradation of clutter
suppression ability. Aiming at this problem, a robust two-
dimensional pulse-to-pulse canceller (RTDPC) of ground
clutter is proposed. In order to enhance the TDPC’s ro-
bustness with inaccurate prior knowledge that aremainly the
platform velocity and crab angle, the errors of estimated
airborne platform velocity and crab angle are added into the
design of RTDPC. *e moving target detectability of the
following nonadaptive detection algorithm or STAP algo-
rithm can also be enhanced. *e simulated and MCARM
data are utilized to verify the clutter suppression perfor-
mance of RTDPC with inaccurate platform velocity and crab
angle.

*is paper is organized as follows. *e ground clutter
model and the original TDPC are reviewed in Section 2.
Section 3 brings forward the principle of RTDPC. Section 4
illustrates the RTDPC filter cascaded with spatial-temporal
matching (STM) or dimension-reduced STAP method. In
Section 5, some experiments including simulated data and
real data show the performance of RTDPC. Finally, we make
a conclusion in Section 6.

2. GroundClutterModel and theOriginalTDPC

*e configuration of the airborne radar system to be studied
is shown in Figure 1, which demonstrates the antenna array
moving at a constant speed va in the positive x-direction.*e
antenna array consists of N array elements with interele-
ment space d. *e range cell under test (CUT) is uniformly

divided into Nc independent clutter patches without con-
sideration of the earth curvature. *e location of the i th
clutter patch is described by its azimuth angle θi and ele-
vation angle φ. Assuming that the airborne radar system
transmits K pulses on the repetition of Tr in one coherent
processing interval (CPI), the received clutter vector on the
CUT at the k th pulse is given by [2, 3] the following:

x(k) � 􏽘

Nc

i�1
αi exp j2π(k − 1)fd,i􏼐 􏼑as θi,φ( 􏼁, k � 1, . . . , K.

(1)

where fd,i � (2Trva cos(θi + θc)cosφ)/λ is the normalized
Doppler frequency with θc being the crab angle, αi is the
echo amplitude, and as(θi,φ) is the spatial steering-vector
and can be expressed as

as θi,φ( 􏼁 � 1, exp j2πfs,i􏼐 􏼑, . . . , exp j2π(N − 1)fs,i􏼐 􏼑􏽨 􏽩
T
,

(2)

in which fs,i � (d cos θi cosφ)/λ is the normalized spatial
frequency, λ is the operating wavelength, and (·)T is the
transpose of a vector. *e spatial-temporal snapshot of the
clutter can be expressed as

x � [x(1), x(2), . . . , x(K)] + n � 􏽘

Nc

i�1
αiat fd,i􏼐 􏼑⊗ as θi,φ( 􏼁 + n,

(3)

where at(fd,i) � [1, exp(j2πfd,i), . . . , exp(j2π(K − 1)

fd,i)]
T is the temporal steering-vector and n is the white

noise vector. One re-expresses (1) as the matrix-vector form
as

x(k) � DF(k)α, (4)

where

D � as θ1,φ( 􏼁, as θ2,φ( 􏼁, . . . , as θNc
,φ􏼐 􏼑􏽨 􏽩,

F(k) � diag exp j2π(k − 1)fd,1􏼐 , . . . , exp j2π(k − 1)fd,Nc
􏼐􏽨 􏽩􏼐 􏼑,

α � α1, . . . , αNc
􏽨 􏽩

T
.

(5)

In order to design TDPC, a coefficient matrix ATDPC is
established to minimize the residual clutter energy between
adjacent pulses, that is, as follows [35]:

min
A

‖ε(k)‖
2
F � min

A
ATDPCx(k) − x(k + 1)

����
����
2
F

� min
A

ATDPCDF(k)α − DF(k + 1)α
����

����
2
F
, (6)

where ‖ · ‖F is the F-norm. Since the most of the
energy contained in each x(k) comes from
the clutter echo, the clutter can hence be

suppressed by minimizing the difference in (6).
Let F � diag([exp(j2πfd,1, . . . , exp (j2πfd,Nc

]), we have
that

2 Mathematical Problems in Engineering



min
A

‖ε(k)‖
2
F � min

A
ATDPCDF

k− 1α − DFF
k− 1α

�����

�����
2

F
� min

A
ATDPCD − DF( 􏼁F

k− 1α
�����

�����
2

F
, (7)

which can be further described by the Cauthy–Shwarz in
equation as

‖ε(k)‖
2
F ≤ c ATDPCD − DF( 􏼁

����
����
2
F
, (8)

where c � ‖F
k− 1α‖

2
F is a constant. Now, our goal is to

minimize ‖(ATDPCD − DF)‖
2
F. *e following relation can be

obtained after expanding ‖(ATDPCD − DF)‖
2
F:

min
A

ATDPCD − DF􏼁
����

����
2
F

� min
A

tr ATDPCD − DF( 􏼁
H ATDPCD − DF( 􏼁􏼔 􏼕

� min
A

tr DHAH
TDPCATDPCD − DHAH

TDPCDF − F
HDHATDPCD + F

HDHDF􏼐 􏼑

� min
A

f ATDPC( 􏼁,

(9)

where tr(·) is the trace of a matrix and [·]H is the conjugate
transpose of a matrix or a vector. Let the gradient of
f(ATDPC) with respect to AH

TDPC be zero. *en, the solution
to (9) is

ATDPC � DFD DDH
􏼐 􏼑

− 1
.. (10)

*e TDPC coefficient matrix ATDPC can be obtained if
the matrices D and F are known, where D and F are only
determined by the parameters defined in (5). *us, if the
parameters, such as platform velocity, crab angle, operating
wavelength, and so on, are accurately known in advance, the
matricesD and F can be utilized as the prior information for
computing ATDPC. In other words, the TDPC coefficient
matrix ATDPC can be precalculated offline.

A prefiltering matrix of TDPC is devised as

HTDPC �

ATDPC − IN

ATDPC − IN 0

⋱ ⋱

0 ATDPC − IN

ATDPC − IN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C(K− 1)N×KN
,

(11)

where IN is a N × N identity matrix. *en, TDPC can
suppress the clutter by the following equation:

x � HTDPCx. (12)

3. Design of RTDPC

From the aforementioned designing procedure, the effec-
tiveness of TDPC depends heavily on the accuracy of prior
knowledge. In fact, though some parameters, such as op-
erating wavelength and elevation angle of CUT, can be
accurately known, some other parameters, such as platform
velocity and crab angle, can only be obtained with errors due
to the inconstant aircraft control. As a consequence, inac-
curate parameters exploited in the design will certainly
influence the clutter filtering result of TDPC, and hence in
this section, a robust TDPC based on the steering-vector
selection will be designed to improve the effectiveness of the
original TDPC with inaccurate parameters (mainly platform
velocity and crab angle). To start with, the estimated plat-
form velocity error and estimated crab angle error are as-
sumed to be Δva and Δθc. Accordingly, the estimated
normalized Doppler frequency can be expressed as

fd est �
2 va + Δva( 􏼁cos θ + θc + Δθc( 􏼁cosφ

λfr

�
2va cos θr cosΔθc cosφ

λfr

+
2Δva cos θr cosΔθc cosφ

λfr

−
2va sin θr sinΔθc cosφ

λfr

−
2Δva sin θr sinΔθc cosφ

λfr

,

(13)

where θr � θ + θc represents the real angle of a clutter patch
with θ being the azimuth angle of a clutter patch and θc

representing the crab angle. Δθc represents the estimated

crab angle error, namely, the error generated the estimation.
For the first two items and last two items in (13), they can be
further simplified as
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2va cos θr cosΔθc cosφ
λfr

+
2Δva cos θr cosΔθc cosφ

λfr

� fd cosΔθc 1 +
Δva

va

􏼠 􏼡

−
2va sin θr sinΔθc cosφ

λfr

−
2Δva sin θr sinΔθc cosφ

λfr

� −
2va sin θr sinΔθc cosφ

λfr

1 +
Δva

va

􏼠 􏼡.

(14)

For a typical airborne radar system, the accuracies for
INU and GPS measuring velocity and crab angle are about
0.1m/s–0.2m/s and 1∘− 1.5∘, respectively. Generally, the
velocity of airborne radar is over hundreds of meters per
second. *erefore, reasonably speaking, (Δva/va) should be

a very small number and can be neglected in the Doppler
calculation equation. Meanwhile, by using the facts that
cosΔθc ≈ 1 − (Δθ2c /2) and sinΔθc ≈ Δθc when Δθc is very
small, equation (14) can be further simplified as

fd est �
2 va + Δva( 􏼁cos θ + θc + Δθc( 􏼁cosφ

λfr

≈ fd cosΔθc −
2va sin θr cosφ

λfr

sinΔθc

≈ fd 1 −
Δθ2c
2

􏼠 􏼡 −
2va sin θr cosφ

λfr

Δθc,

(15)

which becomes a equation related only with estimated crab
angle, and the error between the true Doppler frequency fd

and the estimated normalized Doppler frequency is Δfd �

fd − fd ves � fd(Δθ2c /2) + ((2va sin θr cosφl)/λfr)Δθc. For
verifying the feasibility of equation (15), the following results
are demonstrated in Figure 2, where the average estimated
Doppler frequency error (defined as 􏽐

Nc

i�1 |fd,i − fd est,i|/Nc)
curves in a range cell for Δθc � 0.5∘, 1∘, and 1.5∘ by using
equations (13) and (15) are separately plotted. Evidently, as
the aforementioned analysis, the variation ofΔfd with Δva is
negligible and the crab angle plays the dominated role in
Δfd. Consequently, when Δθc is determined, the upper

bound of Δfd can be determined as fd(Δθ2c /2) + fd,maxΔθc

for Δfd ≤fd(Δθ2c /2) + (2va/λfr)Δθc � fd(Δθ2c /2)+

fd,maxΔθc, where fd,max � (2va/λfr) represents the maxi-
mum normalized Doppler frequency.

Let Δfd,max � fd(Δθ2c /2) + fd,maxΔθc, then the esti-
mated normalized Doppler frequency is located in the range
[fd − Δfd,max, fd + Δfd,max]. *en, the normalized
Doppler frequency span [fd − Δfd,max, fd + Δfd,max] can
be uniformly divided into Nd samples, which are denoted as
fd,1′ , . . . , fd,Nd

′ . Accordingly, a spatial-temporal steering-
vector dictionary is defined as

B � v1 θ1,φ, fd,1′􏼐 􏼑, . . . , vi θi,φ, fd,j
′􏼐 􏼑, . . . , vNc

′ θNc
′,φ, fd,Nd
′􏼐 􏼑􏽨 􏽩,

i � 1, . . . , Nc
′, j � 1, . . . , Nd,B � v1 θ1,φ, fd,1′􏼐 􏼑, . . . , vi θi,φ, fd,j

′􏼐 􏼑, . . . , vNc
′ θNc
′,φ, fd,Nd
′􏼐 􏼑􏽨 􏽩, i � 1, . . . , Nc

′, j � 1, . . . , Nd,
(16)

where B is a full-column rank matrix, Nc
′ is the assumed

number of clutter patches evenly distributed in the whole
azimuth angle, and vi(θi,φ, fd,j

′ ) � at(fd,j
′ )⊗ as(θi,φ).

After obtaining B and the snapshot in the CUT x, a search
method, which is similar to OMP [36], will be exploited to
iteratively find the most relevant steering-vector to x
from B, and this subsection outlines the main steps.

Let e0 � x, in the first iteration, the most relevant
steering-vector is selected as v1(θ1,φ, fd,1′ ) � at

(fd,1′ )⊗ as(θ1,φ) � argmaxi,j‖vH
i (θi,φ, fd,j

′ )e0‖2. *en, the
corresponding eigenvalue and normalized eigenvector can
be expressed as

u1 �
v1 θ1,φ, fd,1′􏼐 􏼑

v1 θ1,φ, fd,1′􏼐 􏼑
�����

�����2

,

λ1 � uH
1 e0.

(17)

*en, the residual vector between x and the first normalized
eigenvector is e1 � x − λ1u1. For consistently improving the
CPNCMestimation accuracy, the iterative procedurewill not be
stopped until the termination condition ‖BHeq− 1‖∞< ε or the
maximum number of iterations is satisfied at the qmax-th it-
eration, where ε is a constant that represents the threshold and
the symbol ‖ ‖∞ represents the infinity norm. At the q-th
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Figure 1: *e airborne radar system.
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Figure 2: Continued.
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iteration, the most relevant steering-vector is selected as
vq(θq,φ, fd,q

′ ) � at(fd,q
′ )⊗ as(θq,φ) � argmaxi,j‖vH

i (θi,φ,

fd,j
′ )eq− 1‖2. As a consequence, the eigenvalue and the nor-

malized eigenvector at the q-th iteration are expressed as

uq �
vq θq,φ, fd,q

′􏼐 􏼑 − 􏽐
q− 1
p�1 uH

p vq θq,φ, fd,q
′􏼐 􏼑􏽨 􏽩up

vq θq,φ, fd,q
′􏼐 􏼑 − 􏽐

q− 1
p�1 uH

p vq θq,φ, fd,q
′􏼐 􏼑􏽨 􏽩up

�����

�����2

,

λq � uH
q eq− 1.

(18)

It is worth noting that ui and uj (i≠ j) are mutually
orthogonal due to the Schmidt orthogonalization processing

in the iteration. For better understanding, the aforemen-
tioned algorithm is summarized in Algorithm 1.*ere exists
the contradiction between the performance and computa-
tional cost. Intuitively, Nc

′ should be large for maintaining
the satisfied performance. However, large Nc

′ will lead to
large computational cost. Fortunately, the rule for choosing
Nc
′ has been discussed in the previous literatures [4, 27], and

Nc
′ ≥ 4N will assure the performance.
After obtaining the selected steering-vector from B, the

robust TDPC can be designed in the similar way as the
original TDPC, namely,

DR � as θ1,φ􏼐 􏼑, as θ2,φ􏼐 􏼑, . . . , as θqmax
,φ􏼐 􏼑􏽨 􏽩, FR � diag exp j2πfd,1′􏼐 􏼑, . . . , exp j2πfd,qmax

′􏼐 􏼑􏽨 􏽩. (19)

Accordingly, in RTDPC, ARTDPC � DRFRDR(DRDH
R )− 1

and

HRTDPC �

ARTDPC − IN

ARTDPC − IN 0

⋱ ⋱

0 ARTDPC − IN

ARTDPC − IN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C(K− 1)N×KN
. (20)
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Figure 2: *e Doppler error curve comparison. (a) *e Doppler error curves by equations (13) and (15). (b) *e Doppler error curve by
equation (13). (c) *e Doppler error curve by equation (15).
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4. Cascaded Structure

*e proposed RTDPC can be exploited as a prefilter before
the STM or the classical STAPmethod to form the two-stage
prefilter and detector. In the first stage, RTDPC as the
prefilter can effectively filter out the clutter. *e second
stage, which is STM or STAP, can further suppress the
residual clutter and detect the moving target. Here, we will
briefly illustrate the two-stage prefilter and detector.

Assume that the spatial-temporal steering-vector of the
target is expressed as st � at ⊗ as, where at ∈ CK×1 and
as ∈ CN×1, respectively, are the temporal and spatial target
steering-vectors. After the clutter prefilter by 􏽥x � HRTDPCx,
the following moving target detection methods as the second
stage are illustrated separately:

(1) STM. *e RTDPC prefiltering operation on the
target vector s is

􏽥st � HRTDPCst. (21)

Correspondingly, the weight vector of STM is

wst � HRTDPC at · bt( 􏼁⊗ as · bs( 􏼁( 􏼁, (22)

where· is the Hadamard product implying the el-
ement-by-element operation of two vectors, and
bt ∈ CK×1 and bs ∈ CN×1 are the temporal and
spatial static window vectors adopted for attenu-
ating the sidelobes, respectively.

(2) Dimension-Reduced STAP. Suppose that the cor-
responding dimension-reduced matrix for STAP is
T ∈ Cr×(K− 1)N, then a dimension-reduced opera-
tion is made on the prefiltered data and target
steering-vector as follows:

x
⌢

� T􏽥x,

s
⌢

t � T􏽥st.
(23)

As a result, the dimension-reduced space-time filter
is as follows:

w
⌢

� μR− 1
x
⌢ s

⌢

t, (24)

where μ is a constant and Rx
⌢ � E[x

⌢
x
⌢H

] is the
correlationmatrix of the dimension-reduced data x

⌢.
It is often taken place by the maximum likelihood
estimation of itself.

5. Experimental Results

To start with, the simulation experiments are conducted to
verify the performance of RTDPC.

In the simulations, the uniform linear array is N � 8 an-
tennas with interelement d � 0.1m. In a CPI,K � 16 pulses are
transmitting at a pulse repetition frequency fr � 2800Hz. *e
airborne platform is ha � 9Km high at a speed of va � 140m/s.
*e CNR (clutter to noise ratio) is 60 dB. An SNR � 0 dB
(signal to noise ratio) moving target is injected into the
underdetection range cell with Doppler frequency fdr � 0.2fr.
*e errors for the estimated velocity and crab angle are set to be
Δva � 0.5m/s and Δθc � 1.5∘, respectively. *e MVDR
(minimum variance distortionless response) spectral is
exploited to testify the ability of RTDPC. It is defined as P �

(1/(sHR− 1s)) [3], where [·]− 1 means the inverse of a matrix, s
is the searching steering-vector, and R � Rc+n+Rs is the co-
variance of clutter plus noise and target.

In Figure 3, a target with normalized Doppler frequency
(fd/fr) � 0.2 is injected near the main clutter region.
Figure 3(a) shows the original clutter spectral. *e clutter ridge
is distributed along the diagonal in the angle-Doppler plane.
Compared with the strong clutter, the target which is located on
the right side of the clutter ridge is much weaker. Figures 3(b)
and 3(c) show, with accurate prior knowledge, the clutter
spectral after TDPC and RTDPC as clutter prefilters. Obviously,
the energy of themoving target is considerably stronger than the
main clutter. *is result indicates that both TDPC and RTDPC
can effectively suppress the clutter by forming the nulling along
the clutter ridge andmaintain the target constantwhen the prior
knowledge is accurate.

Figures 4–6 show the clutter filtering performance of TDPC
and RTDPC when the prior knowledge is not accurate. It is
clearly demonstrated that when crab angle is inaccurate, the
SNR will be considerably degraded by TDPC. However, by
RTDPC, the SNR almost remains the same as in Figure 3(c) and
the clutter is also effectively filtered out. Moreover, as the
analysis in Section 3, inaccurate crab angle influences the
performances of TDPC more than inaccurate velocity.

In Figures 7 and 8, the robust performance of RTDPC is
verified under nonsidelooking scenario. For the variation of
crab angle, the clutter ridge is distributed as a half-ellipse in the
angle-Doppler plane, which implies the nonlinear relationship
between the Doppler frequency and the spatial frequency.
Under this condition, RTDPC can still effectively filter the
clutter and maintain the SNR constant. However, as in the
sidelooking scenario, TDPC considerably degrades the SNR of

Input: x, B, threshold ε, and maximum iteration number qmax
For q� 1, 2, 3, ..., qmax do
Update u and λ
vq(θq,φ, fd,q

′ ) � argmaxi,j‖vH
i (θi,φ, fd,j

′ )eq− 1‖2,
uq � (vq(θq,φ, fd,q

′ ) − 􏽐
q− 1
p�1[uH

p vq(θq,φ, fd,q
′ )]up)/(‖vq(θq,φ, fd,q

′ ) − 􏽐
q− 1
p�1[uH

p vq(θq,φ, fd,q
′ )]up‖2) and λq � uH

q eq− 1.
Stop if ‖BHeq− 1‖∞< ε or q> qmax is satisfied

Output: u1, u2 ,..., uq and λ1 , λt ,..., λq 90

ALGORITHM 1: Steering-vector selection algorithm.
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target when the prior knowledge is inaccurate. From the
simulation results, we can conclude that although TDPC can
effectively suppress the clutter when the prior knowledge is not
accurate, the target is also impaired, which is detrimental to the
following target detection.

Real Data. In order to verify a good many achieve-
ments in the theory of STAP, MCARM program was

established by Rome Laboratory and Northrop Grumman
Corporation [37]. *e MCARM data used in the exper-
iment come from acquisition 575 on flight 5 (rl050575).
*e operating parameters used to obtain the data are as
follows: the platform velocity va � 100.2m/s, the crab
angle θc � 7.28∘, the array element spacing d � 0.1092m,
the radar operating wavelength λ � 0.2419m, and the
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Figure 3: *e clutter spectral before and after the prefiltering (θc � 0∘): (a) the original clutter spectral; (b) the clutter spectral after TDPC
filtering; (c) the clutter spectral after RTDPC filtering.
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Figure 4: *e clutter spectral after the prefiltering with Δva � 0.5m/s (θc � 0∘): (a) the clutter spectral after TDPC filtering; (b) the clutter
spectral after RTDPC filtering.
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Figure 6: *e clutter spectral after the prefiltering with Δva � 0.5m/s and Δθc � 1.5∘ (θc � 0∘): (a) the clutter spectral after TDPC filtering;
(b) the clutter spectral after RTDPC filtering.
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Figure 7: Continued.
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pulse repetition frequency fr � 1984Hz. As in the sim-
ulated experiments, the estimated errors in TDPC and
RTDPC for velocity and crab angle are also set to be Δva �

0.5m/s and Δθc � 1.5∘. 201–500 range bins are selected to
verify the proposed algorithm. *e first 11 azimuth
channels and the first 32 pulses are exploited here. Two
SCR � − 20 dB (signal to clutter ratio) moving targets with
azimuth angles 90∘ and Doppler frequency fd � − 0.157fr

are separately injected near the clutter main beam at the
range bins 350 and 400.

Figure 9 shows that the normalized output power
(NOP) of each range bin by making use of TDPC + STM
and RTDPC + STM. *e average NOPs below the target of

them are about 19.29 dB, 25.87 dB, and 34.93 dB, re-
spectively. It is clearly demonstrated that after RTDPC
filtering, STM can identify the two weak targets from the
residual clutter. However, due to the inaccurate prior
knowledge, after TDPC filtering, the clutter energy is still
strong. Similarly, as shown in Figures 10 and 11, the
average NOPs below the target for FA, TDPC + FA, and
RTDPC + FA are about 33.48 dB, 41.43 dB, and 43.38 dB
and those for EFA, TDPC + EFA, and RTDPC + EFA are
about 45.33 dB, 45.86 dB, and 46.71 dB. *e results infer
that the STAP method followed RTDPC can achieve
relatively good performance at the improvement of output
SCNR and the corresponding detection performance.
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Figure 7: *e clutter spectral before and after the prefiltering (θc � 30∘): (a) the original clutter spectral; (b) the clutter spectral after TDPC
filtering; (c) the clutter spectral after RTDPC filtering.
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(b) the clutter spectral after RTDPC filtering.
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6. Conclusions

*e effectiveness of TDPC depends largely on the ac-
curacy of estimated radar parameters. *e estimation
errors of platform velocity and crab angle in practice
caused by the complicated airborne flight environment
influence the clutter suppression ability of TDPC.
RTDPC that adds the errors of platform velocity and crab
angle into the design of filtering coefficient matrix for
increasing the TDPC’’s applicability is proposed in this
paper. Both the simulated and the MCARM real data are
utilized to compare the clutter suppression performance
of RTDPC with that of TDPC under the condition of
inaccurate platform velocity and crab angle. *e moving
target detectability of following STAP algorithms is also
enhanced after RTDPC as the filter.
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